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Abstract. This paper presents a multicore implementation of FrodoKEM, a
post-quantum cryptographic scheme, targeting near real-time Internet of Things
(IoT) applications. By combining tiled matrix multiplication and data paral-
lelism, we enable FrodoKEM to efficiently operate under the memory and per-
formance constraints of multicore microcontrollers. Implemented on the ESP32-
S3, the single-core version demonstrates feasibility through memory optimiza-
tion, while the dual-core version achieves a 44.5% reduction in execution time,
meeting the latency requirements of IoT systems.

1. Introduction
Cryptography is essential for securing digital communications, playing a key role in
protecting sensitive data across various applications, including financial transactions,
e-commerce, and secure messaging. In IoT systems, where interconnected devices ex-
change critical data, cryptographic protocols ensure data confidentiality and integrity. For
example, in smart grids, secure communication between utility providers and smart me-
ters is vital [Costa et al. 2022].

The advent of cryptographically relevant quantum computers (CRQCs) threat-
ens conventional cryptographic schemes such as Rivest-Shamir-Adleman (RSA) and
elliptic curve cryptography (ECC), which are vulnerable to quantum algorithms like
Shor’s [Shor 1994]. In response, post-quantum cryptography (PQC) has emerged as a
solution based on quantum-resistant mathematical problems. Since 2017, National Insti-
tute for Standards and Technology (NIST) has led efforts to standardize PQC, culminat-
ing in the selection of Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM)
as the primary Key Encapsulation Mechanism (KEM) for general-purpose use. Never-
theless, certain scenarios—such as critical infrastructure—demand conservative designs
prioritizing long-term confidentiality.

FrodoKEM [Alkim et al. 2020], grounded in the well-established Learning With
Errors (LWE) problem, was recommended by the Federal Office for Information Security
(BSI) for such high-assurance applications [BSI 2020]. However, FrodoKEM’s resource-
intensive nature—especially in terms of memory and execution time—challenges its de-
ployment in embedded systems typical of IoT ecosystems.
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Several studies have proposed optimizations to mitigate these challenges. These
include GPU-based Advanced Encryption Standard (AES) acceleration [Lee et al. 2022],
matrix multiplication optimizations [Bos et al. 2021], hardware/software co-designs on
RISC-V and SoC platforms [Karl et al. 2022, Costa et al. 2022], vectorized implemen-
tations using ARMv8 NEON [Kwon et al. 2021], and memory-efficient embedded ver-
sions [Bos et al. 2023]. Yet, multicore implementations of FrodoKEM remain underex-
plored.

This work proposes a multicore approach combining tiled matrix multiplication
and data parallelism to enhance FrodoKEM’s feasibility and performance in constrained
microcontrollers. Implementations on the ESP32-S3 demonstrate that tiled multiplication
enables FrodoKEM execution within memory limits, while data parallelism achieves a
44.5% reduction in execution time. The proposed method supports near real-time execu-
tion and complies with FrodoKEM specifications, providing a viable path for deploying
quantum-resistant security in IoT environments.

The remainder of this paper is organized as follows: Section 2 outlines FrodoKEM
operations. Section 3 presents the proposed multicore implementation. Section 4 details
the practical setup. Section 5 discusses results and conclusions.

2. The FrodoKEM scheme
FrodoKEM [Alkim et al. 2020] is a lattice-based cryptographic scheme built upon the
hardness of the LWE problem [Regev 2010]. We adopt FrodoKEM’s original nota-
tion [Alkim et al. 2020]: matrices are denoted by uppercase bold letters, vectors by low-
ercase bold letters, Zq represents integers modulo q, and || indicates concatenation.

FrodoKEM emphasizes conservative security by relying on simple operations
(e.g., addition, multiplication) and omitting structured lattices. It supports three param-
eter sets: FrodoKEM-640, -976, and -1344, targeting security levels equivalent to AES-
128, -192, and -256, respectively. However, its large matrix sizes—summarized in Ta-
ble 1—pose significant challenges for embedded implementations.

Table 1. Public key, private key, and ciphertext sizes for FrodoKEM (in bytes).
Public key size Private key size Ciphertext size

FrodoKEM-640 9616 19888 9720
FrodoKEM-976 15632 31296 15744

FrodoKEM-1344 21520 43088 21632

The scheme consists of three main operations: key generation, encapsulation,
and decapsulation. In key generation, the main computational task is forming matrix
B ∈ Zn×n

q as
B← AS︸︷︷︸

D

+E, (1)

where A is deterministically generated from a pseudorandom seed, and S, E are sampled
from a discrete Gaussian distribution χ.

In encapsulation, additional noise matrices S′, E′, and E′′ are sampled. The fol-
lowing core operations are performed:
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B′ ← S′A+ E′, V← S′B+ E′′. (2)

A message µ is encoded into matrix C using V, forming part of the ciphertext alongside
B′.

During decapsulation, the ciphertext is unpacked and used to recover µ′ via:

M← C+B′S. (3)

A re-encapsulation process computes:

B′′ ← S′A+ E′, C′ ← Encode(µ′). (4)

If B′′ = B′ and C′ = C, the shared secret is derived deterministically; otherwise, a
random value is returned.

FrodoKEM’s performance bottlenecks arise primarily from matrix multiplications
involving A, which motivate the optimizations explored in this work.

3. Proposal of multicore implementation for FrodoKEM
This section presents a multicore implementation strategy for FrodoKEM, targeting its
performance bottlenecks. According to [Costa et al. 2022], operations involving matrix
A dominate runtime when using Secure Hash Algorithm and Keccak (SHAKE)-128, ac-
counting for over 90% of total execution time. Specifically, B ← AS + E consumes
8.22%, while B′ ← S′A+E′ and B′′ ← S′A+E′ together take 30.94%. The standalone
generation of A via SHAKE-128 accounts for 53.90%.

To address these costs, we propose a combined approach using data parallelism
and tiled matrix multiplication. Data parallelism distributes matrix operations across U
cores, enabling concurrent processing and improved performance. However, FrodoKEM
also imposes high memory demands due to large matrix dimensions—especially for ma-
trix A ∈ Zn×n

q .

To overcome this, we apply tiled multiplication, which divides A into smaller
row-wise blocks (tiles) that can fit into limited internal memory. Each tile is generated
on-the-fly using SHAKE-128, multiplied by S, and accumulated into the resulting matrix
B alongside E. The next tile then overwrites the previous one, avoiding the need to
store the entire matrix A in memory. This technique significantly reduces the memory
footprint without altering the FrodoKEM specification, making the scheme viable for
resource-constrained microcontrollers.

Subsection 3.1 describes the multicore and tiled implementation of AS, while
Subsection 3.2 details the strategy for computing S′A1.

3.1. A by S matrix multiplication

To compute the matrix multiplication of A by S, which results in the matrix D ∈ Zn×n
q

in (1), the data parallelism of the matrix A in U cores is proposed. This procedure is

1The implementation source code is available in https://github.com/mv-amorim/
frodokem.
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illustrated in Figure 1. The main strategy is to divide the matrix A into U portions with
n/U rows and n columns. The u-th portion of A is called Au, where u ∈ {1, 2, . . . , U}.
By multiplying the u-th slice of A by S, the corresponding u-th slice of D, i.e., Du, of
dimensions n/U × n is obtained. By stacking all the slices Du, the matrix D (of size
n× n) is formed.

SA0
A2

A1

AU

B2

B1

BU

B0

Figure 1. Illustration of the multiplication of A by S using U processing cores.

3.2. S′ by A matrix multiplication
The multiplication of S′ by A slightly differs from the multiplication of A by S. In the
former operation, the matrix A is placed on the right-hand side of the multiplication.
However, the matrix A presented in (1) must be the same as that presented in (2) and (4),
which means that it must be generated in the same way, row by row. On the other hand,
as A is on the right-hand side, a column should be fully generated to perform the mul-
tiplication, which is not achieved using the tiled multiplication technique. Consequently,
the same procedure reported in Subsection 3.1 cannot be used, requiring another matrix
multiplication technique, see [Costa et al. 2022].

Therefore, we use another procedure for calculating the multiplication of S′ by A
using U processing cores. This procedure is illustrated in Figure 2. Note that the matrix
S′ is partitioned into U distinct column portions, where each portion, S′

u, is assigned
to the u-th processing core, with u ∈ {1, 2, . . . , U}. Similarly, the matrix A is divided
into U distinct row portions, with each portion, Au, assigned to the corresponding u-th
processing core. Observe that the matrix A is generated row by row using SHAKE-128
and therefore the u-th processing core only needs to generate the rows associated with its
corresponding portion, Au. Likewise, the u-th processing core only needs the u-th portion
of matrix S′ (i.e., S′

u). The u-th processing core then computes the matrix multiplication
of S′

u by Au, resulting in the matrix D′
u. Finally, the sum of all matrices D′

u produces
the matrix D′.

A0
A2

A1

AU

A0
A2

A1

AU

S0 S1 S2 SU

D2 DU

D1

D0

Figure 2. Illustration of the multiplication of S′ by A using U processing cores.

3.3. Other matrices multiplication
Encapsulation and decapsulation of FrodoKEM involve additional matrix multiplications,
such as the ones presented in (3). Since these operations do not use matrix A, their ma-
trix multiplications can be optimized using a multicore approach based on the strategy
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presented in Subsection 3.1. The key difference is that A does not need to be gener-
ated and the involved matrices are already pre-generated. Therefore, there is no evident
need to use the tiled multiplication technique. Instead, multicore multiplication and loop
unrolling can achieve better performance.

4. Practical implementation

To analyze the execution time performance of the proposed multicore implementation
of FrodoKEM, a practical implementation was performed using a hardware-constrained
microcontroller. In this context, Subsection 4.1 addresses the particularities of the cho-
sen microcontroller, an ESP32-S3. In Subsection 4.2, the feasibility of embedding
FrodoKEM in the ESP32-S3 and the techniques required to make it viable are in-
vestigated. Finally, Subsection 4.3 discusses details of a dual-core implementation of
FrodoKEM.

4.1. Main components

The hardware used in the implementation was an Espressif ESP32-S3 system-on-a-chip
(SoC) [Espressif 2023], which is a dual-core Xtensa 32-bits LX7 microcontroller with
512 kB of SRAM memory. The chip also has integrated Wi-Fi 2.4 GHz (802.11 b/g/n)
and Bluetooth Low Energy. Software development for the ESP32-S3 uses C programming
language and the ESP-IDF framework. Additionally, it includes a modified FreeRTOS2

implementation for dual-core support, enabling tasks to be pinned to specific core. Fur-
thermore, FreeRTOS resources, such as semaphores, were also used for dual-core imple-
mentation. In this work, ESP-IDF version 5.1.4 was used.

4.2. Feasibility analysis

As previously discussed, the size of matrix A in FrodoKEM is significantly large. This
makes it impractical to embed FrodoKEM as it is, even the lower security level variant
FrodoKEM-640, in the ESP32-S3 microcontroller due to its limited memory capacity. It
occurs because the ESP32-S3 provides 512kB of SRAM, while FrodoKEM-640 requires
819kB for storing matrix A alone. Therefore, the tiled multiplication technique must
be employed. This implementation applied the tiled multiplication technique alongside
a four-row loop unrolling. Consequently, each block (tile) has four rows of matrix A.
Table 2 lists the memory required to store each block (tile) of matrix A using the tiled
multiplication technique.

Table 2. Size of matrix A and memory resource usage by matrix A in reference
implementation and implementations with tiled multiplication technique.

Size of matrix A Memory resource usage
Reference Tiled multiplication Reference Tiled multiplication

FrodoKEM-640 819.0 kB 5.12 kB 160% 1%
FrodoKEM-976 1.8 MB 7.80 kB 372% 1.5%

FrodoKEM-1344 3.6 MB 10.75 kB 705% 2.1%

2FreeRTOS is a real-time operating system that enables multitasking on limited hardware through pre-
emptive scheduling.
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Although the tiled multiplication technique does not enhance execution time per-
formance, it substantially reduces the memory footprint, see Table 2. By applying this
technique, the memory resource usage of matrix A in ESP32-S3 was reduced to around
2.1% in the worst case, enabling operations where matrix A is required and leaving more
memory resources for other tasks.

4.3. Dual-core implementation details
Aiming to prove the performance improvement of the proposed multicore implementation
of FrodoKEM, a dual-core implementation is embedded in the ESP32-S3. The proposed
implementation aims to take advantage of the dual-core available in this microcontroller
(i.e., U = 2) based on a modified FreeRTOS by ESP-IDF. When matrix multiplications
are required, two tasks are created and pinned to each core. Each function executes half of
the operations needed for the matrices using the tiled multiplication technique alongside
loop unrolling. A structure is sent to each task containing pointers of data to be processed.

All operations were performed using memory pointers given the RAM limitations
of the hardware and the pursuit of better performance. Thus joining all blocks (tiles) of
the output matrix was unnecessary since the access to the output variable is shared be-
tween the tasks. However, another concern with this strategy was simultaneous access to
the same memory location. In cases where the matrix A is on the left-hand side of the
matrix product, it is not necessary to manage access because each task will write only
the block (tile) of memory corresponding to the u-th block (tile), i.e., Du, as indicated in
Figure 1. Since each value of u is unique, each processing core will always access dif-
ferent memory locations. On the other hand, if A is on the right-hand side, then multiple
processing cores may access the same memory location of the matrix D′ (or D′′) to sum
its corresponding portion, i.e., D′

u (or D′′
u). Consequently, it is necessary to implement a

mutal exclusion (mutex) lock strategy, which consists of controlling access to the memory
blocks corresponding to the rows of the matrix D′ (or D′′).

To address the issue in multiplying S′ by A, the authors propose that each process-
ing core starts computing D′

u from a different row. To implement this, memory access
coordination can be effectively managed within the matrix S′, with data acquisition for
matrices S′

u starting at different rows based on the processing core index u. Specifically,
the u-th processing core begins acquiring data from S′

u at row index (u− 1)n/U + 1. In
other words, the first processing core (u = 1) starts at the 1-st row of the matrix S′

1, the
second processing core (u = 2) starts at the (n/U + 1)-th row of the matrix S′

2, the third
processing core (u = 3) starts at the (2n/U +1)-th row of the matrix S′

3, and so on. Note
that all processing cores must access all n rows of their respective matrices S′

u, for all
u ∈ {1, 2, . . . , U}. Consequently, a cyclic behavior in row scanning is introduced: Upon
reaching the last row n of S′

u, each processing core returns to the first row and continues
until the row before the one where it started. Figure 3 illustrates this process.

5. Numerical Results
This section evaluates the performance improvement obtained from a dual-core imple-
mentation of FrodoKEM on the ESP32-S3 microcontroller. We compare execution times
for key generation, encapsulation, and decapsulation across the FrodoKEM-640, -976,
and -1344 parameter sets. Each function was executed 101 times, and the median times
are reported.
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Figure 3. Illustration of the memory access coordination to the matrix S′.

Table 3. Execution time, in seconds, of FrodoKEM algorithms implemented in
single- and dual-core of the ESP32-S3 microprocessor.

Description Frodo-640 Frodo-976 Frodo-1344

E
xe

cu
tio

n
tim

e
(s

)

Si
ng

le
-c

or
e Key Pair Generation 2.20 5.10 9.35

Encapsulation 2.45 5.63 10.46

Decapsulation 2.45 5.65 10.47

Total 7.10 16.38 30.29

D
ua

l-c
or

e Key Pair Generation 1.12 2.59 4.75
Encapsulation 1.40 2.91 5.75

Decapsulation 1.41 2.91 5.77

Total 3.94 8.42 16.28

Pe
rf

or
m

an
ce

Im
pr

ov
em

en
t

(%
)

Key Pair Generation 48.8 49.1 49.2

Encapsulation 42.8 48.4 45.0

Decapsulation 42.3 48.4 44.9

Total 44.5 48.6 46.3

As shown in Table 3, execution time increases with the matrix size, which is ex-
pected given that matrix A operations represent the main computational bottleneck. The
dual-core implementation consistently outperformed the single-core version, achieving
more than 44% reduction in execution time across all parameter sets and functions.

Ideally, data parallelism across two cores should yield a 50% speedup. In prac-
tice, the ESP32-S3 microcontroller incurs overhead from memory access and system-level
tasks, preventing full parallel efficiency. Still, the results demonstrate that distributing ma-
trix operations across cores is highly beneficial. For instance, FrodoKEM-1344 dropped
from 30.29s to 16.28s, while FrodoKEM-640 was reduced from 7.10s to 3.94s.

These execution times show that FrodoKEM, even in its most computationally
demanding version, can be deployed on resource-constrained devices when operating un-
der relaxed latency constraints. This is particularly relevant for IoT applications such as
smart metering and smart water systems, where data is typically exchanged in intervals
of minutes. For example, smart meters report consumption every 15 minutes, and water
management systems may transmit parameters every few minutes.

Moreover, reducing cryptographic processing time is critical in battery-powered
IoT devices. Faster key establishment shortens the active processing period, allowing
devices to return to low-power sleep modes more quickly, thereby improving energy effi-
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ciency and extending operational lifespan.

6. Conclusions
This work demonstrated the viability of deploying FrodoKEM on hardware-constrained
microcontrollers by combining tiled multiplication and data parallelism. Tiled multiplica-
tion enabled execution within memory limits, while data parallelism significantly reduced
execution time. A dual-core implementation on the ESP32-S3 achieved a 44.5% speedup
over the single-core version, with execution times ranging from 3.94 to 16.28 seconds.
These results confirm the feasibility of using FrodoKEM in near real-time IoT environ-
ments requiring post-quantum security.
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