Anais do SBSeg 2025: Artigos Curtos

Mitigando Técnicas de Anti-Instrumentacao em DBI:
Contramedidas baseadas em Overhead e Transparéncia

Francisco S. S. Neto!, Henrique B. Campelo!, Euler V. Silva'2,
Eduardo L. Feitosa'

nstituto de Computacdo — ICOMP) — Universidade Federal do Amazonas (UFAM)
CEP - 69.077-000 — Manaus — AM — Brasil,

?Instituto Federal de Educagio, Ciéncia e Tecnologia do Amazonas (IFAM)
CEP 69.020-120 — Manaus — AM — Brasil

{francisconeto,henrique.borges,eulervieira,
efeitosal@icomp.ufam.edu.br

Abstract. In this paper, we introduce three new countermeasures to mitigate
overhead and transparency based anti-instrumentation techniques employed by
context-aware malware to detect the presence of Dynamic Binary Instrumenta-
tion (DBI). We validated these countermeasures through proofs-of-concept in a
controlled environment. The results indicate that it is possible to reduce the at-
tack surface of such malware, promoting greater transparency and resilience in
DBI-instrumented environments.

Resumo. Apresentamos neste artigo trés novas contramedidas para mitigar
técnicas de anti-instrumentagdo baseadas em overhead e transparéncia, empre-
gadas por malwares cientes de contexto para detectar a presenga de instrumen-
tacdo bindria dinamica (DBI). Validamos as contramedidas por meio de provas
de conceito em ambiente controlado. Os resultados indicam que é possivel redu-
zir a superficie de ataques desses malwares, promovendo maior transparéncia
e resiliéncia em ambientes instrumentados por DBI.

1. Introducao

A andlise de malwares de forma dindmica tem se consolidado como um componente
essencial na drea de ciberseguranca, exigindo solucdes cada vez mais sofisticadas de de-
teccdo e neutralizacdo. Dentre as estratégias de andlise dindmica, a Instrumentacio Bi-
naria Dindmica (Dynamic Binary Instrumentation ou simplesmente DBI) destaca-se por
permitir a insercdo de instrucdes adicionais, em tempo de execugdo, sem exigir acesso
ao codigo-fonte nem recompilacdo. Contudo, o uso de DBI também instigou o sur-
gimento de técnicas evasivas especificas com o objetivo de detectar e contornar ambi-
entes instrumentados por DBI. Essas abordagens, conhecidas como técnicas de evasdo
anti-instrumentacao, exploram vulnerabilidades estruturais dos frameworks DBI, especi-
almente o overhead introduzido no tempo de execucdo e as limitagdes em garantir total
transparéncia durante a andlise. Por exemplo, a andlise realizada por [Polino et al. 2017],
em 7.006 amostras de malware, identificou que 15,6% delas incorporavam mecanismos
capazes de identificar e evitar DBI.

Anais do SBSeg 2025: Artigos Curtos

Diante desse desafio, o presente artigo propde trés novas contramedidas volta-
das a protecdo de ambientes DBI, concentradas em trés classes de técnicas evasivas: (i)
Environment Variables, que detecta nomes de varidveis associados a ferramentas de ins-
trumentacao; (ii) DBI fingerprints, que permite identificar artefatos caracteristicos de am-
bientes instrumentados; e (iii) Execution Time, que exploram a diferenca perceptivel entre
o tempo real de determinadas operacdes em ambientes nativos e instrumentados.

2. Instrumentacio Binaria Dindmica

Segundo [Nethercote 2004], a Instrumenta¢do Bindria Dinamica (DBI) € uma técnica que
ndo requer qualquer preparacdo prévia para andlise do programa a ser instrumentado,
como injecdo de bibliotecas ou alteracdes no cédigo bindrio do programa; cobre natu-
ralmente todo o c6digo do programa, o que pode ndo ser possivel nas andlises estdticas,
especialmente quando o programa gera cddigos dinamicamente; € ndo requer acesso ao
codigo fonte do programa ou recompilagdo do mesmo. [Rodriguez et al. 2016] acres-
centam ainda: (i) ser independente de linguagem de programacgdo e compilador utilizados
para a geracdo do programa; e (ii) possuir controle absoluto sobre a execu¢ao do programa
a ser analisado.

Apesar das vantagens, DBI apresenta duas limitacOes recorrentes. A primeira
refere-se ao overhead gerado pela inser¢do de cdédigo auxiliar, que pode introduzir
atrasos na execucdo do programa analisado. A segunda envolve a exposi¢do de es-
truturas ndo naturais no ambiente em tempo de execugdo, o que pode comprometer
a transparéncia do processo de instrumentacdo. Essas limitacdes tém sido alvo de
exploracdo por diferentes técnicas evasivas [Polino et al. 2017, Rodriguez et al. 2016,
Santos Filho and Feitosa 2019].

3. Técnicas de Anti-Instrumentacio para DBI

Embora a literatura académica sobre anti-instrumentacdo em DBI apresenta diferentes
ideias, neste estudo focamos em trés técnicas.

Environment Variables: exploram estruturas acessiveis durante a execucdo de
um processo que armazenam parametros de configuracdo definidos por siste-
mas operacionais, aplicacdes ou DBI. O Intel Pin, por exemplo, usa a varidvel
PIN_INJECTOR64_LD_LIBRARY_PATH para definir o caminho para bibliotecas
compartilhadas utilizadas durante a instrumentacao. Assim, sua presen¢a pode ser inter-
pretada pelo binario em andlise como um forte indicativo da presenga de instrumentacao.

DBI fingerprints: exploram padrdes de cddigo caracteristicos, como cadeias estaticas
de caracteres (pin.exe, pinvm.dl1l ou prefixos PIN_, por exemplo) presentes na
memoria do processo e que, consequentemente, podem indicar a atuagdo de um DBIL.

Execution Time: exploram as diferengas perceptiveis entre a duragdo real de determina-
das operagdes em ambientes nativos e instrumentados. DBI costuma introduzir sobrecarga
adicional durante a execucdo de chamadas comuns e instrucdes simples, resultando em
atrasos que podem ser detectados por meio de medi¢Oes temporais precisas.

4. Concepcao das Contramedidas

Analisar contramedidas contra técnicas de evasdo anti-DBI exigem a criacao de ambientes
controlados. Por isso, elaboramos trés aplicacdes de teste, uma para cada técnica de

2

Anais do SBSeg 2025: Artigos Curtos

evasdo. Além disso, também propomos uma ferramenta (pintool), chamada TOMWare,
para detecgdo das técnicas de evasdo e execu¢do das contramedidas propostas.

A primeira aplicacdo procura por strings definidas (PIN_CRT_TZDATA,
PIN_APP_LD_LIBRARY_PATH e PIN_VM_LD_LIBRARY_PATH, especificamente)
utilizando a funcdo GetEnvironmentStringsW. Em seguida, libera o bloco de varidveis de
ambiente e executa outro método, chamando _ dupenv_s, para recuperar explicitamente
o valor de PIN_CRT_TZDATA, a varidvel de ambiente testada. Caso encontre a string,
ela informa que o Pin foi detectado.

A segunda aplicaciao invoca a funcio VirtualQuery para visitar, pagina por pa-
gina, toda a memodria do processo. Em cada regido vélida, a aplicagdo realiza uma
comparacdo byte a byte, usando memcmp, procurando por "PIN_", "pin.exe",
"pinvm.dl1l" ou "pinipc.dll™".

A terceira aplicacio baseia-se na premissa de que, em condi¢des normais, pedir
a execucdo da fungdo Sleep (50 ms) devolve um tempo préximo de 50-55 ms. Valores
muito acima disso sugerem overhead que pode ser vinculado a um instrumentador DBI.

4.1. TOMWare

A ferramenta TOMWare! foi desenvolvida sobre o framework Intel Pin, para oferecer uma
camada de blindagem capaz de neutralizar mecanismos de detec¢do direcionados ao Intel
Pin, com foco em estratégias baseadas em overhead e transparéncia. A TOMWare é com-
pativel com sistemas Windows 10 (ou superior) na arquitetura x64. Sua compilacdo pode
ser realizada utilizando o Microsoft Visual Studio Community 2022 (64 bits), e a ferra-
menta € plenamente funcional com a versdo 3.28 do Intel Pin. Cada aplicacdo apresentada
nas secoes anteriores foi implementada como um moddulo independente, permitindo sua
ativacao de forma seletiva, conforme o cendrio de andlise.

5. Contramedidas Propostas

As contramedidas propostas visam neutralizar falhas exploradas por aplica¢des malici-
osas, ampliando a capacidade dos frameworks DBI de manter um ambiente de andlise
dindmica confidvel e resiliente diante de mecanismos de evasao.

5.1. SanitizePinEnvVars

O instrumentador Pin cria varidveis de ambiente com o prefixo PIN_ e a contramedida
SanitizePinEnvVars realiza a remogao controlada dessas varidveis com o objetivo de eli-
minar vestigios deixados pelo Intel Pin durante a instrumentacao.

Em determinadas situacdes, ao alterar dados das varidveis de ambiente, o Win-
dows detecta que o bloco de varidveis associado a estrutura PEB estd fragmentado ou ndo
possui espago suficiente para armazenar as alteracdes. Assim, ele aloca um novo bloco de
memoria na regido de heap, copia todas as varidveis ainda validas para esse novo bloco
e atualiza o ponteiro do bloco no PEB para o novo local em memdria. O bloco antigo,
embora desalocado logicamente, pode permanecer acessivel na memdria, por nao ser ime-
diatamente liberado, e pode ser explorado por varreduras manuais. Consequentemente,

"https://github.com/TOMWare-DBI/TOMWare

3

Anais do SBSeg 2025: Artigos Curtos

esse comportamento representa um risco, pois os dados anteriormente armazenados, in-
cluindo assinaturas como PIN_ podem permanecer acessiveis no bloco antigo, mesmo
apos a exclusdo logica. A contramedida SanitizePinEnyVars também trata esse caso e
aplica uma etapa de limpeza no espaco de memoria do bloco antigo, eliminando com-
pletamente os vestigios residuais e monitorando alteracdes no endereco do ponteiro de
ambiente antes e depois de cada remocdo. Se for detectada uma realocacao, o contetido
do bloco anterior é sobrescrito, impedindo sua recuperagdo por métodos de andlise de
memoria.

A contramedida verifica seis variaveis sensiveis associadas ao Pin, a fim de iden-
tificar: (i) quando a varidvel a ser removida ndo estd presente no ambiente do processo,
ao executar a funcdo GetEnvironmentVariableW e receber como retorno o codigo de erro
ERROR_ENVVAR_NOT_FOUND; (ii) quando a varidvel a ser removida foi excluida dire-
tamente no PEB, sem realocacdo. Nesse caso, como dados residuais podem permanecer
na regido final, a fung¢do SecureZeroMemory é executada sobre a drea residual; (ii1) quando
identifica que o Windows executou uma realocacio de blocos.

A execugdo da contramedida SanitizePinEnvVars ocorre logo ap6s a injecdo do
agente Pin, mas antes da chamada main() da aplicacao analisada, garantindo que qualquer
acesso posterior ao ambiente observe um contexto “limpo”. Ela nao altera a légica do
programa-alvo; apenas a copia de ambiente em espago-usudrio € modificada. Além disso,
nenhum handle ou permissao adicional é requerido. Também ndo deixa residuos, uma vez
que o uso da funcdo SecureZeroMemory previne a recuperacdo de assinaturas por leitura
bruta de regides liberadas.

5.2. InstMemcmpMask

Empacotadores (packers) e malwares executam verificacdes de memoria, em tempo de
execucdo, para decidir se estdo sob instrumentacdo. Basta, apenas, comparar blocos de
bytes com assinaturas que denunciam o DBI em uso (PIN_CRT_TZDATA, pin.exe,
pinvm.dl1l, por exemplo). A contramedida InstMemcmpMask intercepta doze (12)
variantes dessas rotinas> no Intel Pin . Cada chamada é redirecionada para um wrapper,
que executa a func¢do original, captura o resultado e, caso o retorno indique igualdade
(ret = 0) e o segundo operando corresponda a uma das quatro assinaturas sensiveis
(PIN_, pin.exe, pinvm.dll e pinipc.dl1l), ela forca o retorno para “diferente”
(1). Dessa forma, a comparacao falha deliberadamente, impedindo que o bindrio anali-
sado confirme a presenc¢a do Pin por validagdo de strings.

Para garantir ampla cobertura, a implementacgao intercepta multiplas variantes das
fun¢des de comparacao bindria, abrangendo tanto aquelas presentes na biblioteca padrao
da linguagem C (ucrt) quanto as versoes exportadas diretamente pela ntdll.dll, como Rtl-
CompareMemory e RtlIEqualMemory. A contramedida ndo modifica nenhum byte da me-
moria original, apenas ajusta o valor de retorno das fungdes interceptadas, evitando pro-
blemas relacionados a protecao de paginas de memoria. Como limitagdes, a contramedida
atua apenas sobre func¢des de comparagdo explicita, ou seja, chamadas diretas a rotinas
como memcmp ou RtlCompareMemory. Técnicas que realizam varreduras manuais na
memoria, utilizando ponteiros ou légica personalizada, ndo sdo interceptadas e podem

20 conjunto inclui versdes secure, insensiveis a caixa (memicmp) e fungdes wide-char.

4

Anais do SBSeg 2025: Artigos Curtos

contornar essa protecdo. Além disso, comparacdes realizadas por fungdes nao incluidas
na tabela de interceptagdo também permanecem fora do escopo da contramedida.

5.3. SkewMask

Malwares sao capazes de identificar pequenas variacdes no tempo de execu¢do de chama-
das, o que denunciam a presenca de instrumentacao. A contramedida SkewMask introduz
um mecanismo de compensacao temporal sobre fun¢des criticas afetadas pelo overhead.

A estratégia consiste em interceptar fungdes de temporizacao como Sleep/SleepEx
e medir o tempo real decorrido. Qualquer excesso em relagdo ao tempo solicitado € so-
mado a um contador global, acessado por operagdes atdmicas. Nas chamadas subsequen-
tes a fungdes como GetTickCount, QueryPerformanceCounter e GetSystemTimePrecise-
AsFileTime, a contramedida devolve valororiginal — contador, mascarando o impacto
da instrumentacdo e restituindo valores compativeis com execucdes nativas. O mesmo
contador € utilizado para todas as APIs, garantindo que diferentes fontes de tempo per-
manecam coerentes entre si. Com o atraso invisivel, verificagdes temporais internas dei-
xam de diferenciar uma execucao sob Pin de uma execugdo nativa, elevando a furtividade
(transparéncia) do DBI. O custo de processamento introduzido é minimo, apenas algumas
operacoes aritméticas e atdmicas por chamada, sem alterar a 16gica nem a estabilidade da
aplicacao analisada.

6. Resultados

Para avaliar as contramedidas propostas, foram analisados trés cendrios: (1) aplicacdo
de teste sem o Pin (execu¢do em bare-metal); (2) aplicacdo de teste sob a TOMWare,
sem a contramedida especifica ativada; (3) aplicacdo de teste sob a TOMWare, com a
contramedida especifica ativada. Os experimentos foram executados em uma maquina
com processador Intel Core 17-1165G7, 16 GB de RAM e sistema operacional Windows
11 x64.

6.1. SanitizePinEnvVars

A Figura 1 mostra a aplicagdo teste criada para inspecionar o ambiente do processo, con-
firmando a presenga da varidvel PIN_CRT_TZDATA lida diretamente do bloco de va-
ridveis mantido pelo PEB, e denunciando o Pin por ter encontrado uma varidvel com o
prefixo PIN_.

C:\TOMWARE\Resultados>C:\PIN\pin-3.28-987U9-g66L3ecee5-msvc—windows_NEW\pin
-3.28-987U9-g66U3ecee5—msvc—windows\pin.exe —t C:\Users\henri\source\TOMWar
e\x6U\Debug\TOMWare.dll — "C:\TOMWARE\Apps-Teste\TestGetEnvironments.exe"

PIN Detectado com a variavel PIN_CRT_TZDATA:=C:\PIN\pin-3.28-987U9-g66U3ecee
5-msvc-windows_NEW\pin-3.28-98749-g66U3ecee5S—msvc—windows/extras/crt/tzdata

Figura 1. Pin detectado por meio da variavel PIN_CRT_TZDATA.

A Figura 2 apresenta a execu¢do da mesma aplicagao teste sob a TOMWare com a
contramedida, que intercepta o programa logo na fase de inicio, remove a entrada suspeita
da lista de ambiente e zera o espaco residual no heap, de modo que varreduras subsequen-
tes ndo encontrem qualquer vestigio da instrumentacao.

5

Anais do SBSeg 2025: Artigos Curtos

C:\TOMWARE\Resultados>C:\PIN\pin-3.28-987U9-g66U3ecee5-msv

c—windows_NEW\pin-3.28-98749-g66U3ecee5-msvc—windows\pin.e

xe —t C:\Users\henri\source\TOMWare\x6L\Debug\TOMWare.dll
— "C:\TOMWARE\Apps-Teste\TestGetEnvironments.exe"
PIN_CRT_TZDATA: removida (in—place)
PIN_APP_LD_LIBRARY_PATH: inexistente

PIN_VM_LD_LIBRARY_PATH: inexistente
PIN_VMLOG: inexistente
PIN_APP_SHORTNAME: inexistente
PIN_LOG: inexistente

Figura 2. Contramedida aplicada: Pin nao foi identificado.

A contramedida aplica uma etapa de higienizacdo da memdria para evitar que
residuos possam ser recuperados por varreduras, sem interferir na légica da aplicacdo ou
modificar estruturas internas do sistema operacional.

6.2. InstMemcmpMask

A Figura 3 apresenta a saida da aplicacdo teste de varredura de memdria, evidenciando a
quantidade expressiva de ocorréncias das assinaturas PIN_, pin.exe, pinvm.dll e
pinipc.dll.

Resumo de ocorréncias:

PIN_ : 283

pin.exe : 12

pinvm.dll

pinipc.dll
Alerta: mais de U ocorréncias "PIN_" encontradas!
Alerta: mais de 2 ocorréncias "pin.exe" encontradas!
Alerta: mais ocorréncias "pinvm.dl1l" encontradas!
Alerta: mais ocorréncias "pinipc.dll" encontradas!

Figura 3. Pin detectado por meio de Overhead.

A Figura 4 mostra que, ap6s a ativacdo da contramedida InstMemcmpMask, todas
as comparagdes com essas sequéncias retornam deliberadamente “diferente”, de modo
que o mesmo programa nao consegue localizar nenhum dos padrdes e, consequentemente,
falha em detectar a instrumentacao.

C:\TOMWARE\Resultados>C:\PIN\pin-3.28-98749-g66U3ecee5-msv
c—windows_NEW\pin-3.28-987U9-g66L3ecee5—msvc-windows\pin.e
xe —t C:\Users\henri\source\TOMWare\x6U4\Debug\TOMWare.dll
—dm —— "C:\TOMWARE\Apps—-Teste\TestMemoryScan.exe"

Ocorréncias:

Resumo de ocorréncias:

PIN_ : B
pin.exe : B
pinvm.dll : @
pinipc.dll :

Figura 4. Contramedida aplicada. Pin nao foi identificado.

Anais do SBSeg 2025: Artigos Curtos

6.3. SkewMask

A contramedida SkewMask, por sua vez, introduz um mecanismo de compensac¢ao tempo-
ral que atua sobre fungdes como Sleep, QueryPerformanceCounter € GetTickCount. Na
Figura 5, a aplicacao teste identifica a presenca do Pin, pois a medi¢do da funcio Sleep()
retorna um valor superior ao esperado.

C: \TOMWARE\Resultados>C: \PIN\pin-3.28-987l19-g66U3ecee5-msv
c-windows_NEW\pin-3.28-987U9-g66U3ecee5-msvc-windows\pin.e
xe —t C:\Users\henri\source\TOMWare\x64\Debug\TOMWare.dll

—go — "C:\TOMWARE\Apps-Teste\TestOverhead.exe"
Ticks + Latencia: 3233.65| Limite: 3000
#*%% Overhead anomalo / possivel DBI ##**

Figura 5. Pin detectado por meio de Overhead.

Ja na Figura 6, com a contramedida SkewMask ativa, os mesmos intervalos retor-
nam a niveis normais, impedindo que o detector reconheca a instrumentacao.

C:\TOMWARE\Resultados>C:\PIN\pin-3.28-98749-g66U3ecee5-msv
c—windows_NEW\pin-3.28-987U9-g66U3ecee5-msvc-windows\pin.e
xe —t C:\Users\henri\source\TOMWare\x6U\Debug\TOMWare.dll
—-do —go —— "C:\TOMWARE\Apps-Teste\TestOverhead.exe"

Sleep invocado
Ticks + Latencia: 2157.7, Limite: 3000
OK - nenhuma anomalia

Figura 6. Pin nao identificado com a contramedida SkewMask aplicada.

7. Consideracoes Finais

Este artigo apresentou um conjunto de contramedidas voltadas a mitigacdo de técnicas
evasivas que exploram o overhead e a transparéncia de frameworks DBI. As solug¢des
propostas foram concebidas com base na interceptacao de func¢des sensiveis € na mani-
pulacdo controlada de estruturas do ambiente de execu¢do, sendo implementadas como
provas de conceito na ferramenta TOMWare. Todas as contramedidas foram desenvol-
vidas em espaco de usudrio e aplicadas em testes controlados para andlise de eficicia e
impacto no desempenho.

Apesar dos resultados positivos, persistem desafios importantes no desenvolvi-
mento de contramedidas que preservem a transparéncia da instrumentagdo com impacto
minimo. Entre as dificuldades identificadas estdo a auséncia de solugdes genéricas para
técnicas de evasao baseadas em temporizacdo e a limitacdo de mecanismos capazes de
ocultar completamente artefatos em memoria ou alteracdes no fluxo de execugdo introdu-
zidas por instrumentadores.

Os resultados dos experimentos confirmam o dilema cladssico: quanto maior a
transparéncia desejada, maior o custo inevitavel em tempo de execucdo. Cada nova con-
tramedida amplia a superficie de interceptacao de fungdes ou instrugdes e acrescenta pro-
cessamento extra. A transparéncia total €, portanto, inalcangdvel na prética: sempre que
se oculta mais um artefato, introduz-se algum grau de laténcia. A decisdo de ativar uma
defesa deve considerar o perfil de chamadas da aplicacdo-alvo; uma técnica inofensiva

7

Anais do SBSeg 2025: Artigos Curtos

para software interativo pode ser proibitiva em uma rotina de alto débito de dados. Da
mesma forma, a inclusdo de contramedidas adicionais, sobretudo as que operam continu-
amente, tende a aumentar o overhead de forma ndo linear, exigindo um balanceamento
cuidadoso entre invisibilidade e desempenho.

Diante desse cendrio, ndo ha solucio genérica para todas as formas de evasdo por
temporizagdo, e a remocdo completa de artefatos em memoria esbarra na necessidade
de preservar a funcionalidade original do programa. Contudo, as contramedidas propos-
tas aumentam significativamente a resiliéncia do framework, preservando, na medida do
possivel, o isolamento, a integridade e a previsibilidade do ambiente instrumentado.

7.1. Trabalhos Futuros

Para o futuro, acreditamos que novas estratégias, que combinem monitoramento adap-
tativo e técnicas reativas, com o objetivo de ampliar a cobertura diante de mecanismos
evasivos emergentes serdo necessarias. As limitacdes observadas, como a dificuldade em
ocultar artefatos de instrumentacdo sem comprometer a funcionalidade do bindrio e os de-
safios associados a medi¢des de tempo sensiveis, evidenciam a necessidade de solucdes
dindmicas ajustadas ao perfil de execu¢do da aplicagao.

Assim, a pesquisa ird seguir em trés dire¢des prioritrias:

1. Elaborar contramedidas adaptativas, que ativem suas prote¢des somente diante
de padrdes suspeitos, com base em heuristicas como uso das funcdes sensiveis,
acessos a memoria ou variacdes de laténcia.

2. Resposta reativa, para reagir dinamicamente a tentativas de evasdo por meio de
reinstrumentacgdo seletiva ou redirecionamento de chamadas criticas.

3. Definicdo de métricas padronizadas de transparéncia e overhead, além da identi-
ficacdo falsos positivos com base em perfis de evasdo detectados.

8. Agradecimentos

O presente trabalho foi realizado com apoio da Coordenacdo de Aperfeicoamento de Pes-
soal de Nivel Superior - Brasil (CAPES-PROEX) - Cédigo de Financiamento 001. Este
trabalho foi parcialmente financiado pela Fundacdo de Amparo a Pesquisa do Estado do
Amazonas — FAPEAM - por meio do projeto POSGRAD 2024/2025.

Referéncias

Nethercote, N. (2004). Dynamic binary analysis and instrumentation. Technical report,
University of Cambridge, Computer Laboratory.

Polino, M., Continella, A., Mariani, S., D’Alessio, S., Fontana, L., Gritti, F., and Za-
nero, S. (2017). Measuring and defeating anti-instrumentation-equipped malware. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 73-96. Springer.

Rodriguez, R. J., Gaston, I. R., and Alonso, J. (2016). Towards the detection of isolation-
aware malware. IEEE Latin America Transactions, 14(2):1024-1036.

Santos Filho, A. and Feitosa, E. (2019). Reduzindo a superficie de ataque dos frameworks
de instrumentagdo bindria dindmica. In Simpdsio Brasileiro de Seguranca da Informa-
¢do e de Sistemas Computacionais (SBSeg), pages 253-266. SBC.

8

