
Mitigando Técnicas de Anti-Instrumentação em DBI:
Contramedidas baseadas em Overhead e Transparência

Francisco S. S. Neto1, Henrique B. Campelo1, Euler V. Silva1,2,
Eduardo L. Feitosa1

1Instituto de Computação – (ICOMP) – Universidade Federal do Amazonas (UFAM)
CEP – 69.077-000 – Manaus – AM – Brasil,

2Instituto Federal de Educação, Ciência e Tecnologia do Amazonas (IFAM)
CEP 69.020-120 – Manaus – AM – Brasil

{francisconeto,henrique.borges,eulervieira,
efeitosa}@icomp.ufam.edu.br

Abstract. In this paper, we introduce three new countermeasures to mitigate
overhead and transparency based anti-instrumentation techniques employed by
context-aware malware to detect the presence of Dynamic Binary Instrumenta-
tion (DBI). We validated these countermeasures through proofs-of-concept in a
controlled environment. The results indicate that it is possible to reduce the at-
tack surface of such malware, promoting greater transparency and resilience in
DBI-instrumented environments.

Resumo. Apresentamos neste artigo três novas contramedidas para mitigar
técnicas de anti-instrumentação baseadas em overhead e transparência, empre-
gadas por malwares cientes de contexto para detectar a presença de instrumen-
tação binária dinâmica (DBI). Validamos as contramedidas por meio de provas
de conceito em ambiente controlado. Os resultados indicam que é possível redu-
zir a superfície de ataques desses malwares, promovendo maior transparência
e resiliência em ambientes instrumentados por DBI.

1. Introdução

A análise de malwares de forma dinâmica tem se consolidado como um componente
essencial na área de cibersegurança, exigindo soluções cada vez mais sofisticadas de de-
tecção e neutralização. Dentre as estratégias de análise dinâmica, a Instrumentação Bi-
nária Dinâmica (Dynamic Binary Instrumentation ou simplesmente DBI) destaca-se por
permitir a inserção de instruções adicionais, em tempo de execução, sem exigir acesso
ao código-fonte nem recompilação. Contudo, o uso de DBI também instigou o sur-
gimento de técnicas evasivas específicas com o objetivo de detectar e contornar ambi-
entes instrumentados por DBI. Essas abordagens, conhecidas como técnicas de evasão
anti-instrumentação, exploram vulnerabilidades estruturais dos frameworks DBI, especi-
almente o overhead introduzido no tempo de execução e as limitações em garantir total
transparência durante a análise. Por exemplo, a análise realizada por [Polino et al. 2017],
em 7.006 amostras de malware, identificou que 15,6% delas incorporavam mecanismos
capazes de identificar e evitar DBI.

Anais do SBSeg 2025: Artigos Curtos

1



Diante desse desafio, o presente artigo propõe três novas contramedidas volta-
das à proteção de ambientes DBI, concentradas em três classes de técnicas evasivas: (i)
Environment Variables, que detecta nomes de variáveis associados a ferramentas de ins-
trumentação; (ii) DBI fingerprints, que permite identificar artefatos característicos de am-
bientes instrumentados; e (iii) Execution Time, que exploram a diferença perceptível entre
o tempo real de determinadas operações em ambientes nativos e instrumentados.

2. Instrumentação Binária Dinâmica
Segundo [Nethercote 2004], a Instrumentação Binária Dinâmica (DBI) é uma técnica que
não requer qualquer preparação prévia para análise do programa a ser instrumentado,
como injeção de bibliotecas ou alterações no código binário do programa; cobre natu-
ralmente todo o código do programa, o que pode não ser possível nas análises estáticas,
especialmente quando o programa gera códigos dinamicamente; e não requer acesso ao
código fonte do programa ou recompilação do mesmo. [Rodríguez et al. 2016] acres-
centam ainda: (i) ser independente de linguagem de programação e compilador utilizados
para a geração do programa; e (ii) possuir controle absoluto sobre a execução do programa
a ser analisado.

Apesar das vantagens, DBI apresenta duas limitações recorrentes. A primeira
refere-se ao overhead gerado pela inserção de código auxiliar, que pode introduzir
atrasos na execução do programa analisado. A segunda envolve a exposição de es-
truturas não naturais no ambiente em tempo de execução, o que pode comprometer
a transparência do processo de instrumentação. Essas limitações têm sido alvo de
exploração por diferentes técnicas evasivas [Polino et al. 2017, Rodríguez et al. 2016,
Santos Filho and Feitosa 2019].

3. Técnicas de Anti-Instrumentação para DBI
Embora a literatura acadêmica sobre anti-instrumentação em DBI apresenta diferentes
ideias, neste estudo focamos em três técnicas.

Environment Variables: exploram estruturas acessíveis durante a execução de
um processo que armazenam parâmetros de configuração definidos por siste-
mas operacionais, aplicações ou DBI. O Intel Pin, por exemplo, usa a variável
PIN_INJECTOR64_LD_LIBRARY_PATH para definir o caminho para bibliotecas
compartilhadas utilizadas durante a instrumentação. Assim, sua presença pode ser inter-
pretada pelo binário em análise como um forte indicativo da presença de instrumentação.

DBI fingerprints: exploram padrões de código característicos, como cadeias estáticas
de caracteres (pin.exe, pinvm.dll ou prefixos PIN_, por exemplo) presentes na
memória do processo e que, consequentemente, podem indicar a atuação de um DBI.

Execution Time: exploram as diferenças perceptíveis entre a duração real de determina-
das operações em ambientes nativos e instrumentados. DBI costuma introduzir sobrecarga
adicional durante a execução de chamadas comuns e instruções simples, resultando em
atrasos que podem ser detectados por meio de medições temporais precisas.

4. Concepção das Contramedidas
Analisar contramedidas contra técnicas de evasão anti-DBI exigem a criação de ambientes
controlados. Por isso, elaboramos três aplicações de teste, uma para cada técnica de

Anais do SBSeg 2025: Artigos Curtos

2



evasão. Além disso, também propomos uma ferramenta (pintool), chamada TOMWare,
para detecção das técnicas de evasão e execução das contramedidas propostas.

A primeira aplicação procura por strings definidas (PIN_CRT_TZDATA,
PIN_APP_LD_LIBRARY_PATH e PIN_VM_LD_LIBRARY_PATH, especificamente)
utilizando a função GetEnvironmentStringsW. Em seguida, libera o bloco de variáveis de
ambiente e executa outro método, chamando _dupenv_s, para recuperar explicitamente
o valor de PIN_CRT_TZDATA, a variável de ambiente testada. Caso encontre a string,
ela informa que o Pin foi detectado.

A segunda aplicação invoca a função VirtualQuery para visitar, página por pá-
gina, toda a memória do processo. Em cada região válida, a aplicação realiza uma
comparação byte a byte, usando memcmp, procurando por "PIN_", "pin.exe",
"pinvm.dll" ou "pinipc.dll".

A terceira aplicação baseia-se na premissa de que, em condições normais, pedir
a execução da função Sleep (50 ms) devolve um tempo próximo de 50–55 ms. Valores
muito acima disso sugerem overhead que pode ser vinculado a um instrumentador DBI.

4.1. TOMWare

A ferramenta TOMWare1 foi desenvolvida sobre o framework Intel Pin, para oferecer uma
camada de blindagem capaz de neutralizar mecanismos de detecção direcionados ao Intel
Pin, com foco em estratégias baseadas em overhead e transparência. A TOMWare é com-
patível com sistemas Windows 10 (ou superior) na arquitetura x64. Sua compilação pode
ser realizada utilizando o Microsoft Visual Studio Community 2022 (64 bits), e a ferra-
menta é plenamente funcional com a versão 3.28 do Intel Pin. Cada aplicação apresentada
nas seções anteriores foi implementada como um módulo independente, permitindo sua
ativação de forma seletiva, conforme o cenário de análise.

5. Contramedidas Propostas

As contramedidas propostas visam neutralizar falhas exploradas por aplicações malici-
osas, ampliando a capacidade dos frameworks DBI de manter um ambiente de análise
dinâmica confiável e resiliente diante de mecanismos de evasão.

5.1. SanitizePinEnvVars

O instrumentador Pin cria variáveis de ambiente com o prefixo PIN_ e a contramedida
SanitizePinEnvVars realiza a remoção controlada dessas variáveis com o objetivo de eli-
minar vestígios deixados pelo Intel Pin durante a instrumentação.

Em determinadas situações, ao alterar dados das variáveis de ambiente, o Win-
dows detecta que o bloco de variáveis associado à estrutura PEB está fragmentado ou não
possui espaço suficiente para armazenar as alterações. Assim, ele aloca um novo bloco de
memória na região de heap, copia todas as variáveis ainda válidas para esse novo bloco
e atualiza o ponteiro do bloco no PEB para o novo local em memória. O bloco antigo,
embora desalocado logicamente, pode permanecer acessível na memória, por não ser ime-
diatamente liberado, e pode ser explorado por varreduras manuais. Consequentemente,

1https://github.com/TOMWare-DBI/TOMWare

Anais do SBSeg 2025: Artigos Curtos

3



esse comportamento representa um risco, pois os dados anteriormente armazenados, in-
cluindo assinaturas como PIN_ podem permanecer acessíveis no bloco antigo, mesmo
após a exclusão lógica. A contramedida SanitizePinEnvVars também trata esse caso e
aplica uma etapa de limpeza no espaço de memória do bloco antigo, eliminando com-
pletamente os vestígios residuais e monitorando alterações no endereço do ponteiro de
ambiente antes e depois de cada remoção. Se for detectada uma realocação, o conteúdo
do bloco anterior é sobrescrito, impedindo sua recuperação por métodos de análise de
memória.

A contramedida verifica seis variáveis sensíveis associadas ao Pin, a fim de iden-
tificar: (i) quando a variável a ser removida não está presente no ambiente do processo,
ao executar a função GetEnvironmentVariableW e receber como retorno o código de erro
ERROR_ENVVAR_NOT_FOUND; (ii) quando a variável a ser removida foi excluída dire-
tamente no PEB, sem realocação. Nesse caso, como dados residuais podem permanecer
na região final, a função SecureZeroMemory é executada sobre a área residual; (iii) quando
identifica que o Windows executou uma realocação de blocos.

A execução da contramedida SanitizePinEnvVars ocorre logo após a injeção do
agente Pin, mas antes da chamada main() da aplicação analisada, garantindo que qualquer
acesso posterior ao ambiente observe um contexto “limpo”. Ela não altera a lógica do
programa-alvo; apenas a cópia de ambiente em espaço-usuário é modificada. Além disso,
nenhum handle ou permissão adicional é requerido. Também não deixa resíduos, uma vez
que o uso da função SecureZeroMemory previne a recuperação de assinaturas por leitura
bruta de regiões liberadas.

5.2. InstMemcmpMask

Empacotadores (packers) e malwares executam verificações de memória, em tempo de
execução, para decidir se estão sob instrumentação. Basta, apenas, comparar blocos de
bytes com assinaturas que denunciam o DBI em uso (PIN_CRT_TZDATA, pin.exe,
pinvm.dll, por exemplo). A contramedida InstMemcmpMask intercepta doze (12)
variantes dessas rotinas2 no Intel Pin . Cada chamada é redirecionada para um wrapper,
que executa a função original, captura o resultado e, caso o retorno indique igualdade
(ret = 0) e o segundo operando corresponda a uma das quatro assinaturas sensíveis
(PIN_, pin.exe, pinvm.dll e pinipc.dll), ela força o retorno para “diferente”
(1). Dessa forma, a comparação falha deliberadamente, impedindo que o binário anali-
sado confirme a presença do Pin por validação de strings.

Para garantir ampla cobertura, a implementação intercepta múltiplas variantes das
funções de comparação binária, abrangendo tanto aquelas presentes na biblioteca padrão
da linguagem C (ucrt) quanto as versões exportadas diretamente pela ntdll.dll, como Rtl-
CompareMemory e RtlEqualMemory. A contramedida não modifica nenhum byte da me-
mória original, apenas ajusta o valor de retorno das funções interceptadas, evitando pro-
blemas relacionados à proteção de páginas de memória. Como limitações, a contramedida
atua apenas sobre funções de comparação explícita, ou seja, chamadas diretas a rotinas
como memcmp ou RtlCompareMemory. Técnicas que realizam varreduras manuais na
memória, utilizando ponteiros ou lógica personalizada, não são interceptadas e podem

2O conjunto inclui versões secure, insensíveis a caixa (memicmp) e funções wide-char.

Anais do SBSeg 2025: Artigos Curtos

4



contornar essa proteção. Além disso, comparações realizadas por funções não incluídas
na tabela de interceptação também permanecem fora do escopo da contramedida.

5.3. SkewMask

Malwares são capazes de identificar pequenas variações no tempo de execução de chama-
das, o que denunciam a presença de instrumentação. A contramedida SkewMask introduz
um mecanismo de compensação temporal sobre funções críticas afetadas pelo overhead.

A estratégia consiste em interceptar funções de temporização como Sleep/SleepEx
e medir o tempo real decorrido. Qualquer excesso em relação ao tempo solicitado é so-
mado a um contador global, acessado por operações atômicas. Nas chamadas subsequen-
tes a funções como GetTickCount, QueryPerformanceCounter e GetSystemTimePrecise-
AsFileTime, a contramedida devolve valororiginal − contador, mascarando o impacto
da instrumentação e restituindo valores compatíveis com execuções nativas. O mesmo
contador é utilizado para todas as APIs, garantindo que diferentes fontes de tempo per-
maneçam coerentes entre si. Com o atraso invisível, verificações temporais internas dei-
xam de diferenciar uma execução sob Pin de uma execução nativa, elevando a furtividade
(transparência) do DBI. O custo de processamento introduzido é mínimo, apenas algumas
operações aritméticas e atômicas por chamada, sem alterar a lógica nem a estabilidade da
aplicação analisada.

6. Resultados

Para avaliar as contramedidas propostas, foram analisados três cenários: (1) aplicação
de teste sem o Pin (execução em bare-metal); (2) aplicação de teste sob a TOMWare,
sem a contramedida específica ativada; (3) aplicação de teste sob a TOMWare, com a
contramedida específica ativada. Os experimentos foram executados em uma máquina
com processador Intel Core i7-1165G7, 16 GB de RAM e sistema operacional Windows
11 x64.

6.1. SanitizePinEnvVars

A Figura 1 mostra a aplicação teste criada para inspecionar o ambiente do processo, con-
firmando a presença da variável PIN_CRT_TZDATA lida diretamente do bloco de va-
riáveis mantido pelo PEB, e denunciando o Pin por ter encontrado uma variável com o
prefixo PIN_.

Figura 1. Pin detectado por meio da variável PIN_CRT_TZDATA.

A Figura 2 apresenta a execução da mesma aplicação teste sob a TOMWare com a
contramedida, que intercepta o programa logo na fase de início, remove a entrada suspeita
da lista de ambiente e zera o espaço residual no heap, de modo que varreduras subsequen-
tes não encontrem qualquer vestígio da instrumentação.

Anais do SBSeg 2025: Artigos Curtos

5



Figura 2. Contramedida aplicada: Pin não foi identificado.

A contramedida aplica uma etapa de higienização da memória para evitar que
resíduos possam ser recuperados por varreduras, sem interferir na lógica da aplicação ou
modificar estruturas internas do sistema operacional.

6.2. InstMemcmpMask

A Figura 3 apresenta a saída da aplicação teste de varredura de memória, evidenciando a
quantidade expressiva de ocorrências das assinaturas PIN_, pin.exe, pinvm.dll e
pinipc.dll.

Figura 3. Pin detectado por meio de Overhead.

A Figura 4 mostra que, após a ativação da contramedida InstMemcmpMask, todas
as comparações com essas sequências retornam deliberadamente “diferente”, de modo
que o mesmo programa não consegue localizar nenhum dos padrões e, consequentemente,
falha em detectar a instrumentação.

Figura 4. Contramedida aplicada. Pin não foi identificado.

Anais do SBSeg 2025: Artigos Curtos

6



6.3. SkewMask

A contramedida SkewMask, por sua vez, introduz um mecanismo de compensação tempo-
ral que atua sobre funções como Sleep, QueryPerformanceCounter e GetTickCount. Na
Figura 5, a aplicação teste identifica a presença do Pin, pois a medição da função Sleep()
retorna um valor superior ao esperado.

Figura 5. Pin detectado por meio de Overhead.

Já na Figura 6, com a contramedida SkewMask ativa, os mesmos intervalos retor-
nam a níveis normais, impedindo que o detector reconheça a instrumentação.

Figura 6. Pin não identificado com a contramedida SkewMask aplicada.

7. Considerações Finais
Este artigo apresentou um conjunto de contramedidas voltadas à mitigação de técnicas
evasivas que exploram o overhead e a transparência de frameworks DBI. As soluções
propostas foram concebidas com base na interceptação de funções sensíveis e na mani-
pulação controlada de estruturas do ambiente de execução, sendo implementadas como
provas de conceito na ferramenta TOMWare. Todas as contramedidas foram desenvol-
vidas em espaço de usuário e aplicadas em testes controlados para análise de eficácia e
impacto no desempenho.

Apesar dos resultados positivos, persistem desafios importantes no desenvolvi-
mento de contramedidas que preservem a transparência da instrumentação com impacto
mínimo. Entre as dificuldades identificadas estão a ausência de soluções genéricas para
técnicas de evasão baseadas em temporização e a limitação de mecanismos capazes de
ocultar completamente artefatos em memória ou alterações no fluxo de execução introdu-
zidas por instrumentadores.

Os resultados dos experimentos confirmam o dilema clássico: quanto maior a
transparência desejada, maior o custo inevitável em tempo de execução. Cada nova con-
tramedida amplia a superfície de interceptação de funções ou instruções e acrescenta pro-
cessamento extra. A transparência total é, portanto, inalcançável na prática: sempre que
se oculta mais um artefato, introduz-se algum grau de latência. A decisão de ativar uma
defesa deve considerar o perfil de chamadas da aplicação-alvo; uma técnica inofensiva

Anais do SBSeg 2025: Artigos Curtos

7



para software interativo pode ser proibitiva em uma rotina de alto débito de dados. Da
mesma forma, a inclusão de contramedidas adicionais, sobretudo as que operam continu-
amente, tende a aumentar o overhead de forma não linear, exigindo um balanceamento
cuidadoso entre invisibilidade e desempenho.

Diante desse cenário, não há solução genérica para todas as formas de evasão por
temporização, e a remoção completa de artefatos em memória esbarra na necessidade
de preservar a funcionalidade original do programa. Contudo, as contramedidas propos-
tas aumentam significativamente a resiliência do framework, preservando, na medida do
possível, o isolamento, a integridade e a previsibilidade do ambiente instrumentado.

7.1. Trabalhos Futuros
Para o futuro, acreditamos que novas estratégias, que combinem monitoramento adap-
tativo e técnicas reativas, com o objetivo de ampliar a cobertura diante de mecanismos
evasivos emergentes serão necessárias. As limitações observadas, como a dificuldade em
ocultar artefatos de instrumentação sem comprometer a funcionalidade do binário e os de-
safios associados a medições de tempo sensíveis, evidenciam a necessidade de soluções
dinâmicas ajustadas ao perfil de execução da aplicação.

Assim, a pesquisa irá seguir em três direções prioritárias:

1. Elaborar contramedidas adaptativas, que ativem suas proteções somente diante
de padrões suspeitos, com base em heurísticas como uso das funções sensíveis,
acessos à memória ou variações de latência.

2. Resposta reativa, para reagir dinamicamente a tentativas de evasão por meio de
reinstrumentação seletiva ou redirecionamento de chamadas críticas.

3. Definição de métricas padronizadas de transparência e overhead, além da identi-
ficação falsos positivos com base em perfis de evasão detectados.

8. Agradecimentos
O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES-PROEX) - Código de Financiamento 001. Este
trabalho foi parcialmente financiado pela Fundação de Amparo à Pesquisa do Estado do
Amazonas – FAPEAM – por meio do projeto POSGRAD 2024/2025.

Referências
Nethercote, N. (2004). Dynamic binary analysis and instrumentation. Technical report,

University of Cambridge, Computer Laboratory.

Polino, M., Continella, A., Mariani, S., D’Alessio, S., Fontana, L., Gritti, F., and Za-
nero, S. (2017). Measuring and defeating anti-instrumentation-equipped malware. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 73–96. Springer.

Rodríguez, R. J., Gaston, I. R., and Alonso, J. (2016). Towards the detection of isolation-
aware malware. IEEE Latin America Transactions, 14(2):1024–1036.

Santos Filho, A. and Feitosa, E. (2019). Reduzindo a superfície de ataque dos frameworks
de instrumentação binária dinâmica. In Simpósio Brasileiro de Segurança da Informa-
ção e de Sistemas Computacionais (SBSeg), pages 253–266. SBC.

Anais do SBSeg 2025: Artigos Curtos

8


