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Abstract. The high number of vulnerabilities in Internet of Things devices has
created malware-prone networks. A type of malware that imposes a serious
threat to the Internet security is known as botnets. This malware exploits some
vulnerabilities of IoT devices to infect them and perform large-scale Distributed
Denial of Service attacks, affecting many users who depend on their services.
This work presents the construction of an experimental environment to generate
a dataset that contains data from a real IoT device that was infected by botnet
malware in a laboratory. The dataset can be used to support the development
of defence tools for IoT devices to identify botnets, as it contains network traffic
and host-based features, such as, CPU and memory usage. The dataset and
network environment files are available for the research community.

1. Introduction
Internet of Things (IoT) has promoted great changes in our everyday life in many as-
pects, e.g., health care and traffic monitoring services. Among other things, this paradigm
made machine-to-machine communication over the Internet possible, connecting more
devices online and allowing them to actively participate in the network. IoT consists
of many heterogeneous and low-cost devices with little or no security embedded into
them, which generate a huge amount of private information, and may create many secu-
rity problems. This open wound in IoT security is likely to prevail for years to come
and must not be ignored given the broad range of applications of the IoT paradigm
[Angrishi 2017, Atzori et al. 2010, Whitmore et al. 2015].

According to Gubbi et al. [2013] , in 2011, the number of interconnected devices
overcame the number of people in the world, and forecasts indicate the number of devices
will reach 24 billion in 2020. This high increase can be associated with the huge amount of
devices that will be connected for IoT purposes. Likewise, this has attracted the attention
of malicious users, who may target those devices to gather computation power to carry
out illegal activities. Those users can, for example, perform Distributed Denial of Service
(DDoS) attacks by creating a large-scale IoT-based botnet [Angrishi 2017]. Moreover,
compromised devices may not demonstrate any clear symptoms of infection, being able to
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continue with the execution of their normal activities. Therefore, detecting compromised
devices is a challenging subject and requires specialised tools [Kolias et al. 2017].

A botnet is a collection of compromised devices, referred to as bots, controlled
by one or more malicious users, which communicate with the bots to perform malicious
activities. In 2016, a botnet called Mirai infected surveillance cameras - a type of IoT
device - by taking advantage of their default security settings and performed a large-
scale DDoS attack against Dyn, a DNS service provider [Mansfield-Devine 2016]. To
neutralise the threat imposed by botnets, systems capable of efficiently detecting them
are needed [Costa et al. 2017]. However, developing this kind of tool requires a detailed
study of the behaviour of IoT botnets. Garcı́a et al. [2014] point out that one of the
main problems when creating new defence approaches is the lack of datasets to aid in the
understanding of botnets.

This problem occurs because security analysts do not share their information due
to concerns about privacy, and also by the fact that there are a few botnets that are avail-
able for studying [Garcı́a et al. 2014]. An alternative solution to mitigate the lack of real
datasets is the creation of controlled environments to support experiments, e.g., simu-
lating a botnet scenario. To create a scenario containing IoT botnets, for example, it is
necessary to set up an isolated network, find botnet malware samples with active servers,
be able to capture the communication of the bot with their controller and create tasks to
mimic normal traffic. These requirements rely on very time-consuming tasks, and acquir-
ing IoT devices to build these type of networks and environments can be expensive, due
to taxes and charges in some places of the world.

The lack of IoT-based datasets for security research can be noted in some works
that propose approaches to protect IoT devices from network attacks [Raza et al. 2013,
Cervantes et al. 2015, Amaral et al. 2014]. These approaches were evaluated in simulated
networks composed of nodes with Contiki and TinyOS operating systems (OS), without
creating, or using, any datasets to evaluate and test them [Zarpelão et al. 2017].

This work presents the construction of an experimental environment to generate
a dataset containing data collected from a real IoT device, a Raspberry Pi, which was
infected by botnet malware. The goal of this work is to provide means to observe dif-
ferent perspectives of the operation of the device such as the use of CPU and memory,
electric potential difference, and network traffic. The collected data includes legitimate
and malicious behaviour. Legitimate data concerns the emulation of regular behaviour
of domestic IoT devices, such as surveillance cameras and media centres. On the other
hand, the malicious data is related to botnets’ activities, including communication with
the Command & Control (C&C) and some DDoS attacks. The dataset was labelled and
the files were separated to organise the different situations faced during the experiments.

The contributions of this paper are the following:
1. Creating a controlled environment that has characteristics of a domestic IoT net-

work and can be infected by IoT botnet malware;
2. Providing resources that emulate the behaviour and functions of domestic IoT

devices;
3. Providing a labelled dataset that covers periods of legitimate and malicious activ-

ity of an IoT device. This dataset will be shared with the academic community;
4. Analysing and discussing the behaviour of IoT botnets, using traffic and host-

based features, providing some guidelines to researchers on intrusion detection in



the IoT field.

This paper is organised as follows: Section 2 describes the prior works done in
network dataset creation. In Section 3, a brief background about the botnet malware used
is presented. Section 4 describes the experimental environment constructed. Section 5
presents the experiment done to create the dataset and the files available, and, in Section 6,
a brief analysis of the behaviour of the device infected by botnets is presented. Lastly,
Section 7 provides the conclusion of the work.

2. Prior Work

There are several examples of datasets containing network traffic, e.g., CAIDA1 (Cen-
ter for Applied Internet Data Analysis), KDD [Bay et al. 2000] (Knowledge Discovery
and Data Mining), DARPA2 (Defense Advanced Research Projects Agency), and CIC
(Canadian Institute for Cybersecurity) [Shiravi et al. 2012], which have been used by re-
searchers for many purposes, such as, to test the effectiveness of different IDS (Intrusion
Detection Systems) and provide benchmark resources for the comparison of proposed
solutions.

The CAIDA repository consists of datasets with different types of network
data collected from a diverse range of situations. Some packet fields are anonymised
or completely removed for security reasons. Also, some packets are not labelled.
Nonetheless, these processes can have a negative impact on the evaluation of an IDS
[Shiravi et al. 2012, Garcıa 2014]. To prevent this, we did not remove any payload data
from the packets in our dataset.

Another public repository is the DARPA dataset, which was built by the Lincoln
Laboratory at the Massachusetts Institute of Technology (MIT) with the objective of eval-
uating IDS. The datasets in this repository are in the tcpdump format and include all the
packets payloads, which were collected from real and emulated machines, and where at-
tacks were only performed on real machines. However, the experimental environment
used to build the dataset was not made public and the attack methods used are considered
outdated [Thomas et al. 2008].

The KDD repository has a network dataset as well, which is mainly used for
benchmark tests of IDS. It contains data collected from six machines, where three were
real machines and the others were simulated. Each simulated machine had a different OS.
The three real machines were used to generate background traffic. In addition, a sniffer
captured and stored the traffic in tcpdump format. As DARPA datasets, the KDD dataset
is quite old, so the attacks and the background traffic do not match to current networks
reality.

CIC provides a dataset and scripts that can be used to generate legitimate and
malicious traffic on-demand [Shiravi et al. 2012]. Their dataset is composed of net-
work traffic collected from several machines, which performed regular activities and
were also infected by different malicious applications. Although it meets the criteria
of a good dataset described in [Shiravi et al. 2012], it may not represent a real botnet be-
haviour [Garcıa 2014], as they used a botnet malware developed by them. In this sense,

1http://www.caida.org/home/
2https://www.ll.mit.edu/ideval/data/



to have a realistic scenario, we use only samples of real and active botnet malware for IoT
devices.

Overall, it can be observed that CAIDA, KDD and DARPA repositories focus on
benchmark tests, but they use obsolete attack types and tools. In addition, they do not have
all the necessary network traffic information, e.g., destination IP addresses, payloads,
and labels. The CIC dataset is newer than the other ones mentioned, hence it includes
more recent attacks such as botnets and HTTP Denial of Service (DoS). However, as
CAIDA, KDD, and DARPA datasets, the CIC dataset does not provide data related to
IoT. Considering these previous works, we built an IoT dataset that fills the pointed gaps,
such as using real samples of botnet malware, including legitimate traffic and providing
all packet payloads.

3. IoT Botnets
IoT networks usually rely on low-cost devices with limited resources, e.g., surveillance
cameras, temperature sensors, and baby monitors, which perform very specific tasks, gen-
erally requiring little computational power [Angrishi 2017]. Due to the simplicity of those
devices, they normally have little or none embedded security.

Therefore, they can be compromised without much effort by a malicious user,
and be used to perform several illegal activities, e.g., a DDoS attack [Zargar et al. 2013].
DDoS attacks consist of compromising a very large group of devices, usually scattered
around the globe, which perform coordinated DoS attacks. This type of attack is char-
acterised by performing precise attempts to compromise a service [Angrishi 2017]. Gen-
erally, it achieves this goal by sending a large volume of packets that occupy a signif-
icant proportion of the available bandwidth and/or computational capacity of the target
[Peng et al. 2007] [Kolias et al. 2017].

Usually, DDoS attacks are controlled by a botnet, a network formed by infected
devices remotely controlled. Botnets are composed of three main parts: the bots, which
are the infected devices; the botmaster, which is the malicious user that controls the bots;
and the C&C infrastructure, which is used to establish a communication channel between
the botmaster and the bots [Silva et al. 2013, Costa et al. 2017]. One point to note is that
bots can be any device ranging from traditional desktop computers to mobile and IoT
devices. By using a large collection of bots, the botmaster is able to carry out a diverse
set of coordinated malicious actions such as DDoS attacks, generating spam and stealing
sensitive information.

There are several types of botnets spread over the Internet. This work was focused
on botnets designed for IoT devices that run Linux or BusyBox3, i.e., programs found in
some domestic IoT devices and exploited by botnets. Using the VirusShare4 platform,
we searched for malware samples for IoT architectures, such as MIPS and ARM, and by
names of IoT botnets found in [Angrishi 2017]. Seven botnet families were found with
working samples as well as the source code of the Mirai botnet 5. The botnets used in this
work are:

• Mirai: this botnet focuses on compromising IP cameras by performing a brute-
force attack to Telnet. Its main malicious activity is to perform a range of DDoS

3https://busybox.net/
4https://virusshare.com/
5https://github.com/jgamblin/Mirai-Source-Code



attacks. Also, it uses a centralised C&C infrastructure via HTTP protocol. In its
peak of activity, it had a network traffic of 1.1 Tbps [Angrishi 2017];
• Hajime: a botnet that focuses on the same IoT devices as Mirai and uses the same

type of infection strategy. The purpose of Hajime is unknown, as it has only closed
some vulnerabilities in IoT devices, i.e., it has not behaved maliciously so far.
Its C&C infrastructure is fully decentralised by using the BitTorrent Distributed
Hash Table (DHT) protocol, while also encrypting its messages with RC4. When
a device is infected by this botnet, the terminal prints a message informing the
infection to the user[Stavrou et al. 2017, Kolias et al. 2017];
• Aidra: this botnet compromises devices with the following architectures: MIPS,

MIPSEL, ARM, PPC, x86/86-64 and SuperH. Its infection process works in the
same way as Mirai. This botnet malware opens a port on Linux-based devices or
computers to wait for commands of the C&C server. The main malicious activity
performed is DDoS attacks. A version of the botnet source code was released on
the Internet 6 [Stavrou et al. 2017];
• Bashlite: the main targets of this botnet are Linux-based IoT devices. The infec-

tion of the device occurs through brute-force attack on the Telnet port using default
usernames and passwords. After the infection, the device performs DDoS attacks
on C&C command. The C&C’s IP addresses for communication are included in
the source code, facilitating the task of monitoring the botnet communication. In
its peak of activity, it had a network traffic of 400 Gbps [Angrishi 2017];
• Dofloo: this botnet is found on regular OS for desktop computers, such as Win-

dows and Linux, and IoT devices with MIPS and ARM architectures. This botnet
is used to launch several DDoS attacks following the instructions of the centralised
C&C, using AES-encrypted messages. In its peak of activity, it had a network traf-
fic of 215 Gbps. Also, it collects memory, CPU and network traffic data and sends
to the attacker [Angrishi 2017];
• Tsunami: also targeting IoT devices, the infection occurs by downloading and

executing infected files. The malicious activity of this botnet is to perform DDoS
attacks. It uses an IRC channel and HTTP requests to communicate with the
malicious servers controlled by the attackers. When it infects a device, it changes
its DNS server settings [Angrishi 2017];
• Wroba: having been found initially targeting Android devices

[Abdul Kadir et al. 2015, Nigam 2015], Wroba migrated to IoT devices with
ARM architecture. Its main purpose is to intercept or attack web banking
activities, while infecting other devices. It connects with its C&C infrastructure
using HTTP, but on Android devices it can also use SMS messages.

4. Experimental Environment
This section presents the environment developed to accomplish the main objective of
this work, which is to build a dataset with host-based data collected from an IoT device
infected by botnet malware. This work was aimed to provide a dataset that could be
useful for researchers that are interested in IoT protection tools such as IDS but do not
find a public IoT dataset to develop their work.

To build the experimental environment and, consequently, the dataset, works that
proposed IDS for IoT were reviewed, analysing the IoT devices they used in their tests.

6https://github.com/eurialo/lightaidra



As a result, we decided to use a Raspberry Pi in our network. Next, profiles of operation
were defined for the Raspberry Pi, emulating real devices such as multimedia centres
and surveillance cameras. Lastly, a network scenario was created to support the dataset
generation.

4.1. Device Selection
Works in the literature that address intrusion detection for IoT do not focus on a unique
device or type of device to test their approaches on. Thus, there is no type of device that
is considered a standard for IoT environments. This fact can be explained by the non-
standard definition of IoT itself. IoT has a long list of definitions, which usually share
only a few characteristics such as the use of devices with low-cost, limited resources and
wireless communication capabilities. Table 1 presents some examples of devices used in
previous works that addressed intrusion detection for IoT, since our focus is to contribute
to this research field.

Table 1. IoT devices found in previous work.
Reference Device(s) Used

[Amaral et al. 2014] Cooja Motes

[Habibi et al. 2017]

Amazon Dash Button,
Arlo Home Security System,

August Smart Lock,
Lifx Smart Bulb,
Nest Thermostat,

Raspberry Pi

[Summerville et al. 2015] Ambient Weather,
Network Camera

[Nobakht et al. 2016] Philips Hue
[Oh et al. 2014] Raspberry Pi[Sforzin et al. 2016]

As presented in Table 1, the devices range from very simple simulated boards
(e.g., Cooja Motes) to daily objects transformed into IoT systems (e.g., Phillips Hue
lamps and Amazon dash buttons), which are made by different companies and use dif-
ferent types of software to control them. Among the devices used in previous work, the
Raspberry Pi was chosen because it is a customisable general purpose device with good
computational power, but still limited to the IoT constraints. This device, which was
used in [Habibi et al. 2017, Oh et al. 2014, Sforzin et al. 2016], has Wi-Fi and Bluetooth
connectivity, is cheap, and supports a wide variety of OS, e.g., Linux and Windows. As
commented by [Habibi et al. 2017, Nayyar and Puri 2015], the Raspberry Pi is a device
that can be applied in several fields and regarded as a small, powerful and compact de-
vice. Also, it supports additional hardware, e.g., camera, and is energy efficient. The
specifications of the Raspberry Pi used in this work will be presented in Section 4.3.

4.2. Device Profiles
Raspberry Pi is a general purpose device and can be used to develop multiple IoT devices.
Therefore, we defined three typical profiles of IoT devices that could be targeted by the
IoT botnets listed on Section 3, and implemented them in the Raspberry Pi. The profiles
created are:

• Multimedia Centre (MC): found in today’s living rooms, a multimedia centre is
a device that consumes streams of video such as movies or TV shows, to transform



regular TVs in smart TVs. In addition to the use of video content, it also accesses
an application store for updates and installation of other programs. The task of
rendering video combined with the heavy traffic generated by video streams make
this device to use a significant portion of its resources during its operation;
• Surveillance Camera with Additional Traffic (ST): used both on the inside and

outside parts of houses and companies, the operation of surveillance cameras is
mostly characterised by the transmission of a video stream to a computer or sta-
tion. However, this kind of device can also present traffic from other protocols.
Telnet or SSH connections can be established to check if the device is working,
its temperature, and the running processes, for example. These cameras may also
include configuration web pages, which users access from their browsers to set up
the parameters of cameras operation. As the device do not have to render video
before transmitting, it consumes fewer resources than the multimedia centre;
• Surveillance Camera (SC): this profile is similar to the ST profile, but it does not

include as many interactions with users through Telnet, SSH, and configuration
web pages as the ST profile. Having the video transmission as their single task,
devices of this profile consume fewer resources than those of ST profile.

During all the experiments with the proposed profiles, the following programs are
executed: tcpdump7 software to capture network packets, top task manager program to
capture CPU and memory usage and the number of processes running, and the function
vcgencmd8 of the Raspbian OS to capture the electric potential difference and CPU tem-
perature. The video streams of ST and SC profiles were made using a VLC player9. In
the MC profile, VLC was also used to consume video streams, and a Chromium Browser
was employed to consume video and access the Chrome Web Store.

All the three profiles have Telnet and SSH ports open and a web server installed.
This web server hosts the DVWA software10, which, in these devices, emulates a vul-
nerable web page used as an interface for device configuration. However, only devices
of ST profile have legitimate traffic related to these three services. These three profiles
were created to emulate an environment with devices that have different levels of resource
consumption. SC devices show the lowest levels under normal conditions, while MC de-
vices show the highest ones. Resource consumption in ST devices is higher than in SC
devices and lower than in MC devices. The different profiles also allow the generation
of more diverse traffic. Consequently, more possibilities of analysis are provided, such
as the possibility of observing the impact of botnets in devices with different levels of
resource consumption and multiple types of legitimate traffic.

4.3. Network Scenario

After defining the device profiles that were going to be analysed, a network environment
was created to support them. This environment provided Internet access and wireless
communication for the IoT device. The network components present in the environment
consist of a switch with Ethernet and Wi-Fi interfaces, four computers (Machine 1, Ma-
chine 2, Machine 3, and Gateway) connected to the switch through Ethernet, and one

7www.tcpdump.org/
8www.elinux.org/RPI vcgencmd usage
9www.videolan.org/

10www.dvwa.co.uk/



Machine 1

Web Server Device Admin
Machine 2

Wi-fi/Ethernet
Switch

Machine 3

Gateway

Internet

RaspBerry Pi

Figure 1. Network topology of the experimental environment.

Raspberry Pi model 3B connected to the switch via Wi-Fi. Machine 2 provided two vir-
tual machines, with the first one hosting a Web Server and the second being a client,
referred to as Device Admin. Detailed specifications of the environment are presented in
Table 2.

Table 2. Description of the experimental environment components.

Component Function Specs Operating
System Virtual/Real

Raspberry Pi Mimic different types of IoT devices Ram: 1 GB CPU: ARM 1.2 GHz Rasbian
Stretch

RealMachine 1 DNS server and video consumer Ram: 4 GB CPU: Intel i5 3.2 Ghz

Ubuntu
17.04

Gateway Provide Internet access and routing

Machine 3 Deliver and control malware Ram: 8 GB CPU: Intel Xeon
3.1 Ghz

Device Admin Makes SSH and Telnet connections
with the Raspberry Pi and updates Ram: 1 GB CPU: 1 Ghz Virtual

Web Server Host a static web page used
for updates in the device

Figure 1 details the network environment used to generate the dataset. The Gate-
way was used to provide Internet access and DHCP functionality to the network. Machine
1 hosted a DNS server that was used by the Mirai botnet. The same machine also hosted a
VLC client that consumed the video stream generated by SC/ST profiles and a VLC server
that generated a video stream for the MC profile. Machine 2 hosted the Web Server and
the Device Admin. The Web Server was responsible for providing a static Apache Web
page, which was accessed by the Raspberry Pi using a script in all the profiles to emulate
the consumption of web services. The Device Admin emulated the transactions of an ad-
ministration software used to control and set up the emulated camera in the ST profile. To
do so, it interacted with the Raspberry Pi through Telnet, SSH, and the Web configuration
page. The Raspberry Pi was responsible for running the profiles presented in Section 4.2.
Lastly, Machine 3 was responsible for emulating an attacker on the network, which in-
fected IoT devices with botnet samples. Particularly for Mirai, this machine also hosted
a C&C server, which could be used to make the Raspberry Pi launch DoS attacks against
selected targets.

5. Dataset
This section details the steps carried out to generate the dataset as well as the resulting
files, which are available to the research community.



5.1. Dataset Construction

This section presents the experiment performed to create the dataset, using the environ-
ment described in Section 4. Our goal is to provide two types of logs: one related ex-
clusively to legitimate activities, and the other containing data about both legitimate and
malicious activities.

First, each profile defined in Section 4.2 was executed for one hour without any
infection. The objective was to collect data exclusively related to legitimate activities.
In ST and SC profiles, the Raspberry Pi transmitted a video stream to the Machine 1
using VLC over HTTP through the port 8080. The video resolution was 80x40 pixels,
which was chosen to simulate the minimum amount of data that a camera could send, and
the transmission lasted for 20 minutes, with a total size of 4 MB. In the MC profile, the
Raspberry Pi consumed videos from YouTube and Twitch 11, and a high definition video
from Machine 1. It also accessed the Chrome Web Store, emulating searches for new
applications. In all the profiles, the Raspberry Pi accessed a web page hosted by the Web
Server at 1-minute intervals, emulating situations in which the IoT device consumes web
services. Particularly in the ST profile, the Device Admin interacted with the Raspberry
Pi at time intervals of approximately 5 minutes through Telnet, SSH, and the web con-
figuration page. During the execution of each profile, the following data was collected
in the Raspberry Pi every 5 seconds: CPU and memory consumption, electric potential
difference, CPU temperature, and the number of tasks running. All the network packets
transmitted and received by the Raspberry Pi were also captured.

After the acquisition of data exclusively related to legitimate activity, data was
captured on situations that combined legitimate and malicious behaviour. To generate
this part of the dataset, the infections was organised into three categories: Type 1, Type 2,
and Type 3. We varied the number of samples and botnet families running on the device
to have more diversified data. Table 3 presents the botnet families and the number of
samples running in each profile and method of infection.

In the Type 1 infection, three botnets were selected, and they were installed one
at a time in the Raspberry Pi. The objective was to observe their behaviour without
the interference of any other malware. The first botnet selected was Hajime, because its
main purpose is unknown and then it would be better to analyse its behaviour without
the presence of other botnets. Botnets Aidra and Bashlite were selected because they
have the highest number of samples. Thus, combining them with other malware might
degrade the Raspberry Pi performance, hindering the tests. To infect the Raspberry Pi
with these malware, the Machine 3 connected to the device via SSH using Rasbian default
credentials (Raspberry:Pi). Then, malware samples were transferred to the device through
the established connection.

The Type 2 infection was focused on Mirai botnet. The Mirai source code is avail-
able on the Internet, making it possible to create a complete scenario with the malware and
the C&C server in our environment. Having access to a C&C server instance, we could
control all the life cycle of the botnet, since the infection until the DoS attacks against the
victims. To infect the Raspberry Pi with the Mirai malware, we accessed the device from
the Machine 3 via SSH using the default credentials. Next, the Mirai C&C server was de-
ployed at Machine 3. After having infected the device, we used the C&C command-line

11http://twitch.tv/



interface to make the Raspberry Pi launch DoS attacks against the Gateway, the Machine
1, and the Web Server at Machine 2. The duration of the attacks was short to simulate the
malicious user testing the functions of the botnet.

In the Type 3 infection, the objective was to observe the behaviour of the device
when it is infected by multiple botnets. Therefore, in this infection type, we selected all
botnets that were not used in previous ones. We also included the Mirai botnet to check
whether the most popular IoT botnet would dominate or be dominated by its competitors.
The infection process was carried out as in previous infections, i.e., via SSH connection.

Each type of infection was executed in each profile for one hour. After the end
of each execution, we erased all data and the OS from the Raspberry Pi to avoid any
contamination among the multiple types of infection.

Table 3. List of infections made in the Raspberry Pi profiles.
Infection

Type Profile Botnet(s) Method of Infection Number of Samples

1
MC Hajime

SSH
4

SC Aidra 11ST BashLite

2
MC

Mirai

SSH

1SC
ST

3
MC Mirai, Doflo,

Tsunami,Wroba 28SC
ST

Lastly, all the network traffic collected at the Raspberry Pi was labelled. Using the
Nfdump software, NetFlow files were created from all the captured network packets. After
that, all flows composed of packets that were captured during the one hour of execution
without infection were labelled as legitimate.

To label the malicious traffic, firstly, all the flows with packets that were collected
when the Raspberry Pi was infected were separated. Then, flows with IP addresses that
did not match addresses of legitimate components of our network or known services such
as YouTube, Twitch and the Chrome Web Store were labelled as malicious. Also, flows
of IP addresses that are legitimate components of the network using different ports than
usual were labelled as malicious. The remaining flows were labelled as legitimate.

5.2. Dataset Files Description
Table 4 presents the details about all files in the dataset. File names with suffix “L” refer
to the data collected when the Raspberry Pi was not infected. On the other hand, those
marked with “I” contain data collected during infected periods, including legitimate and
malicious activities. For each file name presented in Table 4, there are actually three files.
The first one is a CSV file with the host data collected (CPU and memory consumption,
electric potential difference, CPU temperature, and the number of tasks). The second file
is a CSV file that contains IP flow data labelled as malicious or legitimate. The third file
is a PCAP file with network packets captured at the Raspberry Pi.

Files regarding the experimental environment are provided as well12. They consist
12The PCAP files and Netflow/Host information files in CSV format are available on

http://www.uel.br/grupo-pesquisa/secmq/dataset-iot-security.html as well as the Raspberry Pi system im-
age in ISO format



of the image (ISO file) of the Raspberry Pi system used in the experiment, with the scripts
to capture its host data and tools to create network traffic, the malware samples used in
this environment, and other network modules.

Table 4. Files that compose the dataset.
File Name Description Profile Infected by Malicious

activity?
MC L One hour of legitimate

Netflow/Host
Info from profile

MC
No infection NoSC L SC

ST L ST
MC I1

One hour of legitimate
and malicious

Netflow/Host Data
from profile

MC
Type 1

Yes

SC I1 SC
ST I1 ST
MC I2 MC

Type 2SC I2 SC
ST I2 ST
MC I3 MC

Type 3SC I3 SC
ST I3 ST

6. Collected Results
This section discusses some aspects of the Raspberry Pi behaviour during the dataset gen-
eration. In Table 5, the behaviour analyses are presented for different types of infections.
The analyses were made by comparing the average of data collected when there were no
infections with the average of data collected when the Raspberry Pi was infected. For ex-
ample, we computed the average of CPU usage during the one hour without infection with
the Raspberry Pi executing the MC profile. Then, we computed the average of CPU usage
for the one hour when the Raspberry Pi was executing the MC profile and was infected
by Hajime. Finally, we compared the computed averages. By doing so, we report whether
the average values obtained when the device was infected were higher (↑), lower (↓) or
similar (−) to the legitimate data average. To be considered similar, the averages must
present a difference lower than 5%. The following features were analysed: CPU usage,
memory usage, electric potential difference, number of tasks running, CPU temperature,
and packets per second.

Table 5. Analyses performed by comparing legitimate and infected behaviours
on multiple scenarios.

Botnet Profile Infection Type CPU Usage Memory Usage Potential Difference Number of Tasks CPU Temp. Packets
per Second

Hajime MC
1

↑ ↑ ↑ ↑ ↑ ↑
Aidra SC ↑ ↓ ↑ ↑ ↑ −

BashLite ST ↑ ↓ ↑ ↑ ↑ −

Mirai
MC

2
− − ↑ ↑ − ↑

SC ↓ − ↑ ↑ − −
ST ↓ − ↑ ↑ − −

Multiple
Botnets

MC
3

↑ ↑ ↑ ↑ ↑ ↑
SC ↑ ↑ ↑ ↑ ↑ ↑
ST ↑ ↑ ↑ ↑ ↑ ↑

For Type 1 infections, which consist of the combinations Hajime/MC-profile,
Aidra/SC-profile and BashLite/ST-profile, the following behaviours were found. In the
first combination, the averages computed for the infected period were higher than those
of the period without infections. It shows that Hajime’s actions caused a variation in mul-
tiple features, which could facilitate its detection based on host data analysis. For the



infection based on Aidra, the device presented a lower memory usage when compared to
the period without infections. On the other hand, all the other features presented higher
average values. The decrease in memory usage is a consequence of the way Aidra works
since it stops other processes running on the device to gather more resources for itself.
The behaviour of Bashlite was similar to Aidra. It is important to observe that each botnet
can cause different changes in the features behaviour. Intuitively, the presence of malware
on a device was suppose to result in an increase in all observed features. However, it is
possible to see that Aidra and Bashlite caused a decrease in memory usage, contradicting
this intuition.

For Type 2 infections, which consist of combinations Mirai/MC-profile, Mirai/SC-
profile, and Mirai/ST-profile, the botnet controlled the device to perform DoS attacks tar-
geting different machines on the network. When considering the MC profile, the levels for
CPU and memory usage and CPU temperature were similar for infected and non-infected
periods. Whereas, the other features presented higher averages for infected periods. The
main difference between the SC and ST profiles and the MC profile relied on lower av-
erages for CPU usage during the infected period. This may have occurred because Mirai
stops pre-defined processes to free more resources, also searching for specific botnet com-
petitors running in the device. As SC and ST profiles have a lower CPU usage than MC
profile (refer to Section 4.2), killing a process may have more impact on the total CPU
usage for SC and ST profiles than for the MC profile.

Lastly, in Type 3 infections, the Raspberry Pi was compromised with Mirai, Doflo,
Tsunami, and Wroba malware simultaneously. This was done to observe the behaviour of
botnets when competing for resources. As expected, all profiles showed higher averages
for all features, due to the high amount of malware processes running on the device.
An interesting situation observed was that Tsunami, having been installed after Mirai,
uninstalled Mirai. So, to avoid this, Mirai was re-installed lastly.

Overall, when the device was infected by some sort of botnet malware, it presented
a higher average for most of its features. The electric potential difference and the number
of active tasks had higher averages during infected periods for all scenarios. For the other
features, there were some variations depending on the scenario. In some cases, CPU and
memory usage presented a lower average values during the infected period. For example,
memory usage in the Aidra/SC-profile case. This occurs because these malware kill other
processes to free resources. Therefore, to detect these botnets, it might be necessary to
monitor both the increase and the decrease in average values.

7. Conclusion
The vulnerabilities found in IoT devices have been leading to an increase in research and
development of new approaches to protect those devices and their networks. To do that,
researchers need access to IoT networks or datasets to evaluate the performance of their
approaches.

This paper presented an IoT experimental environment using a Raspberry Pi to
generate a labelled dataset that may be helpful for researchers interested in IoT devices
protection. The dataset includes data related to the network traffic on the Raspberry Pi
and the usage of multiple resources such as CPU and memory. The dataset covers a period
when the device was not infected, and other ones when multiple botnet malware infected
the device. Three profiles of operation were defined for the Raspberry Pi, aiming to em-



ulate typical domestic IoT devices such as surveillance cameras and multimedia centres.
Furthermore, it was provided a first analysis of the changes in the device behaviour when
malware compromised it. The dataset and the experimental environment provided here
can benefit researchers by giving them data to develop and compare their solutions.

As future work, we intend to create a dataset that includes data collected from all
the machines in the network simultaneously, while also including more types of botnets
and other IoT devices. Lastly, we intend to use the dataset created here to support the
validation of IDSs developed for IoT environments like the one explored in this work.
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