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Abstract. With the increasing number of different Internet of Things devices,
new threats to network security emerge due to these devices’ low security. Bot-
nets are a widespread threat that takes advantage of IoT devices vulnerabilities
to compromise multiple devices and perform coordinated attacks. To tackle this,
new methods addressing IoT botnets detection are required. In this paper, we
propose a host-based detection system based on one-class classifiers. It was
used a One-class Support Vector Machine built with features such as CPU and
memory usage to detect malicious activities. The predictive performance and
resource consumption of the proposed approach was evaluated in a controlled
network using three different legitimate settings and seven IoT botnets. The re-
sults indicate that the proposed system is efficient in detecting different botnets
with low resource consumption.

1. Introduction

Internet of Things (IoT) devices can be found in our everyday life in many situations,
e.g., surveillance cameras, healthcare monitors and traffic monitoring services. The IoT
paradigm makes machine-to-machine communication over the Internet more practical,
connecting more devices online and allowing them to actively participate in the network
[Whitmore et al. 2015]. IoT environments usually consist of many heterogeneous and
low-cost devices with little or no security embedded into them, which generate a vast
amount of private information, and may create many security problems. This open wound
in IoT security is likely to prevail for years to come and must not be ignored given the
broad range of applications of the IoT paradigm [Angrishi 2017].

This increase in the number of deployed IoT devices has awakened the atten-
tion of malicious users, who target those devices to gather computation power and
carry out illegal activities. Those users can, for example, perform Distributed Denial
of Service (DDoS) attacks by creating large-scale IoT-based botnets [Angrishi 2017].
Moreover, compromised devices may not demonstrate any apparent symptoms of in-
fection, being able to continue with the execution of their normal activities. Therefore,
detecting compromised devices is a challenging subject and requires specialised tools
[Kolias et al. 2017].
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One of the many threats IoT devices face is botnets. A botnet is a collection of
compromised devices, referred to as bots, controlled by one or more malicious users,
which communicate with the bots to perform malicious activities. IoT botnets have
already been making a huge impact in our lives, having Mirai attack in 20161 as the
most remarkable example so far. In this attack, a botnet called Mirai infected surveil-
lance cameras - a type of IoT device - by taking advantage of their default security
settings and performed a large-scale DDoS attack against Dyn, a major DNS service
provider [Mansfield-Devine 2016].

With those constant threats being developed and the lack of versatile tools to up-
date IoT devices, users can not rely on updates for every security breach found in these
devices. This scenario makes an intrusion detection system (IDS) fundamental for these
devices [Bertino and Islam 2017]. Although IDS for IoT devices are being developed by
the research community [Raza et al. 2013, Amaral et al. 2014], they still present some is-
sues, such as, being developed for specific network protocols in simulated devices (e.g.,
6LoWPAN in Contiki operating system), relying on labelled data, exploring only network
data and not being validated with newer botnets.

In this paper, we propose a host-based detection system for IoT devices using
one-class classifiers. One-class classifiers are a different type of machine learning (ML)
technique, which instead of classifying an instance in one of multiple pre-defined patterns,
model a single pattern and use it to discern if a new instance belongs to the pattern or not.
This approach is useful in detecting anomalies in data or machine faults, for instance. IoT
devices have a specialised behaviour, performing simple tasks with a well-defined use
of computational resources. We believe that modelling the device resources usage by a
one-class classifier can support the detection of a botnet infection as an anomaly in its
behaviour. The main advantage of this proposal is to build this model without needing a
specialist to label the data or having access to data on compromised behaviour.

The One-class Support Vector Machine (OSVM), which is an SVM adaptation for
the one class scenario, was used in the proposed approach. First, the model for legitimate
resources consumption is built on a remote server. After that, the built model is deployed
in the IoT device and the system starts analysing its resources consumption to detect
behaviour deviations. In our tests, the proposed approach presented a great performance
in detecting botnets, considering three different device settings and seven botnets, whilst
it kept a low resource consumption.

The main contributions of this paper can be summarised as follows:

• We propose a lightweight approach that uses the One-class SVM to detect IoT
botnets using data about the device resources;
• The OSVM had high predictive performance using only CPU and memory usage,

electric potential difference, number of running tasks and CPU temperature;
• The approach is capable of protecting IoT devices from botnets without interfering

with the devices’ functionality;
• We evaluate the approach on a real IoT device, using seven different botnets;

This paper is organised as follows: in Section 2, we describe prior work done in
IDS for IoT. Section 3 contains background information about traditional machine learn-
ing and one-class classification. In Section 4, the description of the proposed approach

1http://money.cnn.com/2016/10/22/technology/cyberattack-dyn-ddos/index.html



is presented. Section 5 describes the experimental environment constructed, and, in Sec-
tion 6, we present the results and discussion of the proposed approach. Lastly, Section 7
provides the conclusion and future work.

2. Related Work
Intrusion Detection System (IDS) is a program or mechanism that focuses on the detection
of attacks against a system or a network by analysing features in the network or in the host
itself [Raza et al. 2013]. These systems can be divided into two major classes: network-
based IDS (NIDS), which is dedicated to monitor network traffic to detect attacks against
various elements in a network, and host-based IDS (HIDS), which is positioned on an
individual host and is dedicated to detect attacks against only that host.

Most of the works on IDS for IoT are based on simulated networks using the
protocol 6LoWPAN [Zarpelão et al. 2017]. The two most common operating systems de-
ployed at these 6LoWPAN-based devices are Contiki and TinyOS. Although these works
have promising results, exploring host-based, network-based and hybrid IDS, their focus
on 6LoWPAN networks may prevent their use in networks based on other IoT protocols.
6LoWPAN is an IETF (Internet Engineering Task Force) standard for low power and
lossy networks (LLN). However, other protocols are often used in IoT networks, such as
Bluetooth Low Energy, and the conventional TCP/IP stack.

One of the most mature IDS for 6LoWPAN networks is named SVELTE
[Raza et al. 2013]. It is composed of several modules to protect devices from different
attacks. The first module of the system uses the LLN routing protocol RPL (Routing
Protocol for Low power and Lossy Networks) to map the network topology and discover
the nearest nodes to IDS agents that are distributed in the network. Then, the distributed
IDS agents check the packets of their neighbours. This process aims to protect the de-
vices from insider attacks. Another module is a distributed firewall deployed on the de-
vices, which protects them from an outsider attack, closing ports and blocking addresses.
SVELTE was tested in a network of Contiki-based devices.

In [Amaral et al. 2014], an IDS is developed for TinyOS. The proposed IDS has
some watchdogs devices to analyse the packets send by their neighbours. This allows
the system to detect traffic-based attacks and abnormal behaviour on the network. The
IDS also enables the creation of rules and countermeasures that must be executed by the
devices upon the detection of an intrusion. A limitation of their approach is that the rules
may not have the needed complexity for responding accurately to a network attack, and
the communication between the devices and the management module is insecure.

Other works in IDS for IoT focus on conventional TCP/IP stack or use host fea-
tures, such as syscalls. Most of these works are NIDS intended to be a module in a
router or gateway, using whitelists, machine learning methods or pre-defined rules. In
[Habibi et al. 2017], it is proposed an IDS dubbed Heimdall. This IDS uses a whitelist
to prevent IoT devices from connecting to malicious addresses and avoid communica-
tions with botnets C&C or private data leaks. Heimdall is intended to be a module in
the router, acting as a gateway for IoT devices, using third-party analysis of malicious
addresses from organizations such as VirusTotal, Metadefender, and VirScan, combined
with an auditor and DNS validation. They tested this approach with a large number of
real devices and the method is effective against the attacks developed by the researchers
and has minimal overhead. However, tests with real botnet attacks were not carried out,
and the IDS depends on the maintenance of the third-party systems.



Other works such as [Meidan et al. 2018] and [An et al. 2017] aim to build
anomaly-based systems to detect IoT botnets. These works present techniques that model
the legitimate behaviour of IoT devices. This type of approach can be effective due to
the systematic behaviour of IoT devices, which usually perform specialised tasks. Thus,
behaviour deviations are detected as malicious, regardless of the botnet.

Meidan et al. [2018] proposed the N-BaIoT, which is a NIDS that uses deep
autoencoders to detect botnets in IoT devices. They use the network traffic of IoT de-
vices to build a model of the legitimate behaviour and detect any anomaly. They tested
the approach on two botnets, Mirai and BashLite, and without the use of labelled data,
they achieved great results in detecting the attacks, with low false positives rate. De-
spite the great results, the use of deep autoencoders can be computationally costly even
to a gateway and demands large amounts of data to train the model. The work proposed
by [An et al. 2017] explores the construction of an IDS to protect Linux routers, a very
popular target in recent years. They tested three different types of anomaly detection
techniques, Principal Component Analysis (PCA), One-class SVM and a naive detector
using n-grams, to analyse syscall data from routers. They used two botnets to test their
approach, MrBlack and Mirai, in simulated routers, and all tested methods presented good
results. However, it can be difficult to find the best features among syscalls during data
pre-processing.

Overall, different issues were found in these works such as the lack of testing in
real devices or with different botnet samples, dependency on third-party systems, use of
computationally costly methods, and need for large amounts of data to train the mod-
els. Also, the analysed works did not propose host-based methods and did not explore
resource consumption data to detect botnets. Considering these issues, we proposed an
approach for botnet detection in IoT devices that does not need malicious labelled data to
build a detection model and relies on host-based data such as CPU and memory usage.
Additionally, it is a lightweight approach that does not interfere in the device operation
and can be used in IoT systems based on traditional TCP/IP stack.

3. One-Class Classification
In traditional classification ML techniques, previously collected data associated to a
class label is used to induce a model capable of representing and detecting each class.
This requirement for labelled data from each possible class can be problematic in
some cases, e.g., when labelling cost is too high or some class occurs much less fre-
quently [Khan and Madden 2009]. When considering botnet detection, labelled data may
be collected by a specifically designed testbed or honeypot. This requires manual work
to set up vulnerable devices, and, likewise, some kind of access to botnets. Addition-
ally, there is an inherited class unbalance problem when dealing with malware detection,
where legitimate data is easily available and in far greater scale.

An emerging alternative is to use one-class classification techniques, which
do not model all classes. Instead, data from a class of interest is used to create a
model capable of yielding if a given new instance of data belongs to this class or not
[Khan and Madden 2009]. In the context of botnet detection, after collecting legitimate
behaviour data (which is more straightforward to obtain than malicious data), one-class
classification algorithms induce a model that discerns if a given new instance is legitimate
or not. Here, we considered that when an instance does not belong to the induced model,
it is associated with malicious behaviour. In this sense, one-class classifiers can be used



as an alternative to traditional classification algorithms to reduce significantly labelling
cost and the need for malicious data in the training phase. Likewise, they are easier to
adapt, given that periodical model updates using new legitimate data demand less effort
than updates with labelled legitimate and malicious data.

Multiple one-class classification techniques have been developed along the years,
with the One-class Support Vector Machine (OSVM) [Sokolova and Lapalme 2009] be-
ing successfully used in multiple domains [Khan and Madden 2009]. Support Vector Ma-
chine (SVM) is a traditional ML algorithm used for classification problems. It works
by creating a hyperplane that better separates two different classes. On the other hand,
the OSVM uses hyperplanes to create boundaries around a region that better contains all
training data. By doing so, the OSVM is capable of identifying if an instance is inside
the area or not. To create these hyperplanes, the OSVM optimises the following objective
function:

min
w,ξ,ρ

1

2
wTw +

1

νN

N∑
i=1

ξi− ρ (1)

subjected to wTφ(xi) ≥ ρ − ξi and ξi ≥ 0, where xi ∈ Rp is a sample of the training
set, w is the weight vector of the hyperplane in the inner product space, φ(.) is a mapping
from the original p-dimensional feature space to a inner product space, ξi’s are penalty
terms for error, ρ is a bias term, and ν ∈ (0, 1] is a parameter that poses an upper bound
on the fraction of outliers in the training set.

The decision hyperplane can be represented by g(x) ≡ wTφ(x) − ρ = 0. The
solution of the convex optimisation problem of the objective function finds the decision
hyperplane, and the corresponding decision function f(x):

f(x)

{
wTφ(x)− ρ ≥ 0 if x belongs to the set
wTφ(x)− ρ < 0 if x is an outlier

(2)

Here, we used the radial basis function (RBF) kernel to map the input space to a
higher dimensional space. The RBF kernel is described by the following equation:

φ(x) = exp(−γ||x− x′||2),where γ > 0. (3)

Nonetheless, other kernel functions could be used, such as a polynomial or exponential
function.

4. Proposed Approach

In this section, we present our proposed approach to detect botnets in IoT devices. Most of
these devices are very specialised, running simple, repetitive and well-defined tasks, these
devices behaviour should be the same as long as they do not become compromised. Any
malicious software that compromises any IoT device should alter its behaviour signifi-
cantly. In this sense, by using the OSVM to induce a model for the legitimate behaviour
data, we can get rid of the effort demanded by the collection and labelling of malicious
data. An overview of the approach is presented in Figure 1. The approach is divided into
two phases: Model Induction and Continuous Analysis.
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Figure 1. Description of the proposed approach processes.

The first step consists of the process of gathering host data. At this step, a network
administrator feeds a remote server with samples of legitimate data collected from IoT
devices of interest. This data comprehend to the CPU and memory usage of the device,
the electric potential difference, the number of concurrently running tasks in the system
and the CPU temperature. Then, in the remote server, host-data is grouped in instances
according to a j seconds time window and undergo equation for a normalisation step. All
features for each instance are scaled according to their minimum and maximum values
between a range from 0 to 1, defined by the following equation:

xi[j] =
xi[j]−min(x[j])

max(x[j])−min(x[j])
,∀i ∈ I,∀j ∈ J (4)

where i corresponds to a given instance, I to all instances collected during that period,
j to a feature in the J feature space, and xi[j] to the value present in feature j for the
instance i.

With instances normalised and separated in time windows, the server trains the
OSVM using the legitimate data. This is all done in the server since the OSVM optimi-
sation process is too computationally demanding for an IoT device. Nonetheless, after
trained, the resulting function f(x), described in Equation (2), uses very few resources
from the IoT device to define whether a new instance belongs to the legitimate class or
not. Finally, the induced model is deployed to the IoT devices.

Lastly, the Continuous Analysis phase consists of using the induced model to
monitor the device. Each device captures its data in intervals of x seconds, generating a
new instance. It is worth noticing that x should not be too small, so that this monitoring
may impact the device performance, nor should it be too large, that botnet detection is
delayed. This new instance undergoes the same normalisation step described in Equation
(4), except that this time, the max(x[j]) and min(x[j]) are the same as the ones used
when the OSVM was induced. After that, by applying the function in Equation (2), the
approach decides if this new instance is a legitimate behaviour or an anomaly. If it is the
latter, the device raises an alert.

5. Evaluation

In this section, we describe the experimental environment to test our proposed IDS and
the metrics to evaluate the efficiency of the approach.



5.1. Experimental environment
To test the proposed approach we build an experimental environment as presented in Fig-
ure 2. This environment allows to use different botnets not used in previous works and
capture host-based data. The network components consist of a switch with Ethernet and
Wi-Fi interfaces, and four computers (Machine 1, Machine 2, Machine 3, and a Gate-
way) connected to the switch through Ethernet. There is also a Raspberry Pi model 3B
connected to the switch through the Wi-Fi interface. Machine 2 provided two virtual ma-
chines, with the first one hosting a Web Server and the second being a client, referred to
as Device Admin.

Figure 2. Experimental environment network topology.

The Raspberry Pi emulates three different behaviour profiles: two focused on se-
curity cameras and one focus on a multimedia device.

• Multimedia Centre (MC): found in today’s living rooms, a multimedia centre is
a device that consumes streams of video such as movies or TV shows, to transform
regular TVs in smart TVs. In addition to the use of video content, it also accesses
an application store for updates and installation of other programs. The task of
rendering video combined with the heavy traffic generated by video streams make
this device to use a significant portion of its resources during its operation;
• Surveillance Camera with Additional Traffic (ST): used both on the inside and

outside parts of houses and companies, the operation of surveillance cameras is
mostly characterised by the transmission of a video stream to a computer or sta-
tion. However, this kind of device can also present traffic from other protocols.
Telnet or SSH connections can be established to check if the device is working,
its temperature, and the running processes, for example. These cameras may also
include configuration web pages, which users access from their browsers to set up
the parameters of cameras operation. As the device do not have to render video
before transmitting, it consumes fewer resources than the multimedia centre;
• Surveillance Camera (SC): this profile is similar to the ST profile, but it does not

include interactions with users through Telnet, SSH, and configuration web pages.
Having the video transmission as their single task, devices of this profile consume
fewer resources than those of ST profile.

The Gateway was used to provide Internet access and DHCP functionality to the
network. Machine 1 hosted a DNS server that was used by the Mirai botnet. The same
machine also hosted a VLC client that consumed the video stream generated by SC/ST
profiles and a VLC server that generated a video stream for the MC profile. Machine



2 hosted the Web Server and the Device Admin. The Web Server was responsible for
providing a static Web page, which was accessed by the Raspberry Pi in all the profiles to
emulate the consumption of web services. The Device Admin emulated the transactions
of an administration software used to control and set up the emulated camera in the ST
profile. To do so, it interacted with the Raspberry Pi through Telnet, SSH, and the Web
configuration page. Lastly, Machine 3 was responsible for emulating an attacker on the
network, which infected IoT devices with botnet samples. Particularly for Mirai, this
machine also hosted a C&C server, which could be used to make the Raspberry Pi launch
DoS attacks against selected targets.

We executed the following botnets in our experimental network: Mirai and Bash-
lite, the most famous IoT botnets that uses Telnet [Angrishi 2017]; Hajime, a botnet of
unknown purpose that patches vulnerabilities in IoT devices [Stavrou et al. 2017]; Aidra,
Tsunami and Dofloo, very famous botnets that moved from personal computers domain
to IoT devices using ARM processors [Abdul Kadir et al. 2015].

With those botnets, we have three types of infection, as presented in Table 1. The
legitimate data was captured following the description of each behaviour. The MC profile
received video streams from YouTube, Twitch and HD video. The SC device streamed
video to another computer. The ST device streamed video, was accessed via SSH and
Telnet and performed updates in programs. We captured one hour of legitimate data from
each device, and captured one hour of each infection on each device, erasing the data in
the device after each capture to prevent contamination from the previous botnet. We used
the top program to gather memory usage data. To capture the temperature of CPU and the
electric potential difference, we used the vcgencmd program present in the Raspberry Pi.

Table 1. List of infections made in the Raspberry Pi profiles.
Infection

Type Profile Botnet(s) Method of Infection Number of Samples

1
MC Hajime

SSH
4

SC Aidra 11ST BashLite

2
MC

Mirai

SSH

1SC
ST

3
MC Mirai, Doflo,

Tsunami,Wroba 28SC
ST

5.2. Evaluation Metrics
The metrics used to evaluate the proposed IDS are [Sokolova and Lapalme 2009]:

• Accuracy: TP+TN
TP+FN+FP+TN

the overall effectiveness of the approach;
• AUC: 1

2
( TP
TP+FN

+ TN
TN+FP

) ability of the approach to avoid false classification;
• F1-score: 2

1
recall

+ 1
precision

relation between recall and precision;

• Precision: TP
TP+FP

the percentage of classified botnets instances that are truly
botnets;
• Recall: TP

TP+FN
effectiveness of the approach in identifying botnets;

• Specificity: TN
FP+TN

how effective is the approach in identifying instances that are
legitimate.

TP, TN, FP and FN stand for true positives, true negatives, false positives and false
negatives, respectively.



5.3. Experiment setup

To evaluate our proposed approach, we used nine datasets, which are composed of one
hour of legitimate traffic and one hour of malicious traffic each one. Each dataset compre-
hends to a different profile and infection type combination. We organised the evaluation
in three phases: finding an optimal time window size, considering that smaller windows
will result in faster identification of botnets; discovering the least number of instances
needed for training; and optimising the OSVM’s hyperparameters. All tests were per-
formed using the holdout with 50 repetitions to minimise variance in the results. Lastly,
we used the OSVM implementation from the scikit-learning library in Python 2.

6. Results and discussion

In this section, we discuss the experimental results of our proposed approach. First, we
used the default hyperparameters for the OSVM (ν = 0.1 and γ = 0.1) to analyse the
impact on the predictive performance of changing the window size. In Table 2 we present
the accuracy, precision, recall, F1, specificity, and AUC. It is possible to see that by re-
ducing the window size, predictive performance increased. Although precision is around
70%, the other metrics present very satisfactory results, considering that no botnet data
was used during training. Additionally, by choosing the 1 second time window, botnets
would take less time to be detected. Therefore, considering the time window with the best
performance and a bias towards smaller windows, we chose the 1 second time window.

Table 2. Evaluation of time window size in all datasets.
Time window size (s) Accuracy Precision Recall F1-score Specificity AUC

1 0.9112 0.7054 0.9553 0.8111 0.9000 0.9277
5 0.9116 0.7037 0.9675 0.8143 0.8976 0.9325

10 0.8988 0.6883 0.8968 0.7769 0.8993 0.8981
30 0.8989 0.6822 0.8974 0.7712 0.8993 0.8983

After deciding the best time window, we evaluated the amount of legitimate data
needed to yield a good predictive performance. First, we fixed the time window to 1
second and ν = 0.1 and γ = 0.1. Then, sample percentage was varied from 0.1 to 0.9
with steps of 0.1. At each iteration, for each profile-infection combination, we sampled a
percentage of all legitimate data and induced the OSVM on it. After that, this OSVM was
tested using the remaining legitimate data and all botnet data. All performance metrics
presented very similar results and, in this sense, the OSVM can use a small fraction of le-
gitimate data and still reach high predictive performance. This indicates that all legitimate
data are very similar. Thus, the sample size of 0.1 was chosen.

After selecting the best time window and sample size, an optimisation of the
OSVM hyperparameters was performed. We used a random search to find the best com-
bination for ν and γ. To do so, twenty values between 0 and 1 (excluding both values)
were randomly selected to each metric. Then, by performing a product combination of
the two groups of values, 400 ν-γ pairs were created. Recall that ν poses as the upper
bound on the fraction of outliers in the training set, whereas γ is used in the RBF kernel
to, intuitively, describe the influence of a single instance when creating the hyperplanes.
For each combination and each profile-infection pair, we performed the same procedure
of inducing an OSVM on 0.1 percent of sampled legitimate data and testing this OSVM

2http://scikit-learn.org/stable/



Table 3. Evaluation of Sample Size in all datasets.
Sample Size Accuracy Precision Recall F1-score Specificity AUC

0.1 0.9104 0.7034 0.9563 0.8100 0.8988 0.9276
0.2 0.9106 0.7041 0.9555 0.8102 0.8993 0.9274
0.3 0.9111 0.7052 0.9556 0.8110 0.8999 0.9277
0.4 0.9111 0.7050 0.9556 0.8109 0.8998 0.9277
0.5 0.9112 0.7055 0.9554 0.8111 0.9001 0.9277
0.6 0.9111 0.7051 0.9554 0.8109 0.8999 0.9277
0.7 0.9110 0.7050 0.9555 0.8109 0.8998 0.9277
0.8 0.9111 0.7052 0.9554 0.8110 0.9000 0.9277
0.9 0.9110 0.7050 0.9551 0.8108 0.8999 0.9275

using the remaining legitimate data as well as all botnet data. By doing so, the best values
were ν = 0.006 and γ = 0.6.

In Table 4, we present the mean predictive performance metrics for each profile
and infection type when using a time window of 1 second, 0.1 percent of sampled legiti-
mate data, ν = 0.006 and γ = 0.6. Since each dataset are composed by 3600 legitimate
and 3600 botnet instances, only 360 legitimate instances were used for training. By tuning
the hyperparameters of the OSVM, we significantly increased the precision, from around
0.70 to 0.95, while maintaining a high recall rate. Accuracy, F1, specificity, and AUC also
increased, due to the same reason. Except for the dataset SC I3, metrics presented values
higher than 0.90.

Table 4. Best results for the proposed approach.
Dataset Accuracy Precision Recall F1-score Specificity AUC
MC I1 0.9847 0.9597 0.9648 0.9622 0.9898 0.9773
MC I2 0.9744 0.9627 0.9080 0.9345 0.9911 0.9495
MC I3 0.9909 0.9659 0.9900 0.9778 0.9911 0.9906
SC I1 0.9928 0.9654 1 0.9823 0.9909 0.9954
SC I2 0.9926 0.9646 1 0.9819 0.9908 0.9954
SC I3 0.9449 0.9596 0.7571 0.8463 0.9919 0.8745
ST I1 0.9665 0.9459 0.8843 0.9140 0.9872 0.9358
ST I2 0.9931 0.9671 1 0.9832 0.9913 0.9956
ST I3 0.9933 0.9678 1 0.9836 0.9916 0.9958

To summarise the results in Table 4, a boxplot of the results is presented in Figure
3. It is possible to see that the median values for all metrics were higher than 0.95. Some
outliers are present, with the recall metric presenting the highest discrepancy. The median
value for this metric was close to 1, but an outlier presented a value of 0.75 (scenario
SC I3). This may be an indication that, for this specific scenario, the hyperparameters
selected were not the best, since they were selected considering all scenarios.

The proposed approach relies on the detection of unusual changes in resources
consumption that botnet malware causes. The MC profile is the one that has the highest
resource consumption among the three observed profiles. Therefore, before the tests, it
was thought that detection in the MC profile could be more challenging, because malware
behaviour would cause less apparent changes in device resource consumption than in
other profiles. The results for the MC profile showed that the proposed approach was
successful even in this kind of situation.

Lastly, the results for the ST profile, which has legitimate tasks that could be
mistaken as botnet activities, are observed. The basic behaviour of this device is similar



to the SC profile, but it also performs updates in programs and resources checking, does
CPU and memory tests, and has periodic legitimate network communication through SSH
and Telnet protocols. In the case of Type 3 infection, it has the best results for all datasets,
with an accuracy of 99%. These results reinforce that the proposed detection model is
capable of discerning legitimate from malicious actions, which are represented, in this
case, by botnet actions.
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Figure 3. OSVM results with optimised hyperparameters for all datasets.
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Figure 4. Behaviour of the MC profile regarding host data captured with and
without the IDS.

After evaluating the predictive performance of our approach, we also need to as-
sess its impact when running in the device. Since we built a host-based approach and
IoT devices have limited resources, it is essential that the IDS uses the resources from the



device in a way to not harm its performance. To address this, we computed the CPU and
memory usage, the electric potential difference of the device and the CPU temperature
with and without the IDS running. Each feature has, respectively, the following minimum
and maximum values: 0% to 100%, 0 GB to 1 GB, 1.2 V to 1.23 V and 0oC to 100oC. In
Figures 4, 5 and 6, these values, for each IoT device, are presented. The blue line repre-
sents values computed when the IDS was not running, whereas orange lines comprehend
to values collected with the IDS running (using the best hyperparameters found).

In Figure 4, the MC profile is considered. The IDS seems not to have affected the
device since the behaviours in the two scenarios are very similar. In this sense, even when
running the OSVM to classify new instances, the IDS did not compromise the device’s
performance. The CPU and memory usage, as well as CPU temperature, were similar.
Although the electric potential difference in the IDS scenario was higher for the majority
of the evaluation period, the difference between the two scenarios were only 0.005 volts.
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Figure 5. Behaviour of the SC profile regarding host information captured with
and without the IDS.

Figure 5 presents the results regarding the SC profile. Since this profile has the
lowest use of resources among the three profiles, it is easier to see the impact of the
IDS on the device. CPU usage increased by 2 percentage points also followed by the
CPU temperature. Memory usage increased by 40 MB but remained constant throughout
the time. Likewise, this profile also presented the same increase in the electric potential
difference as seen in MC profile. Despite this, resources were far from being exhausted,
showing that the IDS did not compromise the functionality of the device.

Lastly, Figure 6 shows the results for the ST profile. Its behaviour was similar to
the SC profile. When this profile was running the IDS, CPU usage had a peak of 30%,
then it quickly decreased, stabilising around 20%. This peaks could have been caused by
the initialisation of the IDS. The electric potential difference also increased by 0.02 V. In



the same manner, as in other profiles, the increase in resource consumption caused by the
IDS did not seem to impair the device.
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Figure 6. Behaviour of the ST profile regarding host information captured with
and without the IDS.

Overall, the proposed approach presented high predictive performance, detecting
the seven botnets in all profiles. The different legitimate actions the device performed in
the proposed profiles seemed to be distinguishable by the OSVM from most botnet ac-
tions. By evaluating multiple time windows, sample sizes, and OSVM hyperparameters,
we found out the optimal configuration of 10% of legitimate data used for training, a time
window of 1 second and ν = 0.006 and γ = 0.6, which yielded median values for preci-
sion and recall above 95%. Lastly, the impact of the IDS in the performance of the device
was also considered. Our tests showed that although there was some increase in resource
consumption when the IDS was running, this was far from hindering the capabilities of
the device.

7. Conclusion
The increasing number of IoT devices brings new threats to network security since these
devices are usually more insecure than usual desktop computers. One way to tackle this
issue is to develop IDS to detect infected devices and take the necessary security measures.

In this paper, we developed an approach to detect botnets in IoT devices using
the OSVM trained with host-based data, such as the use of CPU and memory, electric
potential difference, number of running tasks and temperature of CPU. The approach was
tested in a real device using three different profile settings and seven IoT botnets. In
our tests, the approach, using only six minutes of legitimate data to induce a model, was
capable of detecting all botnets in the different settings using a time window of 1 second.
Lastly, we evaluated the impact of running the IDS in a real IoT device. Our tests showed
that the approach did not significantly consume the resources from the device.



As future work, we intend to evaluate the proposed approach in different devices
and IoT botnets, including other host-based features (e.g., syscalls) and test other one-
class classifiers.
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