
A new similarity digest search strategy applied to Minutia
Cylinder-Codes for fingerprint identification

Vitor Hugo Galhardo Moia, Marco Aurélio Amaral Henriques

1Department of Computer Engineering and Industrial Automation (DCA)
School of Electrical and Computer Engineering (FEEC)

University of Campinas (UNICAMP)
Campinas, SP, Brasil 13083-852

[vhgmoia,marco]@dca.fee.unicamp.br

Abstract. One challenging problem on the fingerprint realm is the identifica-
tion of individuals over large databases, where the most similar template must
be found. Approximate matching is used in digital forensic investigations to
deal efficiently with large amount of data. We think it can also be used to identify
similar fingerprints with compact representations and become a promising tech-
nique to speed up searches. In this paper, we explore this hypothesis and present
MCC-HBFT, a new fingerprint identification strategy based on the approximate
matching technique HBFT and the state-of-the-art fingerprint representation
model MCC. We show how MCC-HBFT identify fingerprints and outperforms
a commonly used indexing strategy in some public databases of the field.

1. Introduction
Fingerprint identification is one of the most well-known and publicized biometric traits
due to its interesting characteristics: uniqueness, consistency over time, easy acquisition,
and low costs. However, one problem that remains is searching an unknown fingerprint
over large repositories, which poses challenging obstacles regarding accuracy and effi-
ciency. Identifying individuals in such case requires the comparison of the input finger-
print templates to every other template in the database, in an all-against-all fashion. This
process, often called brute-force, is ineffective and becomes impractical for large sets.

One trivial solution to overcome the problem mentioned above is to reduce the
total number of comparisons by prefiltering techniques, such as exclusive classification.
The issues with this approach are the fixed number of classes, which is small, and that
fingerprints are unevenly distributed among them. A more efficient solution could be the
use of indexing schemes, where the fingerprint features represent the indexes. Features
can be classified as global or local. The first category gives macro-level details of the
ridge flow, such as the fingerprint class, a pattern of ridges and valleys on the surface of
a finger. Local features can be minutia points, which are discriminative enough for the
recognition task, and are composed by local ridge discontinuities. Minutiae can be of two
types: terminations (ridge endings) and bifurcations.

The minutiae-based fingerprint representation method has been proposed by
ANSI-NIST and includes the minutiae location and orientation (direction of the underly-
ing ridge at the minutia location). The state-of-the-art fingerprint representation technique
used to codify minutiae is the Minutiae Cylinder-Code (MCC) [Cappelli et al. 2010],
which represents each minutia and the ones around it into a single cylinder. The MCC



cylinder is invariant for translation and rotation and robust to skin distortion and small fea-
ture extraction errors. These characteristics make MCC a good representation model for a
minutiae-based fingerprint. Besides, comparing MCC features (cylinders) is very efficient
since they can be represented as a bit vector and compared using XOR operations.

Even though comparing the two MCC templates is very efficient due to its bit-
based representation, the comparison of large data sets is not. Given that two templates
which were obtained from the same finger could have a considerable variability due to
numerous reasons, such as rotation, pressure, noise etc, the problem at hand becomes
finding the most similar template to the queried one in a broad set in the shortest time
possible. A comparable situation is found in the digital forensics field, where approximate
matching techniques are used efficiently to find similar data [Breitinger et al. 2014b].

In this work, we explore the use of approximate matching techniques to deal with
the fingerprint identification problem. Our contribution is towards an efficient way of
finding similar fingerprints templates over large databases. To this end, we present MCC-
HBFT, a new fingerprint identification strategy based on the combination of the HBFT
approximate matching technique and the state-of-the-art MCC representation model. Our
results indicate that the merge of approximate matching and fingerprint techniques can be
beneficial to the problem at hand. Furthermore, we show that MCC-HBFT outperforms a
commonly used indexing scheme on some public databases of the field.

2. The Minutia Cylinder-Code (MCC) representation model

The state-of-the-art fingerprint representation model is the MCC technique. According
to Cappelli, R. et al. [Cappelli et al. 2010], the MCC encodes each minutia extracted
from a fingerprint (in the form of ISO/IEC 19794-2 [ISO/IEC-19794-2:2005 2005]) into
a cylinder structure, corresponding to the spatial (cylinder base) and directional (cylinder
height) relationships between a given minutia and the ones around it. We highlight that
each minutia m is a triplet {m = xm, ym, θm}, where xm and ym are the minutia location
and θm the minutia direction (in the range of [0, 2π]).

MCC cylinders can be divided into sections, corresponding to a directional diffe-
rence in the range [−π, π]; sections are discretized into cells, and each cell receives a
value related by the accumulating contributions from the minutiae around it, which de-
pends on both spatial and directional information [Cappelli et al. 2010].

One of the most interesting characteristics of MCC is the bit-based representation
of fixed length. With a negligible loss of accuracy, the value of each cell can be repre-
sented as a bit. This way, a cylinder with n cells becomes a bit-vector of length n by
linearizing its cells; a fingerprint template becomes a set of binary vectors. Other charac-
teristics of MCC is that its cylinder structure is invariant for translation and rotation and
robust against skin distortion and small feature extraction errors. These singularities make
MCC extremely simple, reliable and fast for matching, being also suitable for indexing
approaches and use with approximate matching techniques.

3. Related work

The basic concept of fingerprints and techniques for recognition, matching and identifi-
cation can be found in surveys of the field [Peralta et al. 2015, Soni and Goyani 2018].



Here, we will present only indexing schemes. There are several approaches to deal with
the fingerprint identification problem when searching a query fingerprint template against
an extensive database. Among all schemes, we will focus on the minutia-based ones due
to their better accuracy. Furthermore, we focus on the MCC techniques because of its
bit-based representation since it is less computationally expensive and consumes less me-
mory. We highlight that is not in the scope of this paper to present a detailed analysis
of fingerprint indexing approaches. For this matter, a review is presented by Parmar, P.
A. and Degadwala, S. D. [Parmar and Degadwala 2015]. We review only a few methods
related to our proposal due to space restrictions.

The MCC-LSH [Cappelli et al. 2011] indexing approach has outperformed most
indexing algorithms (minutia-based) on several public databases. It is based on the Lo-
cality Sensitive Hashing (LSH) technique and MCC representation model. The index
structure corresponds to several hash tables, each having a particular hash function. For
populating the index, each cylinder (bit-based implementation) from each fingerprint tem-
plate of the database is hashed under the several hash functions and stored in their cor-
responding hash tables. When searching a fingerprint template, the process repeats, but
instead of saving the cylinders in the table, we check for collisions with other cylinders.
The more collisions we get, the more similar the templates are.

Other methods in the literature are variations of Cappelli’s approach
[Cappelli et al. 2011]. Wang, Y. et al. [Wang et al. 2014] use MCC and geometric hash-
ing (Geo-MCC). Their work is extended in [Wang et al. 2015], where more compact bi-
nary hash codes are learned from MCC binary representations and used again with geo-
metric hashing, but now combined with LSH (Geo-LSH). The authors reduced the cylin-
der size from 384 bits to only 24 bits, decreasing the number of hash functions and hash
tables used by the system to store fingerprint templates. The benefit of their scheme
comes with a reduction in accuracy but still is better than MCC-LSH according to their
experiments. A similar approach is presented by Bai, C. et al. [Bai et al. 2018], where a
learning-based algorithm is used to create shorter codes from MCC. However, the authors
use these codes to create substrings and store them into multiple hash tables.

Su, Y. et al. [Su et al. 2016] presented another indexing scheme to speed up the
search. They combine an improved LSH technique (using MCC) with a learning-based
fingerprint pose estimation algorithm. The pose estimation aims to register fingerprints
into a unified finger coordinate system and avoid unnecessary comparisons.

4. The MCC-HBFT fingerprint identification strategy

The MCC-HBFT is a fingerprint identification strategy that leverages the benefits of MCC
fingerprint representation and the efficiency of the approximate matching field in finding
similar fingerprint templates. We adapted the similarity digest search strategy HBFT
[Breitinger et al. 2014c, Lillis et al. 2017], used by approximate matching tools to ope-
rate with MCC fingerprint templates. In the next subsections, we will describe how our
strategy works and the necessary steps to insert and query fingerprint templates efficiently.
The algorithms describing our approach as well as extra material with all tests performed
can be found in our GitHub page [Moia and Henriques 2018].



4.1. The HBFT similarity digest search strategy

The Hierarchical Bloom Filter Tree (HBFT) is a data structure composed of several bloom
filters arranged in a tree fashion. Bloom filters (BF) are space-efficient probabilistic data
structures (bit vector) used to store a large amount of data by the use of hash functions.
Upon receiving a query, they answer whether a given element belongs to a set or not.
Initially, the BF is created empty (all positions (bits) are set to 0 (zero)). Inserting data
on the filter requires performing k different hash functions over the given item and setting
to 1 (one) all positions pointed out by the hashes. Searching for an element has the same
process, but instead of setting the filter, we check for a bit 1 (one) in all positions. In the
affirmative case, we know with a certain probability that the element belongs to the set;
otherwise, we know for sure that it does not belong to it.

The HBFT approach uses several BFs so besides checking an element for mem-
bership, it can also identify which element matched the queried one. This way, several
BFs are created and arranged in a tree fashion. In the first filter (root) at level 1, all ele-
ments of the data set are inserted. Then, the set is divided by half, and each part is inserted
in a new BF, child of the root (level 2). This process of splitting the set and inserting its
halves into new child BFs repeats for the subsequent levels until there is only one element
per filter in the last level [Breitinger et al. 2014c].

It is important to highlight that HBFT is meant to identify similar objects. Instead
of hashing data directly, HBFT uses the approximate matching tool sdhash/mrsh-v2 to ex-
tract features from the objects (small pieces of the object) and stores them in its structure.
Later, the same features are used for identification purposes [Breitinger et al. 2014c]. In
the end, objects that share a certain amount of features are considered similar.

Upon receiving a query request, the queried item is hashed using the k hash func-
tions and first checked in the root BF node for a match (all positions in the filter set to bit
1). In a negative case, we stop the search right away and conclude there is no similar item
in the set; otherwise, the search goes to the next levels until we reach the last level of the
tree (there is a match, and we know the similar item) or all filters from the same level give
a non-match (there is no similar item) [Breitinger et al. 2014c].

4.2. The proposed MCC-HBFT scheme

MCC-HBFT has the same working principle as HBFT, except with a few modifications
and additional resources necessary for its operation with the MCC representation. Here,
we explain the singularities of our approach.

4.2.1. Features and multiple trees

Just like HBFT, instead of inserting the template itself into the data structure, we insert
small pieces of it (features). In an MCC template, there is one cylinder (fixed-size bit
vector) representing each minutia. One possible candidate to feature is the cylinder itself,
but for a more accurate version, we choose to work in the cylinder section level. Since we
have s sections per cylinder, we will have s features for each cylinder.

The choice of working in the section level from the cylinder perspective have some
advantages. We can reduce the feature size (s times) and the number of hash functions



Figure 1. Inserting fingerprint templates into the MCC-HBFT strategy for MCC
representations with six-cylinder sections.

used by inserting them into the BF structure for the same accuracy. The downside is
that the number of features is multiplied by s, which will demand an increase of the BF
size. Since BFs are space-efficient structures and MCC are compact representations, the
increment is not significant. Another possible issue is how to distinguish a feature from
one section to another to avoid misleading collisions. The solution adopted in this work
for this problem is based on the same paradigm used by the HBFT approach: divide and
conquer. We choose to use different HBFT data structures for storing the features of each
section separately, one BF tree for each cylinder section, as shown in Fig. 1.

To get the number of features (z) for each BF tree structure, we use Eq. 1:

z = n · c, (1)

where n is the number of templates and c the average number of cylinders in a template.

4.2.2. Hash functions

One efficient way to create different hash functions for setting bits on bloom filters is to
hash the given element with a cryptographic hash function (e.g., MD5, SHA-1 etc.) and
split the result into k parts, where each piece corresponds to a different hash. However,
in biometric systems, we have considerable variability in different fingerprint templates
even though they belong to the same finger. Numerous factors can contribute to this
fact, including displacement (same finger placed at different locations on the acquisition
sensor), rotation, pressure, skin condition, noise etc. A common practice is to establish a
threshold of the acceptable difference between two templates to consider them a match.
This way, our problem here is to find “similar” templates, not precisely identical ones.

Due to the characteristics of the problem at hand, using common cryptographic
hash functions on fingerprint features will not produce good results since they can not



stand minor changes in the input. Changing a single bit in the data will create an en-
tirely different output (avalanche effect). For this reason, we need a different kind of
function. Here, we will use a new version of the functions presented by Cappelli, R. et
al. [Cappelli et al. 2011]. Given a fingerprint feature (cylinder section), we will use kmax
functions where each of them will randomly choose b bits from the each feature; next, a
cryptographic hash function is used to create the hash value from the selected bits. In the
end, each feature will have kmax hash values. Since we expect that some bits may differ
from one template to another due to biometric constraints, we only require that kmin hash
functions (kmin < kmax) match against the BF for taking the feature as similar. Using
many hashes per feature and establishing a minimum number of functions (kmin) to have
a match, allows our approach to detect similar fingerprint templates.

4.2.3. Bloom filters size and number of bits of the hash functions

The BF size depends on three factors: number of elements inserted in the filter, false
positive rates, and number of hash functions. Since our structure is arranged in a tree
fashion, we can create fixed-size or variable-size filters. Considering we want to keep
the same number of hash functions and false positive rate for all filters, the latter option
is more space-efficient because in each level we have half elements than the previous
one inserted in the filter, which decreases the BF size. The root filter (level 1) is the
largest one, containing all elements of the data set. Its children and all other filters from
other levels have half of their parent size. Given that we established a maximum and a
minimum number of hash functions (section 4.2.2), we had to change the root BF size
formula slightly [Breitinger et al. 2014a]. The adapted formula is shown in Eq. 2.

mroot =
−kmax · z

ln(1− kmin
√
p)

(bits) (2)

wheremroot is the root BF size, z the number of features, kmax and kmin are the maximum
and a minimum number of hash functions, respectively, and p the false positive rate.

Given the size of the root BF (largest filter of the entire structure), we can compute
the number of bits (b) necessary for the hash functions address the bits into BFs using Eq.
3. For efficiency purposes, we compute the feature hashes once and discard one bit per
level when working with filters from other levels, since BFs have half of its parent size.

b = dlog2(mroot)e (3)

4.2.4. Final score

When searching for a template Ti, for each feature, we count the number of hashes that
matched against the queried BF and, in case we have at least kmin matches, that feature is
said to be part of the filter; otherwise, we drop it; then, we move on and search for the next
feature in the same BF. We stop the search in this particular BF when hitsmin features are
found, or we are out of features. In the first case, we assume a similar template lies in this
BF, and we can continue searching in the next levels of the tree. In the second case, we
understand there is no similar template in this BF nor the subsequent levels of this node.



Once we have reached the last level of the tree (single fingerprint template per
filter), we count the number of features found in that filter. Additionally, we determine a
match score for the queried template and the one belonging to the BF. Eq. 4 shows our
score formula, which seeks to normalize the number of matching features by the average
number of features found in the queried template Ti (FQ) and BF template BFj (FBF ).

score(Ti, BFj) =
HM

(kmax · (FQ + FBF ))/2
. (4)

It is important to highlight that HM corresponds to the number of matching hashes of all
features from Ti that had at least kmin hashes values matched.

4.2.5. Additional resources

Here we present additional resources integrated to MCC-HBFT to improve its efficiency.

Fingerprint classes: To reduce the number of template comparisons, we added a new
component to our approach: fingerprint classes. Each bloom filter has a flag indicating
the classes of fingerprints that lies on it. We adopted the six-class model used by NIST:
Arch (A), Tented Arch (T), Left Loop (L), Right Loop (R), Scar (S) and Whorl (W)
[Ko 2007]. One can use NIST PCASYS (Fingerprint Pattern Classification) [Ko 2007]
system to predict the class of a fingerprint or any other method, including establishing it
manually. The classes help to decrease the number of unnecessary comparisons. When
creating the BF-tree structure, we group the fingerprints by classes and insert them in the
same or near BFs. In the search process, when the queried fingerprint template belongs
to a different class from the ones of a particular filter, we stop the search in that BF and
all subsequent levels. Since some fingerprints may have a pattern that classifies it in more
than one class, we allow an assignment of at most two classes per fingerprint.

Compatible function: Like other indexing approaches [Cappelli et al. 2011,
Bai et al. 2018], a compatible function is used to narrow down the search. Two minutiae
m1 (xm1, ym1, θm1) and m2 (xm2, ym2, θm2), are only considered a match if their angular
difference dθ(θm1, θm2) > σθ and euclidean distance dxy((xm1, ym1); (xm2, ym2)) > σxy.
According to Cappelli, R. et al. [Cappelli et al. 2011], this is done to ensure a minimum
rotation and displacement between them. In the proposed strategy, the minutiae attributes
(xm, ym, θm) are stored into a hash table along with a minutia identification. Each
fingerprint template has an exclusive table for keeping its attributes.

As mentioned before, the problem handled here is to deal with similarity cases,
where fingerprint templates are not identical. For this reason, we use kmax and kmin as
a maximum and a minimum number of hash functions, respectively, to set and query
bits in our BF tree structure. This allows us to have different bits between the database
template and the queried one. The same problem applies for creating indexes for storing
the minutiae attributes (represented by kmax hash values) into the hash table. Since each
feature has several hash values and we allow that only part of them match, we can not
create a single index for a feature to insert it into the table. If we use all hashes to derive



an index value, any similar feature that has at least one different bit will probably have a
different index and will not be correlated to their similar ones.

The solution proposed here follows the idea adopted in section 4.2.2. We use all
kmax hash values from a feature to derive many indexes and, for each one, we insert the
feature in the corresponding hash table bucket (we only store the feature identification,
while its attributes (xm, ym, θm) are stored elsewhere to avoid redundancy and save me-
mory). Upon a query request, we check the hash table for the features that collide at least
kmin times with the queried one before taking their attributes and performing the compa-
tible function. Only if the function’s result is true, we count a match for that feature.

4.3. Creating the MCC-HBFT data structure: The preparation phase

The preparation phase, often called offline stage, consists of creating the MCC-HBFT data
structure and inserting all database fingerprint templates on it. First, we create s (cylinder
sections) empty BF trees and a set of hash functions for each tree according to the cylinder
section it lies on. The next step is grouping the fingerprint templates according to their
classes and insert them into MCC-HBFT. Since we could have more than one class per
fingerprint, we classify the fingerprints prioritizing the first class.

The insertion process goes as follow: The first template of the first group is in-
serted into BFx (where x = 2L−1 is the number of the BF in the tree at level L), the
first filter of the last level of the tree, and all its parents’ nodes. In BFx, we insert the
template features, some attributes, and create a new hash table for keeping the minutiae
information. Besides, we set the class tag of the current BF and all its parents according
to the given template classes. Then, we proceed to the next template and insert it into
BFx+1, the second BF of the last level and all its parents. Again, we set the classes of
the BFs accordingly and proceed until we have inserted all templates. Fig. 2 shows the
MCC-HBFT structure of a single BF tree.

We highlight that the last level of each tree stores only one template per filter
(which has several cylinders, thus having several features). Furthermore, we keep some
fingerprint attributes for later identification and comparison purposes, such as an identifi-
cation (ID), fingerprint classes (class 1 and 2), and number of features. A hash table for
each template is also stored to keep the minutiae information.

4.4. Searching fingerprint templates: The operational phase

The operational phase, also known as online stage, follows the preparation and consists of
performing searches on the MCC-HBFT structure. Given the MCC template and its class,
the proposed strategy performs the feature extraction process and look for each feature
according to their cylinder section in the BF trees. A match is found when at least hitsmin
features are located in a BF. In the case of a non-match in the root filter, we discard that
feature and move to the next one. When matching, we go further and look for matches in
the BF children of that node. We proceed with the search until we reach a filter on the last
level of the tree or we have a non-match in the current node and all other ones.

In the last level of the tree, we have one template per filter. Besides looking for all
features, we also compute a match score for the queried template (sec. 4.2.4), and after
searching into all s trees, we summed up the results and present an ordered list (by match
score) with all possible candidates to similarity to the queried template.



Figure 2. MCC-HBFT: Single BF tree structure

5. Assessment

5.1. Evaluation setup, databases, and parameters

The tests performed in this paper used a machine running a dual boot of Elementary OS
0.4.1 Loki 64-bit (built on Ubuntu 16.04.2 LTS) and Microsoft Windows 10 64-bit, with
an i7-5500U CPU @2.40GHz processor, 8 GB of memory, and NVIDIA GeForce 920M.
The proof of concept MCC-HBFT was developed using C language.

The performance of MCC-HBFT was measured using public domain fingerprint
databases, such as the NIST Special Databases 4 [NIST 2018] and some FVC databases
([FVC2002 2018] and [FVC2004 2018]). All database details are shown in Tab. 1.

Table 1. Detailed information of public databases used in the experiments

Databases Size Resolution Subject Impressions Sensor Format
NIST DB4 512x512 500dpi 2000 2 Ink-rolled PNG
FVC2002 DB1a 388x374 500dpi 100 8 Optical TIF
FVC2002 DB3a 300x300 500dpi 100 8 Capacitive TIF
FVC2004 DB1a 640x480 500dpi 100 8 Optical TIF

The tests presented here followed the strategy used in the literature
[Bai et al. 2018, Cappelli et al. 2011]. For the NIST database, the first fingerprint impres-
sion of DB4 is used for indexing and the second one for querying. On the FVC database,
the first impression was used for index and remaining seven for querying. To estimate
some parameters of MCC-HBFT, we used 600 fingerprints from NIST DB4 (500 first
impressions for index and 100 second impressions for query) and 200 fingerprints from
FVC2002 DB1a (25 first impressions for index and 175 impressions for query).



The fingerprint minutiae extraction was performed in two different ways. For the
NIST fingerprints, we used the open source NBIS1 software. For all FVC sets, we used
a set of manually extracted minutiae (FM3) [Kayaoglu et al. 2013]. Next, the minutia
information of both databases is used to create the MCC representation using MCC SDK
v2.02, creating a 384-bit-based template for each fingerprint. We adopted the same pa-
rameters as reported in [Cappelli et al. 2011] for the cylinder creation.

We limited the comparison of our strategy to only the state-of-the-art index
structure MCC-LSH [Cappelli et al. 2011] since it has a free implementation available
by MCC SDK v2.0. All other indexing schemes that work with MCC do not have their
source code available for comparison. Most approaches only compare their proposals to
MCC-LSH, the only readily available one on the literature. The tests performed here used
the same MCC and LSH parameters available in [Cappelli et al. 2011]. A C# routine was
developed in the Windows operating system to create the index structure, perform the
queries, and then consolidate the results.

MCC-HBFT makes use of fingerprint classes. Here, we adopted the free NIST
PCASYS [Ko 2007] software to perform the class assignment for first class and a manual
adjustment to insert the second class, when necessary. Since the focus of this research is
based on the use of classes to reduce the number of comparisons and not in the classi-
fication process itself, we are not interested whether PCASYS assigns a right class to a
fingerprint or not. We are only concerned that two mate fingerprints have the same class.

Other parameters of MCC-HBFT include the number of hash functions kmax and
kmin, established after several experiments over the test databases (presented next). We
also defined hitsmin=20%, which is the number of feature matches to conclude that a
similar feature is inserted in a BF. This value is a proportion of features found in the filter
by the total number of queried features, also found experimentally. The other parameters
are s = 6 and SHA-1 as cryptographic hash function. The values used in the compatible
function are: σθ = π/4 and σxy = 256.

5.2. Results

The evaluation of the accuracy and efficiency of fingerprint indexing schemes is measured
by the trade-off between Error Rate (ER) and Penetration Rate (PR). The first metric is
based on the number of queried fingerprints not found in a search, while the latter one
corresponds to the proportion of the database explored by the indexing approach in a
query. The best scenario is the smallest possible error to the lowest penetration rate.

In our experiments, we have randomly generated the hash functions (bits selected
in the cylinders) each time we ran a full trial with MCC-HBFT. Even though we require
fixed hash functions to always produce the same results, our tests changed it because i.
the size of the databases is different, requiring more or less bits for each function; ii. we
wanted to verify the impact of “good” and “bad” bit selections. We also have chosen
three versions of MCC-HBFT using different numbers of hash functions to find the best
cost/benefit setting. We highlight that the more hash functions used, the higher the costs
(time) are. The settings include a low, mid, and high cost versions.

1NIST Biometric Image Software (NBIS) v5.0.0, http://www.nist.gov/itl/iad/ig/nbis.cfm
2MCC SDK v2.0, http://www.biolab.csr.unibo.it/mccsdk.html



Determining the values of kmax and kmin required the two test databases. First, we
set kmax = x · kmin, where x is a variable controlling the level of changes accepted over
two templates. The best results for x were different for FVC and NIST. In the former one,
the best values varied between x = 5 and x = 6, while the other had x = 3 and x = 4.
These results helped us to find the different settings of our approach.

We have run each experiment 10 times and selected the worst, average, and best
case scenarios, and compared them to MCC-LSH. To be fair, we have compared our
approach under its average case scenario. Fig. 3 shows the results for the FVC2002-
DB1a set with the average results got from MCC-HBFT using the three different settings.
We can see that all MCC-HBFT versions had better outcomes compared with MCC-LSH
on average. Even though MCC-LSH had better results for a low penetration rate (PR ≤
7.0%), MCC-HBFT settings presented better results from this point on. Besides, our low-
cost version reached ER = 0% with PR = 39%, while MCC-LSH with PR = 48%.

Fig. 4 shows the three scenarios of the low-cost setting (kmax = 20/kmin = 4) and
the baseline MCC-LSH. The worst case had ER = 0.28% (PR = 100%). However, the
average scenario had ER = 0.0% and PR = 39%. We chose to show this particular set-
ting because it had the worst performance with respect accuracy of all three and because it
is a low-cost version. Adopting a more accurate hash function means increasing the num-
ber of hashes, as shown in Fig. 3, where the high-cost version (kmax = 72/kmin = 12)
performed better than the others (ER = 0.0% and PR = 28%).

Figure 3. Performance evaluation on
FVC2002 DB1: Average case scenario
of three different MCC-HBFT versions

Figure 4. Performance evaluation on
FVC2002 DB1: The worst, average,
and best case scenarios (low-cost)

Fig. 5 shows the experiments under FVC2002-DB3 database. The low-cost ver-
sion (kmax = 20/kmin = 4) performed worst, while the others competed with MCC-LSH
but had a higher error rate. It is important to highlight that none of the approaches reached
ER = 0%. MCC-LSH had ER = 1%. On the other hand, over FVC2002-DB1 (Fig. 6),
MCC-HBFT beats the state-of-the-art proposal significantly, except for the mid-cost ver-
sion with PR ≥ 82%, when it ends with a superior error rate.

The tests using NIST BD4 database have adopted different parameters for the
hash functions, but we still use the idea of the three settings: a low, mid, and high cost
versions. Fig. 7 shows the results of three settings and the baseline MCC-LSH. Even with



Figure 5. Performance evaluation on
FVC2002 DB3: Average case scenario
of three different MCC-HBFT versions

Figure 6. Performance evaluation on
FVC2004 DB1: Average case scenario
of three different MCC-HBFT versions

the low-cost version (kmax = 18/kmin = 6), we had better results than MCC-LSH from
PR ≥ 7.95% and reached ER = 0.0% before it (with PR = 41.3% in comparison to
PR = 100.0% of MCC-LSH). MCC-HBFT presented similar results over NIST database
in all of its executions. The worst case scenario of all experiments always had results close
to the best one, except in one case, where the search could not find all templates in the
search, as illustrated in Fig. 8. In this setting, we had ER = 0.05%, which corresponds
to a single fingerprint not found. The other two experiments were successful in finding all
candidates with PR = 42.05% (on average) for their worst-case scenario.

Figure 7. Performance evaluation on
NIST DB4: Average case scenario of
three different MCC-HBFT versions

Figure 8. Performance evaluation on
NIST DB4: The worst, average, and
best case scenarios (mid-cost)

5.3. Discussion

MCC-HBFT can be used in different settings. We expected that the more hash functions
we use, the higher the accuracy. However, the benefits were quite small given high kmax
values. In general, the results for the different settings were quite similar. In opposition,
the time costs increased significantly since we had to perform many more hashes per



feature. The low-cost version appeared as the most cost/benefit combination. Future
work encompasses a cost/benefit analysis of different MCC-HBFT settings.

To understand the hash functions parameters changing from FVC to NIST
database, we analyzed the details of each set and summarized it in Tab. 2. The num-
ber of minutiae per template in each database varied significantly. NIST database has
more minutiae per template, allowing a smaller proportion of kmax and kmin since it has
many minutiae to compare between two templates (more chances to get matches). The
FVC sets have fewer minutiae, decreasing its chances for matching. For this reason, the
difference between kmax and kmin must be higher.

Table 2. Detailed information of public databases used in the experiments
Database FVC NIST
Parameters 2002DB1 2002DB3 2004DB1 DB4
Number of minutiae (avg) per template 35.02 21.49 38.86 120.0
Max. number of minutiae per template 81 46 77 237
Min. number of minutiae per template 5 2 8 13
Number of bit 1 in each minutiae (avg) 11.0681 9.1413 10.5342 12.7070

One difference to call attention between NIST and FVC databases results is the
error rate of small values of database penetration. We had significantly lower errors for
FVC than NIST set. We attribute that to the extraction minutia process, which was man-
ually and carefully done for FVC database and automatic for NIST set. The quality of
the minutiae possibly influenced the results, but here we are more concerned with the
performance of our approach against the state-of-the-art scheme. Since we used the same
minutiae for both approaches, we believe this will not affect the relative results.

6. Conclusion

Identifying individuals over large databases using fingerprints is a challenging problem,
mainly due to efficiency reasons. The approximate matching techniques are efficient so-
lutions in digital forensics to find similar content, the same issue faced by the fingerprint
field. In this work, we have presented MCC-HBFT, a new fingerprint identification strat-
egy that leverages the efficiency of the approximate matching field and the accuracy of the
state-of-the-art fingerprint representation MCC. We showed how our strategy works and
outperforms a commonly used fingerprint indexing approach on public domain databases.
Future work encompasses a cost/benefit analysis of different MCC-HBFT settings. We
also plan to analyze the use of more efficient hash functions to decrease the overall costs
without impacting the accuracy.

7. Acknowledgment

This work is partially supported by CAPES FORTE Project (23038.007604/2014-69).

References

Bai, C., Wang, W., Zhao, T., and Li, M. (2018). Fast exact fingerprint indexing based on
compact binary minutia cylinder codes. Neurocomputing, 275:1711–1724.



Breitinger, F., Baier, H., and White, D. (2014a). On the database lookup problem of
approximate matching. Digital Investigation, 11:S1–S9.

Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., and White, D. (2014b). Approxi-
mate matching: definition and terminology. NIST Special Publication, 800:168.

Breitinger, F., Rathgeb, C., and Baier, H. (2014c). An efficient similarity digests database
lookup-a logarithmic divide & conquer approach. JDFSL, 9(2):155.

Cappelli, R., Ferrara, M., and Maltoni, D. (2010). Minutia cylinder-code: A new represen-
tation and matching technique for fingerprint recognition. IEEE TPAMI, 32(12):2128–
2141.

Cappelli, R., Ferrara, M., and Maltoni, D. (2011). Fingerprint indexing based on minutia
cylinder-code. IEEE TPAMI, 33(5):1051–1057.

FVC2002 (2018). The second fingerprint verification competition. http://bias.
csr.unibo.it/fvc2002/. Accessed 2018 Jun 20.

FVC2004 (2018). The third international fingerprint verification competition. http:
//bias.csr.unibo.it/fvc2004/. Accessed 2018 Jun 20.

ISO/IEC-19794-2:2005 (2005). Information technology - biometric data interchange for-
mats - part 2: Finger minutiae data.

Kayaoglu, M., Topcu, B., and Uludag, U. (2013). Standard fingerprint databases: Manual
minutiae labeling and matcher performance analyses. arXiv preprint arXiv:1305.1443.

Ko, K. (2007). User’s guide to nist biometric image software (nbis). Technical report.

Lillis, D., Breitinger, F., and Scanlon, M. (2017). Expediting mrsh-v2 approximate match-
ing with hierarchical bloom filter trees. In ICDF2C, pages 144–157. Springer.

Moia, V. H. G. and Henriques, M. A. A. (2018). MCC-HBFT: A fingerprint identification
strategy. https://github.com/regras/mcc-hbft. Accessed 2018 Jun 30.

NIST (2018). Special database 4. https://www.nist.gov/srd/
nist-special-database-4. Accessed 2018 Jun 20.

Parmar, P. A. and Degadwala, S. D. (2015). Fingerprint indexing approaches for biometric
database: A review. IJCA, 130(13):0975–8887.

Peralta, D., Galar, M., Triguero, I., Paternain, D., Garcı́a, S., Barrenechea, E., Benı́tez,
J. M., Bustince, H., and Herrera, F. (2015). A survey on fingerprint minutiae-based
local matching for verification and identification: Taxonomy and experimental evalua-
tion. Information Sciences, 315:67–87.

Soni, U. A. and Goyani, M. M. (2018). A survey on state of the art methods of fingerprint
recognition. IJSRSET, 4.

Su, Y., Feng, J., and Zhou, J. (2016). Fingerprint indexing with pose constraint. Pattern
Recognition, 54:1–13.

Wang, Y., Wang, L., Cheung, Y.-m., and Yuen, P. C. (2014). Fingerprint geometric hash-
ing based on binary minutiae cylinder codes. In ICPR, pages 690–695. IEEE.

Wang, Y., Wang, L., Cheung, Y.-M., and Yuen, P. C. (2015). Learning compact binary
codes for hash-based fingerprint indexing. IEEE TIFS, 10(8):1603–1616.


