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Abstract. There is a disparity between Bitcoin addresses and real-world enti-
ties: the same entity can have many addresses. In Blockchain’s analysis, a com-
mon technique used for clustering addresses is to view addresses present at the
input of the same transaction as a single entity. A common practice to make Bit-
coin safer is the use of cold wallets. The use of cold wallets by exchanges - that
control the wallets of many users - may disrupt Blockchain’s current methods of
analysis. In this work we define these scenarios and introduce an heuristic and
an algorithm to detect these occurrences on Blockchain. We show that the data
obtained using the proposed heuristic are consistent with what was expected.

1. Introduction
Bitcoin is the oldest and most widespread cryptocurrency. In Bitcoin system, users have
addresses - abstractions for public keys - where their Bitcoins are stored, like wallets
in real world. Bitcoins are sent to other addresses through signed transactions stored
in a public ledger called Blockchain. Transactions are public and can be accessed by
any individual through the Bitcoin P2P network. In a simplified manner, a transaction
moves the unspent values from previous transactions to set of addresses. In Figure 1
we show a Bitcoin transaction, each entry in Input column (TxHashi, posi) refers a
specific entry in Output column of some previous transaction, identified by TxHashi.
Each entry must be signed by the corresponding private key. Details on how Bitcoin
works can be found in its original paper [Nakamoto 2008] and in the following references:
[Antonopoulos 2014, Narayanan et al. 2016].

The expansion of the adoption of Bitcoin led to the interest in the analysis
of the transactions stored in the Blockchain. These analyzes are used to character-
ize the behavior and profile of system users[Ron and Shamir 2013b] or even detect
illegal activities [Ranshous et al. 2017, Liao et al. 2016, Ron and Shamir 2013a]. The
Blockchain analysis can be done using only the Blockchain data [Filtz et al. 2017,
Androulaki et al. 2013, Ober et al. 2013, Koshy et al. 2014, Spagnuolo et al. 2014,
Maesa et al. 2016, Tschorsch and Scheuermann 2016, McGinn et al. 2016] or also
using external information (e.g. IP address) to Blockchain [Fleder et al. 2015,
Meiklejohn et al. 2016].

One difficulty that arises when analyzing Blockchain is that each real-world entity
can have a large number of addresses and it is necessary to determine the pool of addresses
that represent each entity, this process is called address clustering.

A widely adopted heuristic [Androulaki et al. 2013, Ron and Shamir 2013b,
Ober et al. 2013, Ortega 2013, Meiklejohn et al. 2016, Zhao 2014, Koshy et al. 2014,
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Figure 1. A Bitcoin transaction.

Spagnuolo et al. 2014, Fleder et al. 2015, Monaco 2015, Filtz et al. 2017,
Tschorsch and Scheuermann 2016, McGinn et al. 2016, Akcora et al. 2017,
Maesa et al. 2016, Harrigan and Fretter 2016] is to cluster all addresses present in
the input of one transaction as being the same entity: as the transaction must be signed
with the private key, the one who built the transaction knows the private key of each
address, therefore must represent the same entity. Once established that a set of addresses
is associated with the same entity, all transactions sharing at least one address must
belong to the same entity. For example, transactions inputs containing [A1, A2],[A2, A3]
and [A3, A4] produce a cluster composed of addresses [A1, A2, A3, A4].

Although correct in most cases, we will show in this work that this heuristic can
lead to false positives, producing spurious and meaningless clusters: the exchange can
control the Bitcoins through the knowledge of the private key but do not actually has their
ownership.

1.1. Bitcoin for the masses

The canonical way of using Bitcoin is to download the reference implementation and, af-
ter that, download the Blockchain and manage your addresses on your personal computer.
With the popularity of Bitcoin, people uninitiated in the world of cryptography may own
cryptocoins by simple communicating with an exchange server using a web interface or
smartphone application. In this operation model, the user uses a login and a password
to manage their coins, all issues about encryption are hidden from users [Chuen 2015,
Chapter 28].

The exchanges works similarly to traditional banks, and one of their tasks is to
protect their user’s coins from hacker attacks. A common procedure to increase security
is called Cold Storage or Cold Wallets1: exchanges keeps only a fraction of Bitcoins

1See https://bitcoin.org/en/secure-your-wallet.



on line; most of their assets are stored on off line addresses. One way to implement a
Cold Wallet is to periodically move the deposits made on client’s addresses into an off
line address, keeping a zero balance on client’s addresses. If the exchange suffer a hacker
attack most of coins held by the exchange is protected.

In a recent study[Hileman and Rauchs 2017] it was found that 92% of the ex-
changes use cold storage and that on average 87% of the funds are protected with this
method. Despite the widespread adoption, the use of cold storage does not follow a stan-
dard protocol. Thus, issues such as frequency limits or values used to trigger a cold
storage transaction are defined by each exchange.

This storage procedure produces false positives in the current adopted process of
address clustering: exchanges often produce transactions with a few wallets in the Input,
so the clients of an exchange are considered as a unique entity by the clustering process.

In this paper we present and explore the hypothesis that cold storage transactions
can be detected using a simple and easily implemented heuristic. This heuristic selects
transactions according to the following criteria:

Minimum input size It is expected that the exchange waits for a minimum number of
customer addresses with balance before making the storage in a cold wallet;

Small output The output list of the transaction should be small, since cold wallets have
a higher operating costs;

Inputs with recent deposits Since cold storage operations must be frequent, addresses
in input of one transaction must have recent deposits.

2. Methods
Initially, we verified the presence of Cold Storage transactions according to the heuristic
defined in Section 1, analyzing the occurrences of this type of transactions during the
years 2014 to 2017, this period corresponds from the first block of Blockchain to the
block 50195.

This information was obtained from Blockchain using a Python script using the
Bitcoin Blockchain Parser 2 and BitcoinLib3 libraries. In the selection of Cold Storage
transactions, we considered transactions with 20, 40 and 80 different addresses in the
Input with respective deposits funding occurring approximately in the 12 hours prior to
the transaction and up to two addresses at the Output. The results are presented in Figure
2, where we show the evolution of the frequency and volume - in Satoshis4 - of those
transactions, is possible to observe a steady increase on this type of transaction, which
may be a reflection of the adoption of exchanges by Bitcoin users.

Detailed analyzes have been made over the year 2017 - block 446033 to block
501950 - we believe that the growth of Bitcoin’s adoption and the variation of its value
could make it impossible to analyze over a large period. For this type of analysis we
also use information from the website blockchain.info through its JSON API. The
results are presented in Table 1.

Using the proposed heuristic we made the clustering of the addresses considering:
2https://github.com/alecalve/python-bitcoin-blockchain-parser/
3https://github.com/petertodd/python-bitcoinlib
4One Satoshi corresponds to 10−8 Bitcoins.
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Table 1. Summary of Cold Storage Transaction and Addresses detected for the
year 2017.

Cold Storage Transaction 296,536
Cold Wallets Inputs 5,926,267

Cold Wallets Outputs 192,984

• Transactions sharing same addresses in Input;
• Transactions sharing same addresses in Output.

In Figure 3 we show a histogram with the result of clustering. We can observe that
there are few clusters formed by a large number of transactions, this fact should reflect
the small number of existing exchanges. In Figure 4, the activity days5 of each cluster
are shown, it is possible to observe that only some clusters have more than 200 days of
activity per year. The large number of singleton transactions (not shown in the figures)
or small clustering can be attributed to both the failure in the parameters used in heuristic
(size of the transactions, period of observation of deposits) and other regular transactions
in the Blockchain falsely selected.

Figure 3. Histogram of clusters by cluster size.

3. Results
Once Cold Storage transactions have been selected and clustered, we can perform analysis
to verify the efficiency of the proposed heuristics. Due to limitations of time, computa-
tional power and network band the following data sets were used in the analysis:

ColdClients From the 5 million addresses detected as exchange clients, 4250 addresses
were sampled;

5Number of days with at least one transaction executed by a wallet in the cluster.



Figure 4. Histogram of clusters by days of activity.

AddressesSampled From active addresses in 2017, 31,000 were sampled;
ColdExchange This data set if formed by all 192,984 Cold Wallets detected;
ColdTransaction This data set if formed by all 296,536 Cold Storage transactions;
SampledTransactioin 6,000 samples of transactions with 20 or more entries in Input

occurred in 2017.

For all data sets used, additional information was obtained from blockchain.
info.

3.1. Financial Profile

The Gini coefficient[Gini 1921] and Lorenz Curve[Lorenz 1905] are statistical indicators
used to describe the dispersion of the wealth of a population. These two indicators have
been used to characterize and describe the financial aspects of Blockchain in several recent
studies [Kondor et al. 2014, Vasek and Moore 2015].

In the Figure 5 we present the Lorenz curve of the ColdTransaction and Sam-
pledTransactioin, we can see a marked distinction in this indicator for these groups.
Each transaction is composed of a set of inputs, in Figure 6 we show the distribution of
the Gini coefficient of the inputs for the transactions ColdTransaction and Sampled-
Transactioin.

A characteristic of Bitcoin is that the creator of the transaction chooses the fee
to be paid to the miners, this rate will influence the time in which the transaction takes
to be included in the Blockchain [Antonopoulos 2014]. In Figure 7, the fees paid by
ColdTransaction and SampledTransactioin are shown.



Figure 5. Lorenz Curve for ColdTransaction and SampledTransactioin.

3.2. Behavioral Profile

A address operated by an exchange must have a very specific transaction behavior, caused
indeed by Cold Storage operations. In Table 2, we present the comparison between Cold-
Clients and AddressesSampled of some behaviors that we expect to occur differently
in these sets:

Non-Zero Blocks As deposits in customer addresses are periodically transferred to more
secure addresses, it is expected that the number of non-zero balance blocks are
small;

Full Withdraw We consider a FullWithdraw operation the withdrawals that cause a zero
balance in the address. Table 2 shows the ratio of addresses that exclusively per-
formed this type of withdraw.

Table 2. Behavioral Profile of addresses: balance and withdraw.
Non-zero Blocks Full Withdraw

ColdClients 73.0 0.90
AddressesSampled 1583.2 0.41



Figure 6. Distribution of the Gini coefficient of the Inputs of the transactions.

Addresses controlled by an exchange must have a close relationship with it:

• Third-party deposits should be moved quickly to some cold wallet;
• Payments to third parties must be previously funded by the exchange, probably

from cold wallet.

Thus, each pair of transactions must contain at least one exchange-controlled ad-
dresses occurrence. In Figure 8 we present the frequency of occurrences of Cold Storage
Addresses on ColdTransaction. It can be seen that most ColdClients have a close
relationship with the Cold Wallets, performing most of their transactions with address
operated by exchanges.

3.3. Provision of funds

A ColdClients address should have zero balance most of the time, so any expense
should be preceded by a deposit made by the exchange. With this observation one should
find at Blockchain deposits made by exchange - probably from Cold addresses - for your
customers. Another pattern that can be found in Blockchain is cross-provisioning: when
a Cold Wallet in a cluster makes deposits in a client address of another cluster. The results
of the search for these patterns in the selected data set are shown in Table 3.

Table 3. Provision of funds occurrences.
Funding Transactions 44,989
Cross provision Transactions 5,733



Figure 7. Fee Distribution.

Figure 8. Frequency of Cold Storage Wallets in ColdTransaction.

4. Discussion
Cold Storage operations, despite being a recommended practice, do not have a standard,
making it difficult to detect them. The use of Cold Storage has an impact on the clustering



process based on current heuristic: the exchanges that manage several addresses create
huge clusters. Comparative analyzes of these cluster with the other Bitcoin users easily
become meaningless. Even when exchanges disclose the address of their cold addresses
for purposes of proof of ownership of Bitcoins and financial health, the cold operating
addresses are still hidden.

The heuristic presented has its validity confirmed by the analyzes: the addresses
and transactions have different behavior of the addresses and transactions sampled.

The analysis of the data set made in Sections 2.2 and 2.3 indicate that some ad-
dresses and transactions were wrongly classified: in Table 2 all addresses are expected
to perform only Full Withdraw transactions. Similarly, in Figure 8 it is shown clients
addresses with fewer transactions with the exchange than expected. We believe that these
scenarios are a consequence of false positives in determining clients addresses or cold
wallets not detected.

In Table 3, the existence of cross-provisioning transactions indicates that some
clusters should be clustered.

The problem of wallets controlled by exchanges to form huge clusters has already
been addressed in the literature (e.g. [Harrigan and Fretter 2016, Ron and Shamir 2013b,
Meiklejohn et al. 2016]) , however without a method to detecting and addressing them.

5. Conclusions

The advance of the adoption of the Bitcoin brought interest in the analysis of Blockchain.
An important step in these analyses is to cluster the addresses in an attempt to identify
a single entity that has ownership over the Bitcoins deposited in them. The widely used
clustering method fails when the addresses are operated by exchanges: they have control
over addresses but not ownership over Bitcoins. This issue is evidenced in Cold Storage
operations, which must be performed periodically by exchanges.

We presented a heuristic that identify such kind of transactions by the size of the
entry, size of the output and the age of the transactions of the entries. The effectiveness
of this heuristic was verified by comparing the characteristics of the selected transactions
and addresses with the Blockchain data.
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