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Abstract. Hash-based signature schemes are a class of post-quantum algo-
rithms that usually consist of hash-trees built upon One-Time Signature (OTS)
solutions. These schemes have small key sizes, efficient processing and are sim-
ple to implement, while their security properties rely basically on the pre-image
or collision resistance of the their underlying hash function. Despite such ad-
vantages, however, they have relatively large signature sizes compared to tradi-
tional signature algorithms. One way of tackling this issue is to reduce the sizes
of their underlying OTS algorithms. In this article, we describe a probabilis-
tic technique that, with negligible processing overhead, allows such reductions.
Namely, up to 12.5% average size reduction can be achieved depending on the
signature’s parameters.

1. Introduction

The area of post-quantum cryptography refers to algorithms that can be executed on clas-
sic computers and, at the same time, resist known attacks made by quantum comput-
ers [Bernstein et al. 2008]. This includes five main families of post-quantum algorithms
and protocols: lattices [Goldreich et al. 1997], error correcting codes [McEliece 1978],
multivariate quadratic systems [Ding and Schmidt 2005], isogenies on supersingular el-
liptic curves[Jao and De Feo 2011], and schemes based on symmetric cryptography prim-
itives in general, such as hash functions [Dods et al. 2005].

The goal of researching such cryptosystems is to face the threat posed by quantum
computing, an area that is evolving increasingly fast [Anthony 2017]. More precisely, if
large-enough quantum computers become available, the security of many classical cryp-
tographic solutions (e.g., RSA [Rivest et al. 1978] and ECC[Koblitz 1987][Miller 1986])
can be bypassed by attackers using Shor [Shor 1999] or Grover [Grover 1996] algorithms.
In a smaller scale, symmetric primitives are also affected by the Grover algorithm: for ex-
ample, the security level of symmetric ciphers drop by half, so brute-force attacks against
k-bit keys take 2k/2 operations instead of 2k ; similarly, the security of k-bit hash functions
against pre-image attacks drop from k to k/2, and against collisions the fall is from k/2
to k/3 [Bernstein and Lange 2017]. Therefore, efficient schemes that can become drop-
in replacements for conventional solutions are required. For symmetric primitives, there
are already natural alternatives, such as replacing AES-128 with AES-256 [NIST 2001],
or SHA-3-256 with SHA-3-512 [NIST 2015]. For asymmetric schemes, however, this is
a challenging issue, in particular because the memory, bandwidth and/or processing re-
quirements of asymmetric post-quantum cryptosystems are usually higher than what is
observed in currently standardized solutions [Bernstein et al. 2008].



Among the aforementioned families of post-quantum algorithms, a particularly
promising area are hash-based signatures [Bernstein et al. 2008]. Algorithms in this cat-
egory are built using one-way hash functions as underlying cryptographic primitive, so
their (quantum and classical) security relies basically on well-known properties of those
primitives, such as collision and pre-image resistance [Dods et al. 2005]. That is because
these algorithms all share the same idea of generating a list of random bit strings as the
private key, then hash those strings one or more times to get the public key. After that,
depending on the message to be signed, the corresponding pre-images are published with
the signature. In addition, hash-based signatures are also quite efficient: besides leading
to small public key sizes, their computational costs depend basically on performance of
the underlying hashing functions, which are processing and memory-efficient algorithms.

Despite this interest, hash-based signatures still face some challenges. One
of its main limitations is the reasonably large signature sizes when compared to
classical digital signature schemes. For example, Winternitz One-Time Signature
(W-OTS)[Merkle 1990], a one-time signature scheme proposed by Ralph Merkle in
1979, had signature sizes around 4 KiB, which is 8x the size of ECC-based multi-
signature schemes such as ECDSA[ecd ]. A more recent one-time signature pro-
posal, W-OTS+ [Hülsing 2013], reduces this size in about half by requiring simply
pre-image resistant hash functions rather than collision-resistant ones. On the other
hand, many-times hash-based signature proposals built upon one-time schemes, such
as XMSS[Buchmann et al. 2011] and SPHINCS[Bernstein et al. ], has signature sizes of
10 KiB and 41 KiB respectively, which remain much larger than even not too compact
classical schemes, such as RSA, for an equivalent classic security level.

Aiming to address this issue, in this paper we describe a novel probabilistic tech-
nique that can be combined with one-time schemes such as W-OTS and W-OTS+ for
reducing the signature size under certain conditions. The proposed approach, called ”clip-
ping”, relies on pseudo-random function (PRF) chaining, so the scheme’s private keys are
generated in two layers instead of a single one. As a result, two or more hash pre-images
that need to be revealed for composing the signature do not need to be explicitly send:
since they can be derived from a single seed, it suffices to reveal this seed. Even though
this is a probabilistic approach whose efficiency depends on the data to be signed, its
overhead in terms of processing cost or memory usage is negligible, so the (potentially
small) gains obtained when it is employed come basically for free.

The rest of this paper is organized as follows. Section 2 gives an overview of
the state of the art in the area of hash-based signature schemes. Section 3 describes our
technique in details. We present the results of our technique in terms of signature size,
processing time, storage required and security in Section 4. Finally, Section 5 concludes
the discussion and presents our final considerations.

2. Hash-based signature schemes: state-of-the-art

As aforementioned, hash-based signatures rely on hard-to-invert hash functions, lead-
ing to quite computationally efficient digital signature schemes [Bernstein et al. 2008].
These functions map data of arbitrary size to a fixed-size output and, to be cryptographi-
cally secure, such outputs should be highly unpredictable. More formally, a cryptographic
hash function H should satisfy three main properties:



• Pre-image resistance: given an image y of H , it is computationally unfeasible to
find a pre-image x such that H(x) = y;

• Second pre-image resistance: given (x, y) such that H(x) = y, it is computation-
ally unfeasible to find a second pre-image x′ satisfying H(x′) = H(x) = y;

• Collision resistance: it is computationally unfeasible to find x and x′ such that
H(x) = H(x′).

Even though these properties are required in a wide variety of scenar-
ios, some hash-based digital signatures schemes (e.g., W-OTS+[Hülsing 2013] and
XMSS[Buchmann et al. 2011]), are designed to eliminate the need for collision resistance
in its internal construction. In other words, a collision-resistant hash function is usually
still required to process the message itself, thus producing the hash value to be signed;
this means that the size of the hash would be 2k bits for a classical security level of k
bits, or 3k for the same security level in a quantum scenario [Grover 1996]. Internally,
however, the signature scheme can use k-bit hash functions for a classical security level
of k bits, and a 2k-bit hash function for k bits of quantum security.

In the following subsections, we discuss one-time signature (OTS) schemes and
many-times signature (MTS) schemes that can be built upon them, as well as some of the
main optimization strategies proposed in the literature for both OTS and MTS.

2.1. One-time Signature (OTS) schemes

Originally, hash-based signature schemes were only One-Time Signature (OTS), i.e., for
each public-private key pair, only one message could be signed. The first publicly known
OTS scheme was the Lamport-Diffie (LD) OTS[Lamport 1979], which was basically a
bit-signing scheme: each bit of the message was signed independently, so it required as
many private and public key elements as the message length. As a consequence, it had
large public and private key sizes, as well as large signatures. In addition, being able
to sign a single message per key pair is not very practical in most real-world scenarios,
since the management of disclosed public keys (e.g., by provisioning digital certificates)
becomes cumbersome [Bernstein et al. 2008].

In 1979, Ralph Merkle proposed a new OTS called W-OTS[Merkle 1990], which
introduces a trade-off between signature size and processing time. W-OTS works by using
hash chains instead of single hashes over the secret key bit strings, and has a adjustable
parameter w, called the Winternitz parameter. This parameter is useful for adjusting the
hash chain length and, thus, the trade-off between signature size and processing time.
More formally, the W-OTS scheme can be described as follows.

Let s be the length of the message digest d to be signed and w the Winternitz
parameter. Compute the parameters L1 and L2 as:

L1 =
⌈
s

w

⌉
, L2 =

⌈
blog2 L1c+ w + 1

w

⌉
, L = L1 + L2.

Let f : {0, 1}n → {0, 1}n be a one-way function and g : {0, 1}∗ → {0, 1}n a cryp-
tographic hash function, where n is the output size of the two functions. Let PRF be a
cryptographically secure pseudo-random function that, on input of a n-bit seed SEEDin,
outputs a random number RAND and an updated seed SEEDout, both with bit length n.



The original W-OTS is a signature scheme SIGN = (GEN, SIG,VER), where:

Key generation (GEN): generates the private key sk = X = (xL−1, · · · , x1, x0)
(pseudo-) randomly, then calculates the public key pk = Y = (yL−1, · · · , y1, y0), where
yi = f 2w−1(xi). In other words, each part of the public key is linked to the corresponding
parts of the private via a (2w − 1)-long hash chain.

Signing (SIG): the signer hashes the message into a fixed-length digest d using the
cryptographic hash function g and calculates the checksum c as

c =
L1−1∑
i=0

2w −mi

where mi are the w-bit blocks of d (e.g. d = mL1||mL2|| · · · ||m1||m0) interpreted as
binary integers. Then, the checksum is appended to the digest and the resulting bit string
is split into L blocks of length w:

d||c = bL−1||bL−2|| · · · ||b1||b0

Each block bi is seen by the algorithm as the binary representation of an integer. The
signature is then σ = (σS−1, σS−2, · · · , σ1, σ0), where σi = f bi(xi).

Signature verification (VER): With the message and the signature σ, the verifier
computes the digest d and the checksum c, and calculates d||c = bL−1||bL−2|| · · · ||b1||b0
just like in the signing operation. Then, the verifier reconstructs the public key Y ′ =
(y′L−1, · · · , y′1, y′0) where y′i = f 2w−1−bi(σi). The signature is accepted only if Y ′ = Y .

Figure 1 illustrates the W-OTS public and private keys, as well as its hash chains.
A pseudo-random function is used to generate all xi of the private key, so in practice the
only information the signer needs to store as its private key is the seed of the generator.

Figure 1. The conventional W-OTS with PRF.

When compared with Lamport-Diffie OTS (LD-OTS), W-OTS leads to smaller
signature sizes at the cost of extra processing, using (2w − 1)-long hash chains to sign w
bits simultaneously. For example, for w = 2, the scheme signs pairs of bits, so processing
each pair takes 0, 1, 2 or 3 hash operations depending on whether the bits to be signed
are 11, 10, 01 or 00, respectively; for w = 3, signing 3 bits would then take 0 to 7 hash



operations for the bit strings 111 to 000, and so on. As a result, a linear decrease in
the signature size results in an exponential growth on the hash chains and, thus, on the
processing times of the signature and verification procedures. For this reason, in practice
the recommended values of the w parameter usually ranges from 1 to 4.

After W-OTS, other authors have introduced many other OTS. One example is
the proposal by BiBa [Perrig 2001], which was the first hash-based signature scheme
that departed from the W-OTS design by incorporating collisions as part of its working
principle. Its advantages included short signature sizes and fast verification times, at the
cost of larger public keys and slower key generation. BiBa was subsequently superseded
by HORS [Reyzin and Reyzin 2002], which is actually a Few-Times Signature (FTS)
scheme: it can be used a few times without degrading too much its security, depending
on the choice of parameters. HORS provides much better signature generation times than
BiBa while maintaining comparable private key, public key and signature sizes, besides
also having faster verification times. Compared to W-OTS, however, HORS received less
attention until recently because, despite having smaller signatures, it leads to larger pub-
lic keys and has one important disadvantage: its public key cannot be derived from the
signature itself, which in principle makes it hard to use HORS in a many-times signature
scheme using Merkle-trees, as discussed in what follows.

2.2. Many-times Signature (MTS) schemes

To be useful in practice, any digital signature solution needs to allow many messages
to be signed with a single public/private key pair. For this reason, modern hash-based
signature proposals build upon OTS schemes to create a Many-Times Signature (MTS)
solution, capable of signing a large (albeit limited) number of messages under the same
public key. The most common approach for this is to rely on Merkle-trees [Merkle 1990],
which were originally proposed for use with W-OTS but can be adopted for use with other
OTS schemes. Basically, a Merkle-tree is a binary hash-tree where the leaf nodes are the
public keys of the one-time signature schemes and, in the inner nodes, the parent node is a
concatenation of its left and right children nodes (Figure 2 shows a Merkle-tree of height
h = 3). With this construct, given an OTS signature, its index and its authentication path,
the root node of the tree can be reconstructed. This effectively reduces all OTS public
keys to a single MTS public key: the root of a binary hash tree. Since the MTS’s private
keys can also be computed from a single seed and a suitable pseudo-random generator,
the resulting public/private key pair requires very little storage.

An MTS scheme using a Merkle-tree works as follows: during key generation,
the underlying OTS’s private and public keys are generated first; then, the public keys
are hashed together in a tree-like fashion, leading to the MTS public key, whereas the
MTS private key is the collection of all OTS private keys. Whenever a message needs
to be signed, the signer employs an OTS key pair that has never been used before. Veri-
fiers can then check the OTS signature as long as they also receive the OTS’s index and
authentication path in the Merkle tree.

Even though a single Merkle-tree construction can be employed to allow the gen-
eration of an arbitrarily high number of signatures, the resulting scheme would not scale
well because increasing the tree height increases the number of underlying OTS exponen-
tially, which results in a costly private key generation process for the entire MTS. For
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Figure 2. A Merkle-tree with h = 3 as a MTS: the individual OTS public keys
are hashed (”H”) together in a binary tree structure until the is obtained. High-
lighted boxes represent the authentication path for the highlighted OTS public
key (needed o reconstruct the MTS public key from the signature).

example, an electronic messaging application that requires generating millions of signa-
tures every day would require an MTS with many millions of underlying OTS. All those
OTS public keys would have to be built during the key generation phase, since the root of
the Merkle tree can only be computed if all of its leaves are provided. Hence, the cost of
generating the MTS public key supporting 2n signatures would be O(2n): it corresponds
to the generation of keys for 2n individual OTS, plus approximately 2n hash operations
for building the Merkle-tree. In practice, that could lead to performance hits.

To remedy this, CMSS[Buchmann et al. 2006] proposes to decompose the origi-
nal Merkle-tree into many layers of smaller trees, which are joined by intermediate OTS.
In other words, the leaves of upper layer trees contain OTS for signing roots of lower
layer trees, similarly to certificate chains in a Public Key Infrastructure (PKI). This starts
from the single tree in the topmost layer and goes down until the bottom layer trees,
whose leaves are the OTS for signing actual messages. This construction has the advan-
tage of requiring only the topmost tree to be generated during the key generation phase.
As a drawback, it increases the overall signature size, because the signature for messages
need to contain the signatures that authenticate the intermediate tree roots as well. This
approach is incorporated in many modern MTS designs aimed at practical applications,
such as XMSSMT[Hülsing et al. 2013].

2.3. Optimizations: signature size, processing time, and statefulness

As mentioned in Section 1, one of the main problems with hash-based signature schemes
is their signature sizes, which are usually much larger than ECC-bases schemes even when
we consider only the OTS schemes (i.e., without considering the overhead from revealing
intermediate nodes of the Merkle tree in MTS schemes). One proposal for addressing
this issue is to eliminate the need for collision-resistance, but requiring only pre-image



resistance. In practice, to attain a security level of k-bits, this approach allows the adoption
of k-bit hash functions (instead of 2k bits) in a classical setting, or 2k-bit hash functions
(instead of 3k bits) in a quantum setting, thus leading to more compact signatures. This
is the case of W-OTS+ scheme, an improvement over W-OTS that uses different random
bit-masks for each hash function call, thus removing the need for collision-resistant hash
functions. To accomplish this, the hash functions in the hash chains linking private and
public keys are replaced by a ”chaining function”, which consists basically in XORing
the input with a random chain level mask before calculating those functions.

Another general optimization proposed over pioneering hash-based signature
schemes refers to the encoding of the messages to be signed. For example, in
[Steinwandt and Villányi 2008] the authors propose that messages should first be hashed
together with a counter r ≥ 0, similarly to what is suggested in [Perrig 2001]. The goal
is to obtain a hash value d satisfying certain conditions, namely that there must be a
maximum and minimum number of non-overlapping runs of consecutive 0s and 1s, each
of which having a maximum length `. Then, d is encoded into hash chains consider-
ing the run-lengths, not the integer values of each group of w bits. For example, if d
starts with 11110011, the signature part corresponding to those bits would be given by
(H`−4(x0), H

`−2(x1), H
`−2(x2)), where (x0, x1, x2) are parts of the private key and H is

a cryptographic hash function. The goal in this case is to speed up the verification time
at the cost of longer signature generation times. This happens for two reasons: first, the
signer needs to find a suitable counter r for satisfying the scheme’s constraints; second,
since short runs appear more often than long runs, the signer ends up computing a larger
portion of the hash chain that links the private key xi to the public key yi (i.e., the number
of hash calls at the signer is closer to `, whereas at the verifier it is closer to 0).

Finally, a somewhat orthogonal concern with hash-based signatures is that they
lead to stateful systems, i.e., the signer must keep track of used keys to prevent reuse
[Bernstein et al. ]. After all, since most MTS schemes are built over OTS schemes, their
security relies on the fact that no key is used twice, since that would fatally break the
security of the system (e.g., allowing signatures to be forged). One of the few schemes
in the literature that addresses this problem is SPHINCS [Bernstein et al. ], a stateless
hash-based signature solution that relies on a large hyper-tree structure with HORST,
a variant of the HORS few-times signature scheme. The price paid by SPHINCS for
its statelessness, however, is having even larger signatures than its stateful counterparts:
about 41 KB for SPHINCS-256, which provides 128 bits of quantum security.

3. Compacting signatures with the Clipping-tree
Aiming to allow shorter signatures, in this section we describe a novel technique that
builds upon the manner by which private keys are usually generated from a seed in hash
based schemes. Specifically, most OTS hash-based signature schemes use a single layer
of pseudo-random numbers generated from a seed, using the resulting xi as the private
key (see Figure 1, which shows this approach for the W-OTS scheme). Then, during sig-
nature generation, xi is sometimes revealed directly, whereas other times what is revealed
is f j(xi) for some j. The basic idea of the hereby proposed ”clipping technique” is to
leverage on situations where consecutive parts of the private key (say, xi and xi+1) would
be naturally revealed. In such cases, we can reveal a single piece of information that allow
the generation of both xi and xi+1, thus compressing the total signature size. This is ac-



complished by using two layers of pseudo-random functions to generate when computing
the scheme’s private keys. As such, the technique applies to W-OTS+, W-OTS and any
other OTS that relies on pseudo-random generators for deriving secret values that may be
revealed as part of the signature itself.

Figure 3. Our improved W-OTS scheme with PRF, where x2i+1 = seedi ⊕ x2i. For
example, x1 is generated by calculating seed0 ⊕ x0.

Figure 3 illustrates the proposed approach, using W-OTS as the base scheme (since
it is simpler to explain). In a nutshell, the main modification on the scheme lies in the fact
that the OTS’s private values xi are not derived directly from a seed. Instead, a master
seed (denoted seedM ) is employed in the generation of a single layer of intermediate seeds
seedi, each of which is subsequently employed for generating pairs of private values x2i
and x2i+1. Then, whenever a signature should reveal those pair of private values sharing
the same lower layer seed, this seed is revealed in their place.

More formally, still using W-OTS as basis, the hereby proposed clipping technique
can be described as follows. Given n, w, f , g and PRF as defined in the W-OTS scheme,
calculate L1, L2 and L also like in the original W-OTS. The resulting signature scheme is
the triple SIGN = (GEN, SIG,VER), where:

Key generation (GEN): Use two layers of pseudo-random sequences to generate
the L pseudo-random integers (x0, · · · , xL−1). For the first layer, the user selects an n-bit
integer as the master seed seedM (the private key of the OTS). Using that seed, generate
the first layer of n-bit pseudo-random values seedi, for 0 ≤ i < L/2. Then, for the
second layer, generate the private value x2i as PRF (seedi), and its companion private
value x2i+1 = seedi ⊕ x2i. As a result, the second layer contains the private values X =
(xL−1, · · · , x1, x0), from which each part of the public key pk = Y = (yL−1, · · · , y1, y0)
are computed as yi = f 2w−1(xi), as usual.

Signing (SIG): The signer calculates

d||c = bL−1||bL−2|| · · · ||b1||b0

and each block bi is interpreted as the binary representation of an integer, just like in the
W-OTS scheme. The difference to W-OTS, however, is that instead of processing each



block of d||c separately, they are processed two blocks at a time, either sequentially or in
parallel. More precisely, for each pair of blocks b2i and b2i+1, where 0 ≤ i ≤ L/2, if
either bi or bi+1 is non-zero, the usual hashing chain is used: f b2i(x2i) and f b2i+1(x2i+1)
are published with the signature, and the signer then proceeds with the next two blocks
b2i+2 and b2i+3. However, if both b2i and b2i+1 are sequences of zero bits, the shared
seed in the lower layer is published instead of f b2i(x2i) and f b2i+1(x2i+1) and the signer
proceeds with the next two blocks b2i+2 and b2i+3. The signer repeats the same procedure
for all pairs of blocks until the entire d||c is processed. The resulting signature σ =
(σS−1, σS−2, · · · , σ1, σ0) is sent alongside the message. Note that, with this technique, the
signature can have variable length depending on the message to be signed.

Signature verification (VER): With the message and the signature σ, the verifier
computes the digest d and the checksum c, and calculates d||c = bL−1||bL−2|| · · · ||b1||b0
just like in the original verification operation. The verifier then proceeds considering
pairs of blocks, which can be processed either sequentially or in parallel. For a sequential
verification, let i = 0 and k = 0 be indices for the blocks from d||c and from the signature
σ, respectively. For each pair of blocks b2i and b2i+1 in d||c, where 0 ≤ i ≤ L/2, if either
block is non-zero the verification is done as usual, by evaluating y′2i = f 2w−1−b2i(σk) and
y′2i+1 = f 2w−1−b2i+1(σk+1); the verifier then proceeds to the next two blocks, updating the
i and k indices by making i = i + 2 and k = k + 2. However, if both b2i and b2i+1 are
zeros, the verifier first calculates x′2i = PRF (σk) and x′2i+1 = x′2i ⊕ σk, then calculates
y′2i = f 2w−1(x′2i) and y′2i+1 = f 2w−1(x′2i+1); then, i and k are updated by i = i + 2 and
k = k + 1, since a single block from the signature was used to process two blocks from
d||c. The verifier repeats this process until all blocks have been processed; if this process
results in exactly L values (y′0, · · · , y′L−1) and Y ′ = (y′0, · · · , y′L−1) = Y , the signature is
valid; otherwise, it is invalid.

A parallel verification follows an analogous process: (1) start by identifying pairs
of blocks b2i and b2i+1 from d||c that are both zeros, thus learning the indices k of blocks
from the signature that cover those pairs of blocks; (2) compute the corresponding x′2i =
PRF (σk) and x′2i+1 = x′2i⊕σk; and finally (3) proceed with the usual verification process,
checking whether y′i = f 2w−1−bi(σi) = yi for the blocks not affect by the previous steps,
and whether y′i = f 2w−1(x′i) = yi for the affected blocks.

As a simplified example, suppose the digest of a message to be signed is d =
00101100 — here the checksum is omitted for the sake of simplicity, but it would
need to be included in the message and signed as well. Using w = 1, the private
key would be X = (x0, x1, x2, x3, x4, x5, x6, x7). In the traditional W-OTS scheme,
the signature would include all eight xi hashed zero or one time, thus leading to σ =
(f 0(x0), f

0(x1), f
1(x2), f

0(x3), f
1(x4), f

1(x5), f
0(x6), f

0(x7)). With proposed clipping
technique, however, there are two pairs of blocks that are both zeros: the first (b0 and
b1) and the last (b6 and b7) one. Therefore, the corresponding seeds are published, so
the resulting signature becomes σ = (seed0, f

1(x2), f
0(x3), f

1(x4), f
1(x5), seed3). In

this particular case, the signature becomes 25% shorter compared to the original W-OTS
scheme (again, without taking the checksum into account for the sake of simplicity).



4. Analysis
In this section we evaluate the proposed clipping technique considering the resulting sig-
nature size, processing time, and underlying security, assuming it is applied to W-OTS+
or W-OTS. In summary, we show that the (probabilistic) reduction in signature size is at-
tained with negligible performance overheads and no security impacts to those schemes.

4.1. Signature size
As described for W-OTS in Section 2.1, we assume that the hash-based signature scheme
uses a PRF for generating the secret n-bit values xi from a seed, which plays the role
of the private key. The message to be signed is converted into the bit-string d||c, with L
blocks of w bits, where each block is interpreted as an integer from zero to 2w − 1. In
this scenario, the message digest d follows a uniform distribution, since this is a necessary
condition for any secure cryptographic hash function; similarly, the checksum c obtained
from the uniformly distributed blocks from d is also expected to be uniformly distributed.
Therefore, all block values (from 0 to 2w−1) are equally likely, and the probability of one
w-bit block from d||c being filled with zeros is 1

2w
, whereas the probability of two adjacent

blocks being both zero is 1
22w

.

In our scheme, due to the way the pseudo-random number layers are created, any
two adjacent blocks b2i and b2i+1 in d||c are signed using secret values x2i and x2i+1

that share the same seed. Therefore, the whole message to be signed can be seen as a
concatenation of two-block units, and the analysis of how much data is omitted from
the signature when the seed is revealed instead of each x2i and x2i+1 gives the overall
signature size reduction. For each two-block unit, there are two possibilities: if both
blocks contain a zero value (i.e., with probability 1/22w), then the contribution to the
signature is a single n bit integer, the lower layer seed; otherwise (i.e., with probability
1 − 1/22w), two n-bit strings are published, adding 2n bits to the signature. The average
bit-length of each two-block unit when the clipping technique is applied is, thus:

AvgLen = 2n× 22w − 1

22w
+ n× 1

22w
=

22w+1 − 1

22w
n

The savings when compared with a regular, 2n-bit unit can be calculated as:

SAVINGS =
2n− AvgLen

2n
=

1

22w+1

Finally, since the whole signature is just concatenations of independent two-block
units, the savings in terms of signature size is equivalent to the savings for each unit.
For n = 256 bits and w = 1, for example, we have SAVINGS = 12.5%. Note that the
savings decrease exponentially with w, so smaller values of w lead to better compression.
This is illustrated in Table 1, which shows the average savings for different values of w.
Given its probabilistic nature, however, in practice the clipping technique may be useful
for compressing signatures even for w ≥ 3, depending on the actual data to be signed.

4.2. Processing time
In terms of processing, the proposed clipping technique affects basically the generation of
the secret values xi from a private key seedM , either during the GEN and VER operations.



Table 1. Average signature size for the original W-OTS+ and the ”clipped”
W-OTS+, obtained with the proposed approach, depending on the w parameter.
We assume a 256-bit (classical) security level.

w
Signature Size Average Savings (s)Original W-OTS+ ”Clipped” W-OTS+

1 8192 bytes 7168 bytes 12.50%
2 4096 bytes 3968 bytes 3.13%
3 2731 bytes 2710 bytes 0.78%
4 2048 bytes 2044 bytes 0.20%

Even though the two-layer construction may appear to lead to a less efficient GEN than
the original, single-layered approach, the fact is that both perform the same number of
PRF calls per xi. More precisely, as observed in Figure 1, each xi takes one call to the
PRF, whereas the clipping technique shown in Figure 1 takes two calls to the PRF plus
one XOR operation for each pair (x2i, x2i+1). Since XOR operations have a negligible
cost, both approaches end up being similar in terms of processing time.

The VER operation, on the other hand, would require one extra PRF call for each
pair of blocks that can be ”clipped”. Assuming the same cost for PRF calls and hash func-
tion calls, the gains in terms of signature size translate to an equivalent overhead in terms
of processing for w = 1: where two calls to the hash function would be made to compute
(y′2i, y

′
2i+1) from (σ2i, σ2i+1), there is an extra call to the PRF (i.e., a 50% overhead) to

recover (x′2i, x
′
2i+1); in this case, a pair of n-bit blocks is replaced by the corresponding n-

bit seed (i.e., a 50% saving). For larger values of w, on the other hand, this extra PRF call
becomes less pronounced when compared to the 2·(2w−1) hash function calls required to
compute y′2i and y′2i+1. Hence, albeit the signature size gains obtained drop exponentially
with w, so does the processing overhead, thus allowing interesting trade-offs.

As a final remark, another aspect of the proposed scheme refers to parallelism.
Specifically, W-OTS+ and W-OTS is such that, with L or more cores, one could compute
all values of xi in parallel using a PRF. In comparison, in our proposal only half of the
values of xi can be computed simultaneously (the even ones), since the other half (the odd
ones) is dependent on the former. Still, the performance impact is relatively minor, as it
only adds a constant processing overhead (namely, one PRF call) in the processing flow
when compared to the fully parallel approach.

4.3. Security

The overall security of the clipping technique is inherited from the hash-based signature
scheme to which it is applied. After all, except for the manner by which the private key
seedM is processed for generating the secret xi, our proposal does not change anything on
the signature scheme itself. Therefore, the main security aspect that needs to be assessed is
whether the proposed two-layer construction reveals any information it should not reveal
to attackers. In what follows, we show that this is not the case.

First, note that seedi is only explicitly revealed when both x2i and x2i+1 need to be
public anyway, i.e., when b2i and b2i+1 are zeros. If only x2i = PRF (seedi) is revealed,
on the other hand, its companion x2i+1 = seedi ⊕ x2i cannot be obtained by attackers;
after all, seedi acts as a one-time pad to protect the secrecy of x2i+1, whereas computing



seedi from x2i requires inverting the PRF. An analogous argument applies to the task
of computing x2i when x2i+1 is disclosed, since by symmetry seedi acts as a one-time
pad for x2i = x2i+1 ⊕ seedi. Finally, when neither x2i or x2i+1 are disclosed, but rather
fα(x2i) and fβ(x2i) for some α, β > 0, their secrecy remains protected by the pre-image
resistance of the hash function f , as usual. Therefore, we can conclude that the clipping
technique does not bring any negative impact in terms of security.

4.4. Proof of concept
A proof of concept implementation was developed in C language using the OpenSSL
library for the SHA256 hash function (n = 256 bits and d = 256 bits). It was com-
piled with the usual -O2 flag without any special hardware optimizations. Ten thousand
KeyGen-Sign-Verify tests were performed in an Intel Core i5 750 machine with 6GB of
RAM, which produced the results summarized in Figure 4. This figure shows that, for
w = 1, signing was about 6% faster when using the technique, although the verification
was about 14% slower. This occurs because, with the proposed technique, some PRF
calls are moved from the signing operation to the verification operation. Other than that,
all differences were well within their standard deviations, which shows that the smaller
signature sizes obtained with the technique have a low impact in terms of performance.
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Figure 4. Summary of the performance comparison between W-OTS and W-OTS
with the clipping technique. The standard deviation is shown in the error bars.

5. Conclusion
With the growing interest and investments in quantum technology by governments and
private corporations, large scale quantum computers are growing closer to reality every
year. This motivates the search for post-quantum cryptographic algorithms that can re-
place traditional schemes based on the (elliptic) discrete logarithm or number factoriza-
tion, which would be vulnerable to attacks in a quantum scenario. Among the many
existing proposals, hash-based digital signature schemes are quite promising, in particu-
lar due to their small public/private key pairs and to the fact that their security builds upon
well-known properties of hash functions.



In this article, we propose a novel approach that uses two layers of PRFs when
generating public keys from private keys. The resulting clipping technique enables the
compression of signatures generated from state-of-the- art hash-based OTS schemes, such
as W-OTS and W-OTS+, as well any MTS built upon them (e.g., XMSS and SPHINCS).
The technique is probabilistic, meaning that the actual compression factor depends on
the data to be signed; namely, one can obtain better compression rates for data where
pairs of w-bit blocks processed by the OTS are filled with zeros, where w is the scheme’s
Winternitz parameter. On average, our proposal can save roughly 12.5% in the signature
size whenw = 1, whereas the savings are lower for larger values ofw. Nevertheless, since
the resulting processing overheads drop for larger w, in practice it provides flexibility
for signers, who can choose whether or not to compress the signature depending on the
most constrained resource (bandwidth or processing) at verifiers. Therefore, the proposed
clipping technique further advances the practical adoption of hash-based signatures in the
post-quantum era. To the best of our knowledge, this is the first proposal in the literature
that takes advantage of the private/public key generation process to reduce hash-based
signature sizes.
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