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Abstract. Modern computer environments such as smartphones are increas-
ingly susceptible to malware, a cause of concern regarding their trustworthi-
ness. Nevertheless, cryptographic algorithms are still necessary in such envi-
ronments, which raises the need for a secure white-box design and implementa-
tion of such algorithms. Dedicated white box block ciphers are encryption algo-
rithms designed to operate in untrusted environments. In this paper we present a
fast vectorized implementation of two families of dedicated white-box block ci-
phers, SPACE [Bogdanov and Isobe 2015] and WEM [Cho et al. 2017], for the
ARM Cortex-53 processor, using the NEON vector instruction set. To the best
of our knowledge, the implementations outlined in this paper currently have the
best reported performance for these dedicated ciphers in the white box context.

1. Introduction
In the realm of cryptography, the traditional black box threat model assumes that the end
points of a communication channel are secure, and only the channel itself is vulnerable to
attackers. With the increased reliance on mobile computer systems such as smartphones,
this model no longer captures all viable threats encountered in practice. In a white box
threat model, an attacker is assumed to have complete access to the full implementation
and the execution environment of a cryptographic algorithm.

White box cryptography concerns the design and secure implementation of cryp-
tographic algorithms running in untrusted environments. The concept was introduced
in 2003 [Chow et al. 2003], exemplified in a software implementation of the AES ci-
pher which attempts to obfuscate a secret key. This proposed implementation was
shown to be susceptible to practical attacks [Billet et al. 2005], and every new pro-
posed white box implementation of the AES [Karroumi 2011] was also successfully at-
tacked [Lepoint et al. 2014, Bos et al. 2017].

These attacks have prompted efforts to design new symmetric ciphers, which take
into account white-box-model threats from the start. Most of current proposals focus
not only on ensuring that discovering the protected secret key is infeasible, but also on
mitigating possible code lifting attacks, in which the attacker extracts the cryptographic
implementation itself, to use it as an effectively larger key, duplicating the functionality
of the cipher.

Bogdanov et al. [Bogdanov and Isobe 2015] introduced the SPACE family of ded-
icated block ciphers, with a focus on using proven standard cryptographic primitives to



guarantee their security. In another proposal [Cho et al. 2017], the WEM family of ci-
phers is presented, based on an Even-Mansour scheme, where the secret key layers are re-
placed by secret incompressible S-boxes. Existing performance measures of these ciphers
cannot be directly compared since different computer platforms were used. In addition,
there is no ARM implementation of these ciphers in the public domain.

In this paper we present results regarding the performance of the SPACE and the
WEM family of ciphers, particularly on the software implementation of such ciphers us-
ing the ARMv8 platform and its cryptographic instructions.

1.1. Related Work and Organization
There have been several proposals of new white box block ciphers other than SPACE and
WEM, but few provide reliable performance comparisons between one another.

The first dedicated white box cipher was proposed in 2014 [Biryukov et al. 2014].
Its design was based on an ASASA structure, and its security relied on the hardness of
decomposing its layers. Subsequent cryptanalysis revealed possible vulnerabilities in this
structure [Biryukov and Khovratovich 2015]. The SPNbox [Bogdanov et al. 2016] fam-
ily of block ciphers is presented as an evolution of the SPACE design, replacing its Feis-
tel structure by a Substitution-Permutation network with incompressible S-boxes. The
WhiteBlock block cipher [Fouque et al. 2016] is similar to the WEM design as it uses a
standard block cipher as a public permutation between each S-box layer, differing mostly
on how the S-box layer is constructed. Its main contribution is in providing a more rigor-
ous proof of its security goals when compared to other dedicated ciphers.

In the context of ARMv8 cryptographic implementations, most works fo-
cus on standard block ciphers and modes of operation, such as the AES and the
GCM [Gouvêa and López 2015].

In Section 2, some preliminary concepts such as incompressibility are introduced.
Section 3.1 gives an overview of the SPACE family of block ciphers, while Section 3.2
describes the WEM family of block ciphers. Section 4 details the implementation aspects,
while Section 5 presents the performance comparisons between the implemented ciphers.

2. Preliminaries
A symmetric encryption scheme is a tuple E = (K,M, C, G,E,D), where K,M and
C are the set of possible keys, plaintexts (messages) and ciphertexts, respectively, while
G,E and D are the functions for key generation, encryption and decryption, respectively.
For any k ∈ K,m ∈ I, D(E(m, k), k) must be equal to m. Note that we alternatively
use E(m) or Ek(m) for denoting encryption (similarly for decryption), when the context
is clear. A white box compiler CE , takes a symmetric encryption scheme E , a key k ∈
K, a nonce r (optionally) and returns a compiled white box program CE(k, r) = [Ek]
(respectively [Dk] for the decryption).

Any secure compiler must strive for the main security goal of unbreakability:
given a program [Ek], the key k embedded in [Ek] must not be discovered efficiently by
any adversary. Once such goal is obtained, additional security goals may be addressed.
Among the most important, is the notion of incompressibility, which aims to mitigate
code lifting attacks. In [Bogdanov and Isobe 2015], the authors use the term space hard-
ness to refer to such goal. They define weak and strong space hardness. In the weak space



hardness security notion, an adversary must not be able to encrypt or decrypt messages
at will with less than M bits of the compiled cipher’s code, while in the strong security
notion, the adversary must not encrypt or decrypt any messages even when having access
to M bits of the code. All ciphers studied in this work use the concept of weak space
hardness as their main incompressibility guarantee; we present a formal definition of this
notion below.

Definition 1 (Weak (M,Z)−space hardness [Bogdanov and Isobe 2015].). Given an en-
cryption scheme E , a white box compiler CE is weakly (M,Z)−space hard if it is infeasi-
ble for an adversaryA to encrypt (or decrypt) a randomly drawn plaintext (or ciphertext)
with probability greater than 2−Z , given access to M bits from [Ek] (or [Dk]).

Note that the dedicated white box ciphers contemplated in this paper (and all cur-
rent proposals on the literature) focus solely on these two security goals, and thus do not
achieve other possible notions such as one-wayness and traceability.

3. Dedicated Ciphers
In this section, we describe two families of dedicated white-box block ciphers. We chose
to implement the SPACE and WEM family of ciphers due to their clear difference in
approach. While the SPACE design uses a single lookup table in a Feistel structure, the
WEM proposes a design with numerous smaller S-boxes, each implemented as a separate
lookup table. Other possible ciphers, such as the WhiteBlock, have a similar design to the
WEM family, where S-box layers alternate with permutation layers.

3.1. SPACE

The SPACE family of block ciphers was one of the first proposed dedicated ci-
phers [Bogdanov and Isobe 2015]. It adopts a conservative design, ensuring that its key
recovery and extraction security relies on the security of an underlying standard block
cipher in the black box model. It uses a Feistel network construction, where a round func-
tion is applied to a portion of nin bits of the full 128-bit input. The value of nin determines
the different instantiations of the cipher. The designers recommend instantiations with nin

equal to 8, 16, 24 or 32.

In a SPACE-nin encryption, the state of the cipher is updated by applying the
Feistel round function to the first nin-bit line of the state, and XORing the (n − nin)-bit
output with the other lines, where n is the block size. The result is then concatenated
with the first line. This is repeated for a number R of rounds. Let l = n

nin
and nout =

n−nin. The transformation for round r = 0, 1, . . . , R is given by the expression Xr+1 =
(Fnin

(xr
0)⊕ r⊕ (xr

1||xr
2|| . . . ||xr

l−1))||xr
0, where || is the concatenation operator and Fnin

:
{0, 1}nin → {0, 1}nout is the Feistel function computing Fnin

(x) = msbnout(Ek(0||x)).
Here, msbi(x) denotes the i most significant bits of x and Ek represents a standard block
cipher (e.g. AES-128).

Figure 1a shows the Feistel round structure, while Figure 1b details an instantia-
tion using AES-128 as the round function. The dashed line encloses the computation of
the round function, which is performed by a lookup table in the white box environment.

In the white box implementation of the cipher for a fixed key k, the round cipher
function is implemented as a {0, 1}nin → {0, 1}nout lookup table. As a result, the key
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Figure 1. In (a), the round r transformation for SPACE-16, operating on
(xr

0, . . . , x
r
7). In (b), the round r Feistel function for SPACE-16, F r

16, is
shown instantiated with AES-128 as the block cipher Ek.

k becomes enmeshed with the pseudo-random output of the block cipher into a lookup
table of size 2nin · nout bits. As a consequence, the table size varies greatly depending on
nin. For SPACE-8, a total of 28 entries of 14 bytes are needed, while for SPACE-32 the
lookup table requires 232 × 12 bytes.

The recommended number of rounds differs depending on nin. For SPACE-8, the
authors recommend at least 300 rounds, while the recommended number for the other
sizes is at least 128 rounds. This elevated number of rounds is necessary to ensure that
linear and differential cryptanalysis are infeasible, as well as compression attacks. The
difficulty of mounting a compression attack is related to the space-hardness of the cipher.
With access to a portion M of the table entries, an attacker is only able to successfully en-
crypt a plaintext with probability ( M

2nin
)R. This incompressibility makes code lifting more

difficult for an attacker in the bounded-retrieval attack model [Bogdanov et al. 2016], par-
ticularly for larger instances of SPACE, such as SPACE-32, where the larger lookup table
makes code lifting much harder.

3.2. WEM

The White Box Even-Mansour (WEM) [Cho et al. 2017] family of specialized white box
block ciphers is based on the well known iterated Even-Mansour construction. The
encryption function is defined as EMk0,k1(x) = k1 ⊕ P (k0 ⊕ x), for x ∈ {0, 1}n,
where k0 and k1 are independent n-bit secret keys, P is an n-to-n permutation and x
is an n-bit plaintext. A known-plaintext attack on this construction has Ω(2/n) work-
load [Dunkelman et al. 2012], defining the security level of the EM cipher to be 22/n. To
improve it, iterations (or rounds) of the construction are proposed. For a variant of this
cipher using the same key in all rounds (i. e., k0 = k1 = . . . = kt), no attack faster than
2n/n is known, even for a 2-round EM (2EM).

The WEM algorithm replaces key additions using incompressible, key dependent
S-boxes. Several parameters are used to make the algorithm more flexible: n denotes the
block size of the cipher, m denotes the size of the incompressible S-box, requiring that
m|n. For the iterated white-box EM constructions we use the following notation: t is the



number of rounds, E is an underlying block cipher (e. g., AES) and d is the number of
times that the underlying block cipher is applied using a key composed of all-zero bits.
Figure 2a illustrates WEM when n = 128, m = 16, t = 2, E = AES-128, d = 5. The
main secret key k is embedded into the S-boxes. To generate them, a secure environment
must be used to execute two steps: a long sequence of random bits is generated depending
on the secret key k; then, the sequence is used as a way to provide random numbers to
a shuffler (such as the Fisher Yates algorithm [Knuth 1998]) which permutes a sequence
(0, 1, . . . , 2m − 1) to form an m-to-m S-box. Figure 2b illustrates the shuffling method.
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Figure 2. The full instance WEM(128, 16, 2, AES-128, 5) is shown in (a), while the
16-to-16 S-box generation is shown in (b).

The performance and the security of this cipher in the black box model are based
in its EM construction. Literature on the iterated EM construction suggests that, in the
black box model, the security level is close to 2n [Chen et al. 2014]. In the white-box
model, the workload to extract the key to generate the S-boxes is reduced to breaking the
CTR mode of operation. Even if an adversary extracts all the S-boxes and reverses the
shuffling, only a few pairs of plaintext and ciphertext will be known, which are not useful
for recovering the original secret key.

The authors of WEM recommend using the WEM16 cipher, which is WEM using
parameters n = 128, m = 16, t = 12, E =AES-128 and d = 5. This instance requires
104 S-boxes, each having 216 entries of 16 bits. As an alternative smaller sized instance,
the WEM8 cipher using the parameters (128, 8, 12,AES-128, 5) can also be utilized.

4. Implementation
In this paper, we focus on the popular 64-bit ARMv8-A architecture, which is imple-
mented by the Cortex-A series of processors. More specifically, our implementation re-
quires processors with support for ARMv8 NEON instructions, as well as the optional
ARMv8 Cryptographic Extension. This extension adds new instructions that accelerate



the Advanced Encryption Standard (AES) encryption and decryption, among other cryp-
tographic primitives.

For the SPACE family of dedicated ciphers, we implemented SPACE−(8, 300)
and SPACE−(16, 128) in the white box context, where the first parameter indicates the
input size of the Feistel round function, and the second is the number of rounds. The
round function was transformed into a lookup table computing a full AES-128 encryption
of 8 and 16 bits for SPACE-8 and SPACE-16, respectively.

For the WEM family of ciphers, we implemented two versions, WEM-16 and
WEM-8, only differing in their S-box size: while WEM-8 has sixteen 8-to-8 S-boxes,
WEM-16 has eight 16-to-16 S-boxes. Both ciphers use a block cipher of 128 bits and
12 outer rounds. We used 5 rounds of the AES-128 block cipher with zero key as the
public permutation applied in each round, for a total of 12 × 5 = 60 AES-128 rounds
for an encryption operation. We implemented the AES-128 standard cipher using the
ARMv8 Cryptographic Extension instructions, and thus operated as much as possible in
the NEON registers environment.

For comparison purposes, we also implemented an unoptimized white box ver-
sion of the AES-128 cipher (WB-AES), based on its original proposal [Chow et al. 2003]
without external encodings, as well as our own black box ARMv8 NEON implementation
of the AES-128 block cipher (named BB-AES).

In Table 1, we compare the minimum theoretical size of each implementation and
its code size in our implementation. Note that these sizes refer only to the encryption
functionality of each cipher. All dedicated ciphers except for the WEM-8 cipher have
their (weak) space hardness presented in their respective papers. For the WEM-8 cipher,
the space hardness was calculated using the analysis present in Section 4.2 of Cho et al.’s
paper.

Table 1. Space hardness and total table size of implemented ciphers.

Cipher Rounds Total tables size (bytes) Space Hard. (bytes) Code size
SPACE-8 300 28 × 15 = 3840 (960, 128)-hard 4164
SPACE-16 128 216 × 14 = 917504 (229376, 128)-hard 1048644
WEM-8 12 28 × 16× 13 = 53248 (241, 117)-hard 53912
WEM-16 12 216 × 8× 13× 2 = 13631488 (29737, 112)-hard 13631828
WB-AES 10 770048 — 832304
BB-AES 10 — — 88

5. Results
In this section we present the performance measures of all implemented dedicated ciphers.
Tests were executed on a machine with a Cortex-A53-based quad-core processor clocked
at 1.15GHz. This CPU features 32KiB of L1 cache memory for instructions and 32KiB
of L1 cache memory for data for each of its cores, plus 512KiB of L2 cache memory.
This board is equipped with with 2GB of RAM. On the software side, the Linux kernel
version 3.10.107 is used. The ciphers were implemented in C, using NEON intrinsics
where applicable, and compiled with gcc version 5.4.0 with the -O3 flag enabled.

For each white box cipher, we compiled 16 different instantiations and encrypted
256 blocks of size 128 bits. In Table 2, we present the average number of cycles



per byte (cpb) for our implementations and (where applicable) the measurements al-
ready present in the literature. For SPACE, the authors of the original measurements
present in the last column used a Samsung Exynos 7420 CPU with a 2.1GHz Cortex-
A57 core [Bogdanov et al. 2016] and, for WEM16, in a 32-bit Intel Broadway platform
clocked at 2.4GHz [Cho et al. 2017].

Table 2. Number of table lookups and measured performance (cycles per byte) of
the implemented dedicated ciphers.

Cipher Table lookups Average performance (cpb) Original performance (cpb)
SPACE-8 300 248.29 409.57 [Bogdanov et al. 2016]
SPACE-16 128 138.66 377.51 [Bogdanov et al. 2016]
WEM-8 208 64.11 —
WEM-16 104 55.78 96.8 [Cho et al. 2017]
WB-AES 2976 15503.21 —
BB-AES — 2.5 —

While the SPACE cipher has a much greater space hardness than the WEM family
of ciphers, it comes at a great performance cost. For both SPACE-8 and SPACE-16, the
performance is dominated by the number of table lookups executed, whereas for the WEM
family of ciphers, the public permutation can be greatly optimized on specific hardware
platforms. This indicates that the development of dedicated ciphers which are able to
maintain a good space hardness guarantee, while relying less on lookup tables, might
bridge the still significant gap between industry practice and the academic literature.

Although our results are not directly comparable to the ones reported in previ-
ous literature, the achieved results indicate that such dedicated ciphers are suitable for
optimizations which explore NEON vector instructions. As possible research directions,
a larger number of these dedicated ciphers should be efficiently implemented and com-
pared, especially the SPNbox white box cipher, which reports better performance than
both SPACE and WEM ciphers. Furthermore, none of these ciphers were compared when
taking in consideration modes of operation, and thus some designs might reveal better
integration and performance in this context. Finally, testing bigger sized ciphers such as
SPACE-32 and a version of WEM with 32-to-32 S-boxes might lead to new optimization
options.
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