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Abstract. AVX512 is the newest instruction set on the Skylake-X that extends
the number of registers and provides simultaneous execution of operations over
register vectors of 512 bits. This work presents how the AVX512 instruction
set can be exploited to develop a fast software implementation of the Secure
Hash Algorithm-3 (SHA-3) family. We achieved a speedup of around 30% when
compared with x64 and AVX2 implementations. We also present a parallel im-
plementation of two eXtendable-Output Functions (XOFs), called SHAKE128
and SHAKE256, using AVX512 that are about 5.22× faster than a single mes-
sage implementation. The SHAKE functions can be used to speedup hash-based
digital signatures.

1. Introduction
Hash functions are cryptographic primitives used in many security protocols such as digi-
tal signatures schemes, pseudo-random number generators and authentication codes. The
Secure Hash Algorithms (SHA) are a family of cryptographic hash functions published by
the National Institute of Standards and Technology (NIST) as a U.S. Federal Information
Processing Standard (FIPS), including: SHA-1, SHA-2 and SHA-3. The hash function
SHA-1 has suffered several attacks and is no longer recommended [Wang et al. 2005],
[Stevens et al. 2017]. SHA-2 is still considered secure, but its construction is based on
SHA-1 and had attacks in its reduced versions, as shown in [Indesteege et al. 2009]. In
2007, NIST started a new competition to select the first cryptographic hash algorithm
developed using a competition. In 2012, after 64 submissions and three rounds, the
hash function Keccak [Bertoni et al. 2009] was announced as the new SHA-3 algorithm.
SHA-3 is defined in [FIPS 2014] and consists of six functions SHA3-224, SHA3-256,
SHA3-384, SHA3-512, SHAKE128 and SHAKE256.

In the last few years, the processors have benefited from increasing support for
vector instructions, which operate each instruction over a vector of data. The AVX512
instruction set extends the vector registers to 512 bits and the instructions can compute up
to eight simultaneous 64-bit operations. In this work, we investigate how the instruction
set AVX512 can be used to speed up the SHA-3 family.

The rest of the document is organized as follows: in Section 2, we describe the
SHA-3 hash functions; in Section 3, is described the features of AVX512; in Section 4
we present implementation techniques for implement the SHA-3 family using AVX512
instructions; in Section 5, the performance results of our implementation are summarized;
and finally, in Section 6, we present the conclusions of this work.



2. SHA-3 family

The SHA-3 family is based on the sponge construction [Bertoni et al. 2007] using the
Keccak-p[1600, 24] permutation; SHA-3 is specified in the NIST standard FIPS PUB
202 [FIPS 2014] and consists of six functions, four of them are cryptographic hash func-
tions, SHA3-224, SHA3-256, SHA3-384 and SHA3-512, and two of them are Extendable
Output Functions SHAKE128 and SHAKE256, which are cryptographic hash functions
that can output an arbitrary number of bits.

The Keccak-p[1600, 24] permutation has 24 rounds and works with a state of 1600
bits, which can be seen as a matrix of 5 × 5 of 64-bit words. The 25 words are denoted
by si for i from 0 to 24. One round of the permutation consists of a sequence of five
mappings:

• The θ mapping performs an XOR between each word of the state with the parity
of the left column and the parity of the right column rotated one bit.

• The ρ mapping rotates each word a fixed number of bits.
• The π mapping permutes the words of the state.
• The χ mapping performs an XOR of each word with a non-linear function of two

other words in its row.
• The ι mapping computes an XOR between word s0 with a constant value rc(ir) in

each round, where the rc values are defined in [FIPS 2014].

Given a state S and the index of a round ir, a function Rnd calculates each round
of the Keccak-p[1600, 24] permutation as follow:

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir),

and a call to the Keccak-p[1600, 24] permutation consists of 24 interactions of Rnd.

3. Intel Micro-Architecture

The Single Instruction Multiple Data (SIMD) is an interesting trend of micro-architecture
where processors contain a particular bank of vector registers and vector instructions,
which can perform the same instruction on every element stored in the vector register.

In 1997 was launched one of the first set of instructions to implement the SIMD
paradigm; known as MMX, added 64-bit registers and vector instructions that enabled the
processing of two 32-bit operations simultaneously [Corporation 2008]; this instruction
set was followed by Streaming SIMD Extensions (SSE) [Corporation 2009] that extended
the size of vector registers to 128 bits. In 2011, the Advanced Vector eXtensions (AVX)
instruction set extended the size of the vector registers to 256 bits and in 2013 Intel re-
leased the AVX2 instruction set [Corporation 2011], which support integer arithmetic and
new instructions like variables shifts, which are useful for cryptographic algorithms.

In 2017 Intel released the Skylake-X micro-architecture with the AVX512 instruc-
tion set [Cooperation 2016], this micro-architecture doubles the number of vector regis-
ters from 16 in AVX2 to 32 in AVX512. In the following, we detail the most relevant
AVX512 instructions used in this work, which will be referred by a mnemonic described
in Table 1:



• Logic. The logic operations were extended to operate over every bit of 512-bit
registers. The TERNARY instruction allows to logically implement all possible
bitwise operations between three inputs; it takes three registers as input and an
8-bit value imm8. Each bit in the output is generated using a lookup of the three
corresponding bits in the inputs to select one of the 8 positions in the imm8.

• Rotation. Until now the Intel SIMD instruction sets did not include a rotation
instruction; with the ROT instruction, we can rotate n bits in each packed 64-bit
integer. There is also the ROTV instruction that allows us to rotate the bits in each
packed 64-bit integer by a specified value.

• Combination. The BLEND instruction fills the content of a vector register with
the words from two different register sources chosen through a binary selection
constant. The PRBLEND instruction combines words from two register sources
chosen through a binary selection mask register.

• Permutation. The PERM instruction moves the words stored in a vector regis-
ter using a permutation pattern that can be specified by a binary selection mask
register.

Table 1 shows some of the most relevant instructions used in this work. In the
first column is showed the type of the instructions; in the second column a mnemonic is
used for each vector instruction; in the third column is described the specific assembler
name of the vector instruction, and the last columns are shown the latency and the re-
ciprocal throughput of every vector instruction; the entries were taken from Agner Fog’s
measurements published in [Fog 2018a].

Table 1. Latency and reciprocal throughput of some AVX512 instructions.

Type Mnemonic Assembler
Instructions

Latency
(cycles)

Reciprocal
Throughput
(cycles/op)

Logic TERNARY vpternlogq 1 0,5
AND/XOR vpandd/vpxord 1 0.5

Rotate ROT vprolq/vprorq 1 1
ROTV vprolvq 1 1

Combination
BLEND vpblendmq 1-2 0.5
PRBLEND vpermi2q 3 1
UNPACK vpunpckhqdq/vpunpcklqdq 1 1

Permutation PERM vpermq 3 1

In Skylake-X micro-architecture there are two 256-bit vector execution units at
ports 0 and 1; these units can be combined into one 512-bit unit to execute instructions of
512 bits; there is an additional 512-bit vector unit under port 5, and the permute instruc-
tions and other instructions that may move byte across the 128-bit lane boundaries are
always handled by port 5 [Fog 2018b]. Some common integer vector instructions (up to
256 bits) have a throughput of three instructions per clock using ports 0,1 and 5, while the
512-bit versions of the same instruction have a throughput of two instructions per clock,
going through ports 0 and 5.

4. Implementations
The Keccak-p[1600, 24] permutation is the same for all the flavors of the SHA-3 family
and is the main responsible for the efficiency. In this section, we will show how the new



instruction set AVX512 can be used to speed up the Keccak-p[1600, 24] permutation; this
function has 24 rounds and uses a state of 25 words of 64 bits S = [s0, . . . , s24].

4.1. Sequential version using 512-bit registers

The 512-bit registers allow us to gather until eight 64-bit words in a single vector register;
aiming a better use of the instruction set, we use a vector of five 512-bit registers
[Z0, . . . , Z4] to represent the matrix state into register vectors, as can be see in Figure 1(a);
this organization reduces the number of permutation instructions resulting in a fast and
compact code.

Figure 1. State organization.

The θ mapping performs an XOR between each word of the state with
the parity of the left column and the parity of the right column rotated one bit.
To compute the parity of the columns required in the θ mapping, we use two
TERNARY instructions to compute an XOR among Z0, Z1, Z2, Z3 and Z4, result-
ing C=[�,�,�, c4, c3, c2, c1, c0] 1. Thereafter, we use two permutations to calculate
C1=[�,�,�, c3, c2, c1, c0, c4], C2=[�,�,�, c0, c4, c3, c2, c1] and we perform C1=ROT
(C1,0x01) to rotate one bit in each word of C1. To update the vector state after the θ
mapping, it is performed Zi = TERNARY(Zi, C1, C2,XOR) for i from 0 to 4.

The mappings ρ and π consist in the application of a rotation and a permutation
on the words of the state, respectively. The ROTV instruction allows us to implement the
ρ mapping efficiently by using only five instructions. After performing the π mapping we
organize the state as shown in Figure 1(b), which allows us to perform the χ mapping as
Zi = TERNARY(Zi,Z[(i+1 mod 4)],Z[(i+2 mod 4)],XORnotAND) for i from 0 to 4.

Towards the next rounds, we need to reorganize the state to the initial configura-
tion; Algorithm 1 shows an implementation based on AVX512 instructions to reorganize
the state. To complete a round, the ι mapping performs an XOR between the word s0 and
the constant values rc(ir).

4.2. Parallel version using 512-bit registers

The AVX512 instruction set allows us to see each 512-bit vector register as eight words
of 64 bits and compute an operation on every element stored in the vector register; this
feature allows us to group eight 64-bit states S0 = [s00, . . . , s

0
24], . . ., S

7 = [s70, . . . , s
7
24]

into state represented by [Z0, Z1, . . . , Z24], where the first words from each 64-bit state

1The ci values are the parity of each line i and � represents unused values in the register.



Algorithm 1 State organization for initial
configuration

1: T1 = PRBLEND (Z0,P1,Z1);
2: T2 = PRBLEND (Z2,P2,Z3);
3: T3 = BLEND (0xCC,T1,T2);
4: T4 = BLEND (0x33,T1,T2);
5: T5 = PRBLEND (Z1,P3,Z3);
6: Z0 = PRBLEND (T3,P4,Z4);

7: Z1 = PRBLEND (T4,P5,Z4);
8: Z2 = PRBLEND (T3,P6,Z4);
9: T2 = BLEND (0x10,T4,Z4);
10: T3 = BLEND (0x0F,T4,T5);
11: Z3 = PRBLEND (T3,P7,Z4);
12: Z4 = PRBLEND (T2,P8,T5);

will be stored into the first register Z0, the second words in the following register Z1 and
so on. This rearrangement allows us to reduce the permutations overhead.

In order to compute the hash of eight messages concurrently, the first step is to
map the eight x64-bit states into a 512-bit state. Algorithm 2 presents the mapping to the
first eight registers, the other words are mapped similarly.

Algorithm 2 Parallel state organization

Input: Eight x64-bit states, S0, . . . , S7 .
Output: 512-bit state Z0, . . . , Z24.

1: for i=0; i<8; i++ do
2: Ti = LOAD(Si,0)
3: end for
4: for i=0; i<8; i=i+2 do
5: Ri = UNPACK(Ti,Ti+1)
6: Ri+1 = UNPACK(Ti,Ti+1)
7: end for
8: for i=0; i<8; i=i+4 do

9: Ti = PRBLEND(Ri,m0,Ri+2)
10: Ti+1 = PRBLEND(Ri,m1,Ri+2)
11: Ti+2 = PRBLEND(Ri+1,m0,Ri+3)
12: Ti+3 = PRBLEND(Ri+1,m1,Ri+3)
13: end for
14: for i=0; i<2; i++ do
15: Zi∗2 = PRBLEND(Ti,m2,Ti+4)
16: Zi∗2+1 = PRBLEND(Ti+2,m2,Ti+6)
17: Zi∗2+2 = PRBLEND(Ti,m3,Ti+4)
18: Zi∗2+3 = PRBLEND(Ti+2,m3,Ti+6)
19: end for

After mapping the state to 512-bit registers, we start the computation of the
Keccak-p[1600, 24] permutation; this implementation uses 512-bit instructions to process
eight independent states concurrently. The new instruction TERNARY allows us to reduce
by half the number of XORs in the θ mapping. Other crucial instruction is the ROT that
processes one rotation with a single instruction instead of two shifts and one XOR.

For the efficient use of vector instructions and registers, one can perform the map-
pings ρ, π and χ modularly, by processing a block of five registers at a time. A block
needed to compute a row in the χ mapping is performed by the ρ and π mappings. In
the ρ mapping is used the ROT instruction to rotate a fixed amount of bits in each word
of the state. The π mapping permutes the words of the state and its implementation does
not require additional instructions, only renaming registers; for instance, the words of
[s012, s

1
12, . . . , s

7
12] stored into the register Z12 will become the words of [s02, s

1
2, . . . , s

7
2]

after performing π.

The χ mapping uses the TERNARY instruction to performs an XOR of each word
with a non-linear function of two other words in its row. Algorithm 3 shows the com-
putation of the ρ, π and χ mappings for the first block, the other blocks are performed
similarly.

For a better use of the 512-bit registers, instead of rearranging the words after



Algorithm 3 The ρ, π and χ steps for one block

1: T0 = ROT(Z0,0x00)
2: T1 = ROT(Z6,0x2C)
3: T2 = ROT(Z12,0x2B)
4: T3 = ROT(Z18,0x15)
5: T4 = ROT(Z24,0x0E)

6: Z0 = TERNARY(T0, T1, T2, XORnotAND)
7: Z12 = TERNARY(T1, T2, T3, XORnotAND)
8: Z24 = TERNARY(T2, T3, T4, XORnotAND)
9: Z6 = TERNARY(T3, T4, T0, XORnotAND)
10: Z18 = TERNARY(T4, T0, T1, XORnotAND)

these steps, we compute the next round taking into a count the new organization of the
state and returning to the original configuration only in the following round.

The versions that process two and four states concurrently using AVX512 are
very similar to this one, changing only the state organization and the registers. These
implementations without AVX512 tend to be slower because there is not support in AVX2
(and previous instruction sets) for the TERNARY and ROT instructions.

5. Performance Results

Benchmarking was performed on a Skylake-X processor (Core i7-7820X) at 3.6 GHz,
where the Intel Turbo Boost and Intel Hyper Threading technologies were disabled to
ensure the reproduction of experiments. Our source code2 was performed on Fedora 27
using the clang compiler version (5.0.2) and the timings were measured as the average
time of 104 computations.

Table 2 shows the performance results for messages of 4096 bytes, in cycles per
byte, for different implementations of the SHA-3 family; we selected 1344 and 1088
bits as the digest size of SHAKE128 and SHAKE256, respectively. The first column ex-
hibits our AVX512 implementations presented in Section 3, the others columns show the
implementations available in eBASH [Bernstein and Lange 2018] optimized to AVX512,
AVX2 and x64, respectively, all the timings were measured in our machine.

The x64-supercop native implementation is faster than the version using AVX2;
this is because the AVX2 implementation needs a lot of slow permutation instructions. For
the x64 implementation, on other hand, the permutation instructions are just referencing
changes in memory. Our AVX512 implementation improves the performance of the SHA-
3 family; this improvement was mainly due to the representation of the state as a vector
of five registers of 512 bits, which reduced the number of permutation instructions.

Some applications, such as the Merkle Digital Signature [Merkle 1990], require
the computations of the hash values of several messages with the same length. The new
RFC XMSS: eXtended Merkle Signature Scheme [Huelsing et al. 2018] and the NIST
Post-Quantum Cryptography candidate SPHINCS+ [Bernstein et al. 2018] are examples
of hash-based digital signature schemes that need multiple calls to SHAKE256. In this
context, Table 3 shows the performance and speedup for three parallel implementations of
the SHAKE128 and SHAKE256 functions to process 4096 bytes. The 1-way implemen-
tation is the sequential version, the 2-way uses 128-bit registers to process two messages,
the 4-way uses 256 bits to process four messages, and the 8-way uses 512-bit registers to
process eight messages concurrently.

2Our source is available in https://github.com/rbCabral/SHA-3.



Table 2. Cycles per byte of the SHA-3 Family on Skylake-X.

Our work AVX512-supercop AVX2-supercop x64-supercop

SHA3-224 6.02 6.41 8.42 8.28

SHA3-256 6.44 6.80 9.00 8.84

SHA3-384 8.30 8.86 11.59 11.33

SHA3-512 11.84 12.46 16.46 16.00

SHAKE128 5.21 5.27 7.34 7.28

SHAKE256 6.43 6.79 8.99 8.8

SHAKE128 SHAKE256

Cycles per bytes Speedup Cycles per bytes Speedup

1-way (512-bit register) 5.21 1.00 6.47 1.00
2-way (128-bit register) 2.86 1.82 3.48 1.86
4-way (256-bit register) 1.48 3.52 1.82 3.55
8-way (512-bit register) 1.03 5.06 1.24 5.22

Table 3. Cycles per bytes and speedup of parallel implementations.

As can be seen in Table 3, the AVX512 instruction set allows a significant im-
provement for the parallel performance of SHAKE; this is due to a duplication on the
number of vector registers, from 16 to 32, and the release of some new instructions, such
as TERNARY and ROT.

The speedup from the 2-way to the 4-way SHAKE256 implementation is 1.90
while the speedup from the 4-way to the 8-way is just 1.47; this happens because as
discussed in Section 3 the Skylake-X micro-architecture has two execution ports for in-
structions that use 512-bit registers while having three execution ports for instructions
over 128 and 256 registers.

6. Conclusions
In this work we present a fast software implementation of the SHA-3 family of crypto-
graphic hash functions using the new vector instruction set AVX512. The use of AVX512
brings a speedup of around 30% when compared with native (x64) and AVX2 implemen-
tations; this gain comes from the increase in size of the vector registers that allow us to
organize the state as a vector of five registers of 512 bits, reducing the number of permu-
tation instructions in the implementation. AVX512 also brings the ROTV and TERNARY
instructions which reducing significantly the number of instructions needs for the imple-
mentation of the ρ and χ mappings.

AVX512 was used to produce eight hash values concurrently with a speedup of
5.22×, this 8-way implementation can be used to speedup hash-based digital signature
schemes, such as XMSS and SPHINCS+. We noted that if the performance of the 8-way
implementation remained like the 2-way and 4-way, we should have a speedup at around
7.2×; this speedup was not achieved because the Skylake-X micro-architecture has only
two execution ports for instructions that use 512-bit registers and three execution ports for
instructions over 128 and 256 vector registers.
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