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Abstract. Isogeny-based cryptography introduces new candidates to quantum-
resistant cryptographic protocols. The cost of finite field arithmetic dominates
the cost of isogeny-based cryptosystems. In this work, we apply AVX-512 vector
instructions to accelerate the finite field modular multiplication. We benchmark
our implementation on a Skylake-X processor and discuss the applicability of
our contribution and the directions for future work.

1. Introduction
The future prospect of quantum computers poses a threat to most currently used public-
key cryptosystems, such as the widely implemented schemes with security based on
factoring integers or computing discrete logarithms over elliptic curves. Even though
a general purpose large-scale quantum computer—a computing system capable of ex-
ploring properties of quantum-mechanics to perform operations on data—does not exist
today, recent developments in this area of research have helped to motivate resear-
chers, government, and corporate bodies to take action [Costello et al. 2016]. Recen-
tly, among the post-quantum cryptographic techniques, cryptosystems that base their
security on the difficulty of finding isogenies between supersingular elliptic curves
(isogeny-based cryptography) are looking promising [Jao and Feo 2011, Feo et al. 2014,
Galbraith et al. 2017, Yoo et al. 2017]. They usually offer significantly smaller key
sizes than other post-quantum alternatives. However, their performance can be a
few orders of magnitude slower. Therefore, a number of researchers have been
trying to optimize their performance [Costello et al. 2016, Azarderakhsh et al. 2016,
Costello et al. 2017, Costello and Hisil 2017]. The use of AVX2 vector instructions to
accelerate prime field and elliptic curve arithmetic have already been studied before
[Faz-Hernández and López 2014, Faz-Hernández and López 2015]. In this work, we pre-
sent implementation techniques using AVX-512 to perform efficient finite field arithmetic
in order to improve isogeny-based protocols.

The paper is organized as follows. In Section 2 we briefly introduce the context
for isogeny-based cryptography. Section 3 gives preliminaries on prime field arithme-
tic. In Section 4, we present implementation techniques using AVX-512 for finite field
arithmetic. Section 5 summarizes the performance results of our implementation. Finally,
Section 6 concludes the paper.

2. Isogeny-Based Cryptography
Let E1 and E2 be elliptic curves defined over a finite field Fq of characteristic p. An
isogeny φ : E1 → E2 is a non-constant rational map that preserves the point at infinity O



and is also a group homomorphism betweenE1(Fq) andE2(Fq). The degree of an isogeny
is defined as its degree as a rational map. A curve E is considered supersingular if its
endomorphism ring is isomorphic to an order in a quaternion algebra [Jao and Feo 2011];
moreover, all supersingular curves over finite fields of characteristic p are isomorphic
to curves defined over Fp2 [Yoo et al. 2017]. Consequently, all arithmetic operations in
the various cryptosystems based on isogenies between supersingular curves are usually
performed over Fp2 . The security of these cryptosystems is based around the hardness
of the underlying assumptions, in particular, the Computational Supersingular Isogeny
(CSSI) problem, as discussed in [Adj et al. 2018]. The authors argued that a 448-bit prime
would be sufficient to offer 128 bits of security against all known classical and quantum
attacks (in a realistic model of quantum computation). Motivated by this reduction in
parameter size, we focus our efforts on providing an efficient implementation of finite
field arithmetic for the prime p434 = 2216 · 3137 − 1.

3. Prime Field Arithmetic
As noted in [Faz-Hernández and López 2015], a common approach to represent a field
element in several cryptographic libraries is to use a multi-precision representation. In
this representation, a field element a ∈ Fp, in an n-bit base scheme, can be written as:

A(n) =
s−1∑
i=0

ai2
in, (1)

such that a ≡ A(n) mod p and 0 ≤ ai < 2n for n ∈ Z+ and s = d dlog2 pe
n
e. A disad-

vantage of using this representation in an n-bit architecture is that after some arithmetic
operations, the carry bits must be sequentially propagated, limiting the available paralle-
lism. To overcome this issue, a redundant multi-precision representation is used, choosing
a base size n smaller than the machine register size and representing each coefficient ai
with enough bits in each machine word to store the carry bits produced by arithmetic
operations. Thus, a prime field element a ∈ Fp is represented by a tuple of coefficients
A = {a0, a1, ..., as−1}, where each ai requires n-bits.

Operations like addition, subtraction, multiplication and so forth, are performed
modulo p. In this preliminary work, we focus on the prime field multiplication, since
it is usually the most performance-critical operation. In the case of isogeny-based key
exchange, for example, an efficient modular multiplication is crucial for achieving high
performance [Costello et al. 2016]. In general, prime field multiplication is performed in
two parts: the integer multiplication and then the modular reduction.

Integer multiplication. Using the representation described previously, an integer multi-
plication can be viewed similarly to a polynomial multiplication. That is, given two prime
field elements A and B, the tuple C = A×B is computed in the following manner:

C(n) =
2s−2∑
i=0

ci2
in = A(n)×B(n) =

(
s−1∑
i=0

ai2
in

)(
s−1∑
i=0

bi2
in

)
=

2s−2∑
i=0

i∑
j=0

ajbi−j2
in

(2)

Namely, let A = {a0, a1, ..., as−1} and B = {b0, b1, ..., bs−1} be two integers
expressed in the redundant multi-precision representation, the product between them will
produce A×B = {c0, c1, ..., c2s−2}, having at most (2s− 1) coefficients.



Modular Reduction. Ideally, to perform a modular reduction one would compute the re-
mainder of a division by p, using a multi-precision division algorithm. Unfortunately, the
multi-precision division is a costly operation. A more efficient technique is to perform a
Montgomery Reduction. To reduce a number T , the technique works by adding multiples
of p to cancel out the least significant bits of T , until a multiple of a constant R, known
as Montgomery constant, is reached. By applying this method, however, the obtained re-
sult would be TR−1 mod p, instead of the ideally desired result T mod p. Nonetheless,
this undesired term R−1 is only a small nuisance, since it is possible to carry out many
arithmetic operations in sequence and only remove it at the end of the computation. The
Montgomery Reduction algorithm is shown in Algorithm 1.

Algorithm 1 Montgomery Reduction
Input: Prime p = {p0, p1, ..., ps−1} with p > 2, integers R = 2n·s, p′ = −p−1 mod 2n and
T = {t0, t1, ..., t2s−2}.
Output: TR−1 mod p.

1: A← T
2: for i← 0 to (s− 1) do
3: ui ← ai · p′ mod 2n

4: A← A+ ui · p · 2i·n
5: end for
6: A← A/2s·n

7: return A

4. Efficient Implementation Using AVX-512
AVX-512 is a set of 512-bit SIMD instructions initially proposed by Intel in 2013 and
first implemented in the Knights Landing architecture; and, more recently in 2017, in
the Skylake-X architecture. Such instructions are useful to exploit the data-level paralle-
lism present in implementations of prime field arithmetic, elliptic curve arithmetic and,
ultimately, isogeny-based cryptographic software.

4.1. The AVX-512 Instruction Set

The instruction set is composed mainly by integer, floating point and mask vector instruc-
tions. Integer vector instructions in AVX-512 can pack eight 64-bit integers, or sixteen
32-bit integers within a 512-bit register, enabling twice the number of data that AVX2
can process with a single instruction [Reinders 2013]. We detail in this section the most
relevant instructions used in this work, referred by a mnemonic described in Table 1.

• Integer arithmetic. Integer addition and subtraction (ADD, SUB) can now
operate on eight packed 64-bit integers. The MUL instruction is able to compute
eight products between 32-bit integers and store the eight 64-bit results in a 512-
bit register.
• Permutation. The PERM instruction moves 64-bit words across the entire 512-

bit register using a specified pattern. The SHUF instruction operates on 32-bit
words, but the movement is restricted within 128-bit lanes.
• Logical. The AND instruction computes the logical AND operation on a pair of

512 bits of data, and stores the result in a destination register.



• Shift. Logical shift instructions are available to perform fixed and variable length
displacements on packed eight 64-bit integers. The SRAI instruction shifts pac-
ked 64-bit integers right while shifting in sign bits.
• Broadcast. Using the BCAST instruction it is possible to replicate a 64-bit

integer to all 64-bit words of the 512-bit register.

Table 1. Latency and reciprocal throughput of relevant AVX-512 instructions
measured in the Skylake-X processor [Fog 2018].

Type Mnemonic Instruction
Latency
(cycles)

Reciprocal
Throughput
(cycles/op)

Integer
arithmetic

ADD/SUB vpaddq/vpsubq 1 0.5
MUL vpmuldq 10 2

Permutation
PERM vpermq 3 1
SHUF vpshufd 1 1

Logical AND vpandd 1 0.5
Shift SRAI vpsraq 1 0.5
Broadcast BCAST vpbroadcastq 3 1

4.2. AVX-512 Implementation
For our implementation of the prime field Fp, where p = 2216 · 3137 − 1, and its quadratic
extension, we chose the redundant multi-precision representation with n = 28, since the
wider multiplier available in AVX-512 is an eight packed 32-bit multiplier. That choice
also leaves us with 8 bits to store the carries (after a multiplication instruction), which
gives us some flexibility by minimizing the required number of carry bit propagations.
However, after a few arithmetic operations a carry propagation must be performed in or-
der to clean up the carry bits and avoid an overflow in the succeeding operation that might
generate a carry bit. The performance of this operation, as well as that of the implemen-
tation of the prime field multiplication and modular reduction, are highly dependent on
the manner the 64-bit words are organized in the 512-bit register. It can influence the
number of AVX-512 instructions necessary to perform some prime field operation, inclu-
ding the type of the instructions used, which can have different execution latencies. In
[Faz-Hernández and López 2015], the authors noted that AVX2 permutation instructions
in the Haswell micro-architecture that move bytes across 128-bit lanes have higher laten-
cies than permutations instructions that do not. This seems to be the result of architectural
design choices in the Haswell micro-architecture that appear to persist in the Skylake-X
micro-architecture and AVX-512 (see Table 1 for instruction latencies).

4-Way Interleaved Tuples. In order to restrict the movement of 64-bit words across
128-bit lanes in the 512-bit register, and to minimize the number of 64-bit word shuffling
during carry bit propagation, we chose to organize the prime field elements using 4-way
interleaved tuples, with the 64-bit words from each element stored vertically in the register
array (a strategy similar to the one used in [Faz-Hernández and López 2015]). A tuple
denoted by 〈A,B,C,D〉 represents the interleaving of the prime field elements A, B,
C and D using eight 512-bit registers. That is, R = 〈A,B,C,D〉 = {R0, R1, ..., R7},
where each 512-bit register Ri = [ai, a8+i, bi, b8+i, ci, c8+i, di, d8+i]. This representation
leads to a 4-way mode of operation: every execution of our arithmetic operations will



operate on 4 different set of operands. Parallel and batch executions of isogeny-based
cryptographic protocols could take advantage of this 4-way mode of operation.

Multiplication. The multiplication of two interleaved tuples X = 〈A,B,C,D〉 and
Y = 〈E,F,G,H〉 is shown in Algorithm 2. The output of the algorithm is an interleaved
tuple Z given in an intermediate state comprised of twenty-four 512-bit register, which
will be reduced to its standard state of eight 512-bit register after the modular reduction.
The multiplication is performed using the operand-scanning method (often referred as
schoolbook method). In the first loop (lines 2-8), a temporary register M contains a copy
of Yi with its first, third, fifth and seventh 64-bit words copied to its second, fourth, sixth
and eighth position, respectively. This task is performed efficiently using the SHUF
instruction. Afterwards, in the inner loop, M will be multiplied by Xj and the result
will be accumulated into Zi+j . The second loop (lines 9-15) is similar, except that the
temporary register N now holds a copy of Yi with its second, fourth, sixth and eighth
64-bit words copied to its first, third, fifth and seventh position, respectively.

Algorithm 2 Multiplication algorithm using AVX-512
Input: Two interleaved tuples X = 〈A,B,C,D〉 and Y = 〈E,F,G,H〉.
Output: An interleaved tuple Z = 〈I,J,K,L〉 where I = A×E, J = B×F, K = C×G and
L = D×H.

1: Zi ← 0 for i ∈ {0, 1, ..., 23}
2: for i← 0 to 7 do
3: M ← SHUF(Yi,0x44)
4: for j ← 0 to 6 do
5: Zi+j ← ADD(Zi+j ,MUL(M,Xj))
6: end for
7: Zi+7 ←MUL(M,X7)
8: end for
9: for i← 0 to 7 do

10: N ← SHUF(Yi,0xEE)
11: for j ← 0 to 6 do
12: Zi+j+8 ← ADD(Zi+j+8,MUL(N,Xj))
13: end for
14: Zi+15 ←MUL(N,X7)
15: end for
16: return Z

Modular Reduction. Algorithm 3 shows the Montgomery Reduction of an interleaved
tuple X using AVX-512 instructions. The first loop (lines 2-11) corresponds to the same
operations in the main loop of Algorithm 1 (lines 2-5). The second loop (lines 12-14)
corresponds to the operation of the line 6 in Algorithm 1. Since that in the interleaved re-
presentation the 64-bit words are stored vertically in the registers, a division by a multiple
of 2n can be performed efficiently as a re-referencing of the register array.

Carry propagation. Carry bits might be generated after some arithmetic operation and
stored in a reserved portion of the 64-bit word in the interleaved representation of the
prime field element, as described in Section 3. However, after a sequence of operations it
might be necessary to propagate these carry bits and clean up the space for future operati-
ons in order to avoid an overflow. This is specially true after a prime field multiplication.



Algorithm 3 Montgomery Reduction algorithm using AVX-512
Input: An interleaved tuple X = 〈A,B,C,D〉 in the intermediate state comprised of twenty-
four 512-bit registers, and an interleaved tuple P of the prime p, i.e., P = 〈p, p, p, p〉.
Output: An interleaved tuple Z = 〈I,J,K,L〉 containing the Montgomery Reduction of the
input value stored in X .

1: L← BCAST(0x000000000FFFFFFF)
2: for i← 0 to 15 do
3: C ← SRAI(Xi, n)
4: Xi ← AND(Xi, L)
5: Xi+1 ← ADD(Xi+1, C)
6: U ← SHUF(Xi,0x44)
7: for j ← 0 to 7 do
8: Xi+j ← ADD(Xi+j ,MUL(U,Pj))
9: end for

10: Xi+8 ← ADD(Xi+8,0x55, Xi+8,SHUF(Xi,0x4E))
11: end for
12: for i← 0 to 7 do
13: Zi ← Xi+16

14: end for
15: return Z

Algorithm 4 shows the propagation of these carry bits. The main loop (lines 3-11) is
executed two times. Each of these times is a pass of the carry propagation in the 512-bit
register array. After this operation, every coefficient stored in the register array is gua-
ranteed to have at most n + 1 bits, leaving a safe margin to process another prime field
operation.

Algorithm 4 Carry bits propagation algorithm using AVX-512
Input: An interleaved tuple X = 〈A,B,C,D〉.
Output: The same interleaved tuple X with the carry bits propagated in-place.

1: L← BCAST(0x000000000FFFFFFF)
2: for i← 0 to 1 do
3: for j ← 0 to 6 do
4: C ← SRAI(Xj , n)
5: Xj ← AND(Xj , L)
6: Xj+1 ← ADD(Xj+1, C)
7: end for
8: C ← SRAI(X7, n)
9: X7 ← AND(X7, L)

10: X0 ← ADD(X0,0xAA, X0,SHUF(C,0x4E))
11: end for

5. Preliminary Results
We benchmarked our implementation on a Skylake-X processor (Core i7-7820X) at
3.60 GHz. Intel Turbo Boost and Hyper Threading technologies were disabled. Our
source code was compiled using the GNU C Compiler v7.3.1. Table 2 shows the per-
formance of our implementation of the 4-way finite field operations using AVX-512



in comparison to the 1-way x64 implementation from [Adj et al. 2018]. In Table 3,
we show the performance of the 1-way operations of the SIDH v3.0 x64 library from
[Azarderakhsh et al. 2018] executed in the same conditions. Their library implements fi-
nite field arithmetic for the primes p503 = 2159 · 3137 − 1 and p751 = 2372 · 3239 − 1. In
an efficient x64 implementation these primes can be stored into twelve and eight 64-bit
words, respectively. Assuming a modular multiplication can be computed in Tp503 and
Tp751 for the respective primes, then a rough quadratic estimation for a x64 modular mul-
tiplication in Fp434 would be 0.34Tp751 and 0.76Tp503 , since the prime p434 = 2216 ·3137−1
can be stored into seven 64-bit words. Our 4-way vectorized implementation using AVX-
512 is currently able to provide performance improvements over both estimated values.

Table 2. Timings (in cycles) for arithmetic operations in Fp and Fp2 for the p434.

Fp reduction Fp multiplication Fp2 multiplication Fp2 squaring
[Adj et al. 2018]

(1-way)
165 321 501 378

Our work
(4-way)

258 456 1,269 873

Speedup factor 2.56 × 2.81 × 1.58 × 1.73 ×

Table 3. Timings (in cycles) for arithmetic operations in the SIDH 3.0 library
[Azarderakhsh et al. 2018].

Domain 1-way operation
p503

2159 · 3137 − 1
p751

2372 · 3239 − 1

Fp
modular reduction 107 205
multiplication 237 445

Fp2
multiplication 610 1,185
squaring 505 959

6. Conclusion and Future Work
In this work, we applied AVX-512 vector instructions to an implementation of finite field
arithmetic. Our main contribution is a vectorized implementation of the integer multipli-
cation and modular reduction to compose the arithmetic in F2216·3137−1 and its quadratic
extension. In this implementation, we use an interleaved representation of the finite field
elements which led to a 4-way mode of operation. This mode of operation can be used to
speed up parallel and batch executions of isogeny-based protocols. We compare our per-
formance results with other state-of-the-art x64 implementations of finite field arithmetic.
In a future work, we intend to provide a fast squaring algorithm using AVX-512 instruc-
tions; also, a fast Fp inversion algorithm and implementation for the prime 2216 · 3137− 1;
and, finally, a complete implementation of an isogeny-based cryptographic protocol using
the vectorized primitives studied.
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