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Abstract. Cryptosystems based on the problem of calculating isogenies between su-
persingular elliptic curves were recently proposed as strong candidates in the area of
Post-Quantum Cryptography. In order to evaluate isogenies applied in cryptography
constructions we use the Vèlu formula. However, this formula only applies to elliptic
curves in the Weierstrass model. This paper presents morphisms that can be used to
construct 2-isogeny formulas for curves in the Hesse model.

1. Introduction
Due to the fact that the most commonly used cryptosystems (e.g., RSA and ECDSA) are vul-
nerable to Shor’s algorithm [Boneh and Lipton 1995], it is necessary to search for new op-
tions. More recently, Cryptography based on Isogenies was proposed. A construction named
SIKE [Jao et al. 2017] is the representative of isogeny-based algorithms among 69 candidates of
NIST’s Post-Quantum Cryptography Standardization process[Chen et al. 2017]. Another con-
struction named Supersingular Isogeny Diffie-Hellman was included in an experiment for a
quantum-resistant version of TLS 1.3. So, there are important real applications for isogenies in
cryptography. One of the main problems in isogeny-based algorithms is to compute the ratio-
nal functions that make up the isogeny. Vèlu’s formula [Vélu 1971] does this for curves in the
Weierstrass model, but there are several other models for elliptic curves. Changing from one to
another model can give us better formulas to compute and evaluate isogenies. In this paper we
present the explicit morphisms that compose a 2-isogeny in the Hesse Model.

1.1. Organization of this Document

This paper is divided as follows: Section 2 presents basic definitions of elliptic curves and the
Hesse model for an elliptic curve; Section 3 introduces concepts related to isogenies and how
to construct them via Vèlu’s formula in the Weierstrass model; in Section 4 we construct mor-
phisms between the Hesse and Weierstrass models step by step; Section 5 presents discussions
about the derived morphisms; finally, in Section 6 we put forward conclusions and directions
for future works.

2. Preliminaries

2.1. Elliptic Curves

An elliptic curve E over a field K is a genus one algebraic curve that can be represented in the
Weierstrass formE : y2+a1xy+a3y = x3+a2x

2+a4x+a6, with a1, a2, ..., a6 ∈ K. In addition,
we need that the discriminant ∆ = −d22d8d34 − 27d26 + 9d2d4d6 6= 0, where d2 = a21 + 4a2,
d4 = 2a4 + a1a3, d6 = a23 + 4a6 and d8 = a21a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a24. If we choose a

field K with characteristic not 2 or 3, and after some admissible changes of variables, we obtain
y2 = x3 + Ax + B, with A,B ∈ K. This is called the Short Weierstrass form of an elliptic



curve. As in the initial equation, we need that ∆ = 4A3 + 27B2 6= 0. Let L be an extension
field of K; then E(L) is the set of L-rational points of E and is expressed by

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0} ∪ {O},

where O is the point at infinity. In terms of the projective form of a Weierstrass equation, the
point O is represented as (0, 1, 0). Furthermore, the point at infinity is considered an L-rational
point for all extensions L of the underlying field K. For practical applications, we use a finite
field K = Fq, where q = pm, p prime, and m ∈ N. Hasse’s theorem [Washington 2008] gives
a bound for the number of Fq-rational points on E by #E(Fq) = q + 1 − t, where |t| ≤ 2

√
q.

An elliptic curve is said to be supersingular if, and only if, t ≡ 0 mod p; otherwise we call it
ordinary.

A fundamental result (Theorem 2.1, [Washington 2008]) states that the set of elliptic
points E(K) together with a conveniently defined point addition forms an Abelian group.

2.2. Points of Order 2

When working over a field K whose characteristic is different from 2, we can write E in
the form y2 = (x − e1)(x − e2)(x − e3), with e1, e2, e3 ∈ K, making it possible to char-
acterize the points of order 2 of the curve. A given point P satisfies the relation 2P = O
if, and only if, the tangent line to the curve E at P is vertical, i.e., y = 0. That is,
E[2] = {O, (e1, 0), (e2, 0), (e3, 0)}. Thus, there is a group isomorphism between E[2] and
Z2

⊕
Z2.

2.3. Isomorphisms Between Elliptic Curves in the Weierstrass Model

LetE : y2+a1xy+a3y = x3+a2x
2+a4x+a6 andE ′ : y2+a′1xy+a′3y = x3+a′2x

2+a′4x+a′6
be elliptic curves in the Weierstrass model defined over a field K. E is isomorphic to E ′ if there
exist u ∈ K∗ and r, s, t ∈ K, such that

ua′1 = a1 + 2s,
u2a′2 = a2 − sa1 + 3r − s2,
u3a′3 = a3 + ra1 + 2t,
u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st,
u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

(1)

The transformation is given by

(x, y) 7→ (x′, y′)

where
x = u2x′ + r,
y = u3y′ + su2x′ + t.

The relation between the discriminant of the two curves is given by the expression

u12∆′ = ∆.



2.4. Hesse’s Model

Although elliptic curves are more commonly specified by the reduced and generalized Weier-
strass equations, these are not the only ways to represent them. In this section we will present
an alternative model of representation of elliptic curves and discuss some aspects about it and
how it relates to the Weierstrass model.

Another parametrization of elliptic curves is given by curves in the Hesse model
[Joye et al. 2010]. We can express such curves by an equation given asHd : u3+v3+1 = 3duv
or, in projectives coordinates, Hd : U3 + V 3 + W 3 = 3dUVW , with d ∈ K, where K is the
underlying field and d3 6= 1. The identity point, in projective coordinates is (1 : −1 : 0) and,
for a given point P = (u, v), −P = (v, u) is the inverse element of P . For the addition law, let
P1 = (u1 : v1) and P2 = (u2 : v2) be elliptic points on Hd with P1 6= P2; then, the coordinates
of the resulting point P3 = (u3 : v3) = P1 + P2 are given by

u3 =
v21u2 − v22u1
u2v2 − u1v1

, v3 =
u21v2 − u22v1
u2v2 − u1v1

.

For point doubling, the coordinates of P3 = (u3 : v3) = [2]P1 are given by

u3 =
v1(1− u31)
u31 − v31

, v3 =
u1(v

3
1 − 1)

u31 − v31
.

There are some interesting properties of the addition law for a curve in Hesse form. For ex-
ample, taking a point P1 = (U1 : V1 : W1) in projective coordinates, we have [2]P1 =
(W1 : U1 : V1)

⊕
(V1 : W1 : U1). This fact enables us to use the addition formula for

point doubling. In this sense, we obtain a unified formula for Hesse point operation as a tool
to improve the resistance of algorithms against side-channel attacks such as timing attacks. In
[Joye and Quisquater 2001] the authors present a birational map between an elliptic curve given
by Hd and one E in Weierstrass form. The coordinate map is given by

ψ : (u, v) 7→ (−9d2 + ξu, 3ξ(v − 1)), (2)

where ξ = 12(d3−1)
du+v+1

, which sends point ofHd toE : y2 = x3−27d(d3+8)x+54(d6−20d3−8).
The inverse map is given by

ψ−1 : (x, y) 7→ (η(x+ 9d2),−1 + η(3d3 − dx− 12)), (3)

where η = 6(d3−1)(y+9d3−3dx−36)
(x+9d2)3+(3d3−dx−12)3 .

3. Isogenies
For our purposes, we will define and work with isogenies between elliptic curves over finite
fields, but this definition is not limited to these fields. A more general and abstract approach
can be found in [Silverman 1986]. Fix a prime p and a power q = pk, with k ∈ N, and let E1

and E2 be elliptic curves over K = Fq. An isogeny φ : E1 → E2 is a non-constant algebraic
morphism

φ(x, y) =

(
f1(x, y)

g1(x, y)
,
f2(x, y)

g2(x, y)

)
,

with φ(OE1) = OE2 and fi, gi polynomials for i ∈ {1, 2}.



More specifically, φ is a group homomorphism between E1(Fq) and E2(Fq), i.e., given
P,Q ∈ E1(Fq) we have φ(P +Q) = φ(P ) +φ(Q), where + is the elliptic curve point addition.
The degree of an isogeny is its degree as a rational map and, for separable isogenies, it is the
size of its kernel. Theorem 3 from [Washington 2008, Section 12.5] gives us a necessary and
sufficient condition for two elliptic curves to be isogenous. In order to explicitly compute the
polynomials that make up the isogeny of the form defined above, we can use a formula due to
Vèlu [Vélu 1971] which is given in Theorem 4.

Theorem 3 (Tate) Let E1 and E2 be elliptic curves defined over Fq, where q = pk and k ∈ N.
E1 is isogenous to E2 if, and only if, #E1 = #E2.

Theorem 4 (Vèlu Formula) Consider the underlying field K such that char(K) is not 2 or 3.
Let E : y2 = x3 +Ax+B be an elliptic curve in Short Weierstrass form. Let G be a subgroup
of E(K) with order l, l prime. Let S be the set of representatives of G/ ∼, where ∼ is such that
P ∼ Q⇐⇒ P = ±Q. Then, there exists an isogeny φ : E → E ′, where ker(φ) = G, given by

φ(x,y)=

(
x+
∑
Q∈S

[
tQ

x−xQ
+

µQ
(x−xQ)2

]
,y−

∑
Q∈S

[
µQ

2y

(x−xQ)3
+tQ

y−yQ
(x−xQ)2

−
gxQg

y
Q

(x−xQ)2

])
,

where Q=(xQ,yQ), µQ=(gyQ)2, with tQ=gxQ (if Q=−Q) or tQ=−2gxQ (if Q 6=−Q), gxQ=3x2Q+A,
and gyQ=−2yQ. Furthermore, t=

∑
Q∈StQ, w=

∑
P∈SµQ+µQtQ. The application of the Vèlu’s

formula gives us the coefficients of E ′:y2=x3+(A−5t)x+(B−7w) and a normalized isogeny
whose kernel is S.

A straight observation of the above formula shows that to compute an isogeny we need
O(|G|) operations in the underlying field K.

4. 2-isogenies in the Hesse Model
From now on we will assume that we are working on a field K = Fq such that q = pn, q ≡
2 (mod 3). Using a strategy similar to the work described in [Moody and Shumow 2011,
Xiu Xu 2016] we will obtain a formula for 2-isogenies between curves in the Hesse model.
These works make use of birational transformations between curves in the models of Edwards,
Huff and Extended Jacobi Quartics and curves in the Weierstrass model. Once we are in Weier-
strass form, Vèlu’s formula is used to calculate 2-isogenies between curves in this form. After
this, we return to the desired model by the inverse transformation between the models. The 2-
isogeny will be given by the composition of all these morphisms. From now on, we will follow
this strategy starting with curves in the Hesse model.

(Step 1) Hesse to Weierstrass: Given a curve Hd described as in 2.4, we can apply the map ψ1

given by equation 2. The resulting curve is E : y2 = x3 − 27d(d3 + 8)x + 54(d6 − 20d3 − 8),
where d is the initial coefficient of the Hesse curve.

(Step 2) 2-isogeny in Weierstrass: In order to calculate a 2-isogeny by the Vèlu’s formula, it
is necessary to discriminate a group of order 2 which will be the kernel of isogeny. For this, it is
necessary to find points of order 2 in the curve in which we are working. As seen in Section 2.2
we need to look for roots of a cubic equation. Points of order 2 shall be of the form (ei, 0), where
ei, i = {1, 2, 3} are the roots of the equation. The roots of x3−27d(d3+8)x+54(d6−20d3−8)
are



e1=
3(d4+σ2/3+8d)

3
√
σ

, e2=
3i(−d4θ−+θ+σ

2/3−8dθ−)

2 3
√
σ

, e3=
−3i(−d4θ++θ−σ

2/3−8dθ+)

2 3
√
σ

,

where σ=−d6+20d3+8
√
−(d3−1)3+8, θ+=

√
3+i, θ−=

√
3−i. Let take the point P=(e1,0)∈

K (the others points of order 2 are defined over K) as the generator of the 2-isogeny kernel in
Weierstrass form. The kernel representatives S will be S={O,(e1,0)}. Applying the formula
of Theorem 4 with the respective set S we will obtain ψ2 such that

ψ2(x,y)=

(
x+

(3e21+A)

x−e1
,y

(x−e1)2−(3e21+A)

(x−e1)2

)

is a 2-isogeny between the two curves in the Weierstrass model. The equation of the resulting
curve is E ′:y2=x3+(A−5(3e21+A))x+B−7e1(3e

2
1+A), with A=−27d(d3+8) and B=54(d6−

20d3−8).

(Step 3) Triangular Curve: In order to return to a curve in Hesse form, we can take an inter-
mediate step in which we transform a curve in the form y2=x3+A4x+A6 into one of the form
y2+A1xy+A3y=x3. For this, we generate the system of equations 1 for the given curves and
solve it. The resulting system is

uA1=2s,
0=3r−s2,
u3A3=2t,
0=A4+3r2−2st,
0=A6+rA4+r

3−t2.

(4)

The system solution assuming u≡1 (mod q) (for A4=(A−5(3e21+A)),A=−27d(d3+8) and
A6=B−7e1(3e

2
1+A),B=54(d6−20d3−8)) is

γ=
3
√

2 3

√
4A3

4+27A2
6, α=

√
γ−2A4, r=

α−
√
−γ−6

√
6A6

α
−4A4

√
6

, s=−
√

3
√
r,

t=− 1

2A6

√
3
√
r(r3+3A4r+4A6), A1=−2

√
3
√
r, A3=2t.

The coordinates of the morphism will be

ψ3(x,y)=(u2x′+r,u3y′+su2x′+t),

and the resulting curve will be E ′′:y2+A1x
′y′+A3y

′=x3.

(Step 4) Triangular to Hesse: At this point we are able to return to curves in the Hesse model.
From the coefficients of the curve E ′′ obtained previously we define the following

µ=
1

3
((−27A3δ

2−δ3)1/3+δ)∈Fq, δ=A3
1−27A3.

In order to simplify the writing, we will describe the transformation in projective coordinates

ψ4(x
′,y′)=(U ′,V ′,W ′)



U ′=
A1(2µ−δ)

3µ−δ
x′+y′+A3, V ′=

−A1µ

3µ−δ
x′−y′, W ′=

−A1µ

3µ−δ
x′−A3.

The transformation above maps E ′′ to Hd′ :U
′3+V ′3+W ′3=3d′U ′V ′W ′, where d′=µ−δ

µ
.

Finally, to obtain the 2-isogeny between curves in the Hesse model, it comes down to
composing the morphisms described in each step above.

ψ:Hd→Hd′

ψ=ψ4◦ψ3◦ψ2◦ψ1.

Despite the path we took in the above construction, we can turn directly and, more
simply, to the Hesse curve after the 2-isogeny computation in Weierstrass form. For that, we
derive from the curve E ′:y2=x3+(A−5(3e21+A))x+B−7e1(3e

2
1+A), as stated in Step 2, the

curve H ′d:u
3+v3+1=3d′uv, via the map

ψ′3=(−9d′2+ξu,3ξ(v−1)),

where d′=A′(−4A′3−27B′(B′−65664)+62990638848)
3456(2A′3+321489(B′−11664) and A′=A−5(3e21+A), B′=B−7e1(3e

2
1+A). In

this case, we have

ψ:Hd→Hd′

ψ=ψ′3◦ψ2◦ψ1.

5. Results and Discussion
The first construction presented in Section 4 is quite expensive due to the computation of the
solutions for points of order 2 in the Weierstrass curve and the solutions for equations in ( 4) for
the isomorphism to triangular curves. In Step 2 we need to compute one square root and one
cubic root that are costly. In step 3, we need to compute four square roots. Moreover, when we
turn to Hesse curves, one more cubic root is needed. In addition to the fact that these operations
are costly, we need to assume that square roots can only be defined over a extension field. So, the
basic operations like point addition and doubling become more expensive in this scenario. The
second approach presented return to Hesse form after the 2-isogeny computation in the Weier-
strass form. Despite being simpler, we cannot avoid computing the square and cubic roots when
computing points of order 2. Even when we use intermediate isomorphisms between Weiertrass
curves, the expressions for points of order 2 do not seem simpler. There are analogous formu-
las for elliptic curves in the Edwards and Huff Models in [Moody and Shumow 2011] and for
Extended Jacobi Quartic model [Xiu Xu 2016]. In the work of [Moody and Shumow 2011] the
2-isogenies between curves in Edwards model also need to work in the extension field due to
the appearance of square roots. The simplest expression for 2-isogenies among these works
appears in [Xiu Xu 2016]. The costs of performing 2-isogeny computations in these models are
summarized in Table 1.



Table 1. Operation cost of 2-isogeny computation in different models. The cost is
expressed in the usual way: M=Multiplication; S=Squaring; A=Addition; I=Inversion;
SR=Square Root. We are not taking into account operations involving constants.

Model Function Cost

Twist Edwards Iso. Comp. 1S+1I
Iso. Eval. 4M+1S+1I+1SR

Extended Jacobi
Quartic

Iso. Comp. 1S+1A
Iso. Eval. 6M+4S+4A+1I

Huff Iso. Comp 1M+2A+1SR
Iso. Eval. 7M+5S+6A+1SR+1I

6. Conclusion
The interest in the use of isogenies for post-quantum cryptographic constructions has increased
enormously in recent years. Suitable and efficient formulas for isogeny computation is a key
area of research for improving the performance of such systems. This work seeks to contribute
to this area by presenting new constructions for 2-isogenies in the Hesse model. There is a lot of
work still to be done. For future works we intend to simplify such formulas. Another research
direction is to derive formulas for isogenies of higher degree.
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