
An Improved Tool for Detection of XSS Attacks by Combining
CNN with LSTM*

Caio Lente, Roberto Hirata Jr., Daniel Macêdo Batista

1Department of Computer Science
University of São Paulo

São Paulo, Brazil
{lente, hirata, batista}@ime.usp.br

Abstract. Cross-Site Scripting (XSS) is still a significant threat to web applica-
tions. By combining Convolutional Neural Networks (CNN) with Long Short-
Term Memory (LSTM) techniques, researchers have developed a deep learning
system called 3C-LSTM that achieves upwards of 99.4% accuracy when predict-
ing whether a new URL corresponds to a benign locator or an XSS attack. This
paper improves on 3C-LSTM by proposing different network architectures and
validation strategies and identifying the optimal structure for a more efficient,
yet similarly accurate, version of 3C-LSTM. The authors identify larger batch
sizes, smaller inputs, and cross-validation removal as modifications to achieve
a speedup of around 3.9 times in the training step.

1. Introduction

Cross-Site Scripting (XSS) vulnerabilities were first identified around 1996 in the early
days of the Internet [2]. With the introduction of JavaScript to web applications, bad
actors noticed that it was possible to embed HTML frames on a web page and then read
information from one frame into the other with the execution of arbitrary code. This
allows the stealing of passwords, cookies, and additional sensitive information. Even after
Netscape implemented the “same-origin policy” — which prevented JavaScript from one
website from reading data from another — attackers continued to develop strategies to
disregard this restriction.

Now that web applications are all but pervasive, XSS attacks continue to be a
considerable security risk. In 2017 [5], XSS vulnerabilities were found in around two-
thirds of all applications. They are continually being discovered, and there are even freely
available automated tools for exploiting them. A successful attack might result in serious
security violations for the host of the website and the user accessing it. More modern
exploits can inject arbitrary code into user input fields and manipulate the page, take
control of the user’s account, and even cause a denial of service [1].

XSS is usually divided into three distinct categories: reflected, stored, and DOM-
based [5]. The first involves the victim’s browser executing unvalidated and unescaped
input. The second happens when the malicious input is stored by the attacked application

*Source code: https://github.com/clente/3clstm/ Documentation: https://
github.com/clente/3clstm/blob/master/README.md Video: https://youtu.be/
RU-1kTjiFNU — These and all the other URLs referenced in this paper were last accessed on July 19th,
2021.

https://github.com/clente/3clstm/
https://github.com/clente/3clstm/blob/master/README.md
https://github.com/clente/3clstm/blob/master/README.md
https://youtu.be/RU-1kTjiFNU
https://youtu.be/RU-1kTjiFNU


and then executed by visiting users (who pass on their privileges to the attacker). The
third occurs when the application dynamically includes attacker-controllable data.

Given the prevalence and potential risks involved in XSS attacks, developing tech-
niques and strategies to stop them is a worthwhile effort. Just as XSS attacks, XSS detec-
tion can also be divided into three categories: static, dynamic, and hybrid. Static methods
analyze web applications’ code in search of vulnerabilities. Dynamic methods inject code
into the website to observe whether there is a vulnerability, and hybrid methods combine
the other two techniques. In general, dynamic analysis methods have a high false-negative
rate because they can never cover all cases. One way to circumvent the problem is to take
advantage of the recent advances in machine learning technology and develop a “smarter”
detector that can extract latent characteristics of XSS attacks. One such new method is
3C-LSTM proposed in [3].

The architecture developed by 3C-LSTM’s creators is innovative because it com-
bines in the same algorithm a Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM). In its preliminary tests, the neural network reached a precision
rate of 99.88% and a recall rate of 99.04%, which is groundbreaking for a dynamic detec-
tion algorithm.

This paper aims to improve 3C-LSTM even further to showcase the new possibili-
ties this technology brings to the table and establishes it as a viable XSS detection method.
We accomplish this by proposing an improved version of 3C-LSTM, obtained by tweak-
ing the hidden layers of the deep network, updating the algorithm to take advantage of
TensorFlow 2’s new functionality, and modifying the preprocessing step of 3C-LSTM to
enhance word2vec’s embedding. Our improvements led to a maximum speedup of around
3.9 times in the training step. In this best case in terms of speedup, the accuracy was only
0.11% lower than that from the original proposal, used as a baseline. The improvement
in the training step is extremely important, since it can reduce the needed time to detect
an intrusion. The source code for the original 3C-LSTM and the improvements presented
in this paper are all publicly available1. Besides the algorithm itself, the repository also
contains all the data used to train the model, and the results of the experiments described
in Section IV.

This paper is organized into five other sections. Section II discusses related works
such as different XSS detection algorithms, and Section III focuses on 3C-LSTM and how
to improve it. Sections IV and V describe the experiments that were conducted and their
results, respectively. Lastly, Section VI presents the conclusions of the paper and possible
further improvements.

2. Related Work
The basis for 3C-LSTM is presented in DeepXSS [6], a dynamic XSS detection tech-
nology based on deep learning and developed in 2018 by one of 3C-LSTM’s authors. It
achieved a precision rate of 99.5% and a recall rate of 97.9% in a real dataset, demon-
strating this new technique’s potential.

Other machine learning-based methods [7] [8] [9] [10] have been developed in
recent years, but before DeepXSS, all of them depended on explicitly designed features.

1GitHub repository: https://github.com/clente/3clstm

https://github.com/clente/3clstm


This means that these methods are prone to the same problems as typical dynamic analysis
methods, namely a high false-negative rate caused by the inability to extract deeper level
features that can better represent the data.

As for non-machine learning methods, they suffer from the same shortcomings as
their modern counterparts and more: high false-negative rates, high time overhead (as a
result of the increase in the number of XSS payloads), and sometimes the impossibility
of using them against all types of XSS attacks [4].

To the best of our knowledge, 3C-LSTM, the successor of DeepXSS, is one of the
best dynamic XSS detection methods. Unlike its predecessor, 3C-LSTM is trained using
an open dataset, which allows it to be improved by other researchers. This paper improves
3C-LSTM by identifying the optimal structure for a more efficient, yet similarly accurate,
version of the algorithm.

3. Architecture and Main Functionalities of the Improved Version of
3C-LSTM

3C-LSTM [3] works much in the same way as DeepXSS [6], with very few modifications.
It consists of four main steps: processing input data, Word2vec transform, convolution,
and LSTM. The processing step prepares the data for ingestion by Word2vec, which en-
codes the URLs as vectors. Finally, convolution and LSTM encompass the deep learning
step that will classify URLs into XSS attacks or non-XSS. An illustration of 3C-LSTM is
presented in Figure 1.

Figure 1. Basic structure of 3C-LSTM

Since URLs have several structures in common with each other, many dissimi-
larities carry no information at all. For this reason, the processing step aims to smooth
out these interferences: all numbers are substituted with “0”, and every locator is replaced
with “http://u”. Lastly, the URLs are tokenized using regular expressions that detect struc-
tures such as opening tags, closing tags, locators, etc.

The next step in the pipeline is feeding the pre-processed input data to an em-
bedding algorithm. Google introduced Word2vec in 2013 [11] [12] and it has become
ubiquitous in text processing applications. This model consists of a neural network that
can take a corpus of text and produce a vector space where each word is assigned a unique
vector. The main advantage of using Word2vec is that its representations are efficient and
preserve context through proximity. There are two different architectures for Word2vec—
CBOW (continuous bag-of-words) and continuous skip-gram—, but only CBOW is used



in 3C-LSTM, mainly because it has a much faster training time. Figure 2 illustrates the
basic structure of a Word2vec’s CBOW: the vector associated with the current word or
token is derived from the window around it.

Figure 2. Word2vec’s CBOW, based on a figure from [11]

After generating Word2vec’s embedding, the next step is feeding these inputs to
the actual model. The first part of 3C-LSTM proper is a CNN (convolutional neural net-
work), a type of model introduced around 1990 [13] that implements a multilayer percep-
tron with regularization. This step has three distinct pathways: all are 1D convolutions,
but the first has a window of length 2, the second, of length 4, and the third, of length 6.
This means that the convolution kernel, to be convolved with the input, includes more (or
less) tokens on each pathway.

Every pathway also includes a step that pads the outputs with zeroes so that all
of them have the same final length and a ReLu activation layer. The ReLU (short for
Rectified Linear Unit) layer [15] uses a rectifier function, defined as the positive part of
its argument, to enable learning.

The outputs of the three pathways are then concatenated and fed to an LSTM
model. LSTM stands for Long Short-Term Memory, a recurrent neural network architec-
ture introduced in 1997 [14] that can process an entire sequence of data such as video,
audio, or text. Since each LSTM “cell” (see Figure 3) has the capability of processing
data sequentially while at the same time retaining its hidden state through time, this ar-
chitecture is very good at learning from data with unpredictable lags between important
events.

Figure 3. LSTM’s cell, based on figure from [6]

After the LSTM step, the last two layers of the model are the Dropout and the
Softmax layers. In short, the Dropout layer ignores cells at random during the training



phase of the model to reduce overfitting, while the Softmax layer applies a normalized
exponential function to the output of the model to return a probability distribution over
predicted output classes from non-normalized vector components.

Once applied to new input, the output of 3C-LSTM is simply the prediction of
whether that input corresponds to an XSS attack or not.

3.1. Designing a Better 3C-LSTM

Many changes could be made to 3C-LSTM to improve it, the most obvious ones being
porting the code to TensorFlow 2, since it was developed on TensorFlow 1, and restruc-
turing the training step of the model. Launched in late 2019, TensorFlow 2 is the second
major release of Google’s widely used TensorFlow machine learning framework and in-
cludes many improvements over its predecessor, including eager evaluation, better code
optimization, and simplified syntax. By porting the code, we also ensure that 3C-LSTM
can remain relevant and up to date over TensorFlow’s next release cycle.

As for the training step, 3C-LSTM’s public code might use a few tweaks. 3C-
LSTM currently trains the model in ten steps (taking about 33 minutes each in commodity
hardware) with different training dataset partitions. Besides this long routine, the original
authors defined each round of training to last only one epoch. By using more epochs and
fewer batches, 3C-LSTM’s training could take much less time with no impact in accuracy.

Another improvement we will consider is changing the pathway configuration for
the convolution step, testing both more and fewer pathways to see whether this impacts
on performance. 3C-LSTM will also be refactored, and minor spelling mistakes will be
corrected, but this has no relation to the model’s accuracy or training time.

All the changes detailed in this subsection are implemented in the improved ver-
sion of 3C-LSTM presented in this paper. The overall training methodology, however,
remains the same: training data is fed into the algorithm, which tunes its internal pa-
rameters until it converges on a combination whose output satisfactorily approximates the
reference values. Naturally, changing this would mean changing the overarching structure
of the algorithm.

4. Experimental Design

The dataset used for testing the new versions of 3C-LSTM is the same one made available
by its authors [3]. It consists of a sample of 33,426 XSS attacks extracted from the XSSed
database (http://www.xssed.com/) and 31,407 regular URLs extracted from the DMOZ
database (http://dmoztools.net/). XSSed is a website that collects data from known XSS
attacks and vulnerabilities, compiling the URLs into one easy to access archive. DMOZ
is, according to is authors, “the largest, most comprehensive human-edited directory of
the Web” and contains a curated hierarchical scheme of links to websites. With these two
labeled datasets, 3C-LSTM can be trained to predict whether a new URL represents a
benign locator or an XSS attack.

All tests described in this paper were conducted on a 12-core Intel(R) Xeon(R)
CPU E5-2620 v3 @ 2.40GHz with 64GB RAM. For reproducibility purposes, instead of
a native Python-TensorFlow installation, we opted to run the tests inside a virtual ma-
chine with stable releases of these software: Python 3.7.6 and TensorFlow 2.1.0. The



virtual machine template was optimized for machine learning workloads and fully con-
figured out of the box, which means externalities were all but eliminated from the testing
environment.

Each performance/accuracy experiment consists of one 3C-LSTM run, from train-
ing to testing, where both training time and prediction accuracy are collected. After four
rounds of experiments, the results were compiled and averaged. Multiple distinct config-
urations were tried to find the best path for improving 3C-LSTM: Batch sizes (50, 200,
500); Number of epochs (2); Train/test split (2/1, 1/1); Row sampling (25%, 50%); and
CNN pathways (none, only 1, only 2, only 3).

By default, 3C-LSTM uses batches of size 100, 1 epoch, and no row sampling.
Rather than splitting the dataset into a training partition and a testing partition, it uses 10-
fold cross-validation (which is why the original algorithm trains the model in ten steps).
For fairness, in the tests where 10-fold is used instead of a train/test split, only the first
fold’s training time is counted; this is possible because the other nine steps did not affect
the accuracy but lengthened training time considerably. Note that all tests, except for the
control (the original 3C-LSTM), were run after porting the code to TensorFlow 2.

5. Results
The training time and the accuracy of 3C-LSTM in the different configurations explored
in this paper are presented on Table 1. The metrics are presented in terms of the average
and the standard deviation. The values of the first line of the table, labeled as Control,
were obtained by applying 3C-LSTM without the modifications proposed by us, serving
as a baseline. The best result in terms of training time and the best result in terms of
accuracy are highlighted in gray.

As it is possible to see in Table 1, 3C-LSTM has demonstrated itself as a very
robust algorithm, achieving roughly the same prediction accuracy independently of the
configuration (including No Pathway, where the convolution step was removed). In the
best case configuration (Row Sampling 50%), the accuracy was 99.36%. In the worst
case configuration (Row Sampling 25%), the accuracy was 99.17%, a reduction of only
0.19%. From the training time data, it is clear that larger batch sizes (Batch 200 and
Batch 500) were more efficient than smaller ones (Batch 50 and Control). On the other
hand, the number of epochs (2 Epochs) and the CNN pathway architecture (Pathway 1,
Pathway 2, and Pathway 3) barely affected this metric, suggesting that maintaining only
one epoch and leaving only the LSTM part of the network might be a possibility.

The most interesting results, however, were the ones involving row sampling and
train/test split. Row sampling deliberately reduces the size of the input dataset, allowing
for much faster training time with no apparent impact on accuracy, but it ignores from 50%
to 75% of the available data; the considerably faster training time suggests that the model
could be retrained at much shorter intervals at the cost of some information loss. The
reduction in the training time can be noted by comparing the original 3C-LSTM (Control
line in Table 1) with the Row Sampling 25% configuration. A reduction of 3.9 times
was observed. In this best configuration in terms of training time, the accuracy was only
0.11% lower than that from the original proposal. Splitting the data into a training set and
a testing set (as opposed to using 10-fold cross-validation) also reduces the training time
(Lines Train/test split 1/1 and Train/test split 2/1 in Table 1), but discards no data and



renders the 10 step training regimen unnecessary, which makes this an excellent strategy
for improving 3C-LSTM.

Table 1. Average Results of Experiments (SD standing for Standard Deviation,
and the best results highlighted in gray)

Configuration Time Avg. (SD) in minutes Accuracy Avg. (SD) in %
Control 33.77 (0.16) 99.28 (0.06)
Batch 50 35.55 (0.08) 99.34 (0.07)
Batch 200 33.60 (0.10) 99.30 (0.06)
Batch 500 33.34 (0.05) 99.31 (0.11)
2 Epochs 33.71 (0.07) 99.29 (0.05)
Train/test split 1/1 21.30 (4.87) 99.30 (0.07)
Train/test split 2/1 28.82 (7.21) 99.33 (0.05)
Row Sampling 50% 16.93 (0.02) 99.36 (0.10)
Row Sampling 25% 8.54 (0.01) 99.17 (0.25)
No Pathway 29.70 (0.64) 99.22 (0.11)
Pathway 1 30.80 (0.96) 99.20 (0.10)
Pathway 2 31.14 (0.92) 99.31 (0.07)
Pathway 3 31.13 (0.57) 99.25 (0.08)

5.1. Demonstrations
The improved version of 3C-LSTM can be easily demonstrated by cloning the reposi-
tory available at https://github.com/clente/3clstm/. All the experiments
reported in this section can be reproduced by following the instructions presented in the
video available at https://youtu.be/RU-1kTjiFNU.

6. Conclusions
3C-LSTM’s accuracy is robust to architectural modifications. Changing the size of its
batches, the number of epochs, convolution structure, validation strategy, and even the
training dataset’s size had basically no effect on accuracy, which always remained above
99%. However, improvements can be achieved in terms of training time. We suggested
using larger sized batches, no cross-validation, and sampling the input data whenever
possible to improve the algorithm. According to the experiments, these modifications can
improve up to 3.9 times in regards to training time, with no statistically significant impact
on accuracy. In the future, we plan on testing even more architectures for 3C-LSTM.
Tweaking Word2vec’s and the model’s hyperparameters could marginally improve accu-
racy, but the most significant contribution would be collecting more up-to-date XSS data
to make sure the algorithm handles them with similar effectiveness. We also have plans to
test the interactions of the different tested configurations, such as using no cross-validation
and also increasing the batch size to 1000.

7. Acknowledgments
This research is part of the INCT of the Future Internet for Smart Cities funded by CNPq
proc. 465446/2014-0, Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
– Brasil (CAPES) – Finance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc.
15/24485-9. It is also part of the FAPESP proc. 18/22979-2 and proc. 18/23098-0.

https://github.com/clente/3clstm/
https://youtu.be/RU-1kTjiFNU


References
[1] Hydara, I., Sultan, A. B. M., Zulzalil, H., & Admodisastro, N. (2015). Current state of

research on cross-site scripting (XSS)–A systematic literature review. Information
and Software Technology, 58, 170-186.

[2] Grossman, J., Fogie, S., Hansen, R., Rager, A., & Petkov, P. D. (2007). XSS attacks: cross
site scripting exploits and defense. Syngress.

[3] Boyu Zhang, “Detecting XSS attacks by combining CNN with LSTM”, IEEE Dataport,
2019. [Online]. http://dx.doi.org/10.21227/css6-ds36. Accessed: Apr. 23, 2020.

[4] Liu, M., Zhang, B., Chen, W., & Zhang, X. (2019). A Survey of Exploitation and Detec-
tion Methods of XSS Vulnerabilities. IEEE Access, 7, 182004-182016.

[5] Wichers, D., & Williams, J., “Owasp top-10 2017”, OWASP, 2017.

[6] Fang, Y., Li, Y., Liu, L., & Huang, C. (2018, March). DeepXSS: Cross site scripting
detection based on deep learning. 2018 International Conference on Computing and
Artificial Intelligence (pp. 47-51).

[7] Gupta, S., & Gupta, B. B. (2017). Cross-Site Scripting (XSS) attacks and defense mecha-
nisms: classification and state-of-the-art. International Journal of System Assurance
Engineering and Management, 8(1), 512-530.

[8] Goswami, S., Hoque, N., Bhattacharyya, D. K., & Kalita, J. (2017). An Unsupervised
Method for Detection of XSS Attack. IJ Network Security, 19(5), 761-775.

[9] Vishnu, B. A., & Jevitha, K. P. (2014, October). Prediction of cross-site scripting attack
using machine learning algorithms. In Proceedings of the 2014 International Con-
ference on Interdisciplinary Advances in Applied Computing (pp. 1-5).

[10] Rathore, S., Sharma, P. K., & Park, J. H. (2017). XSSClassifier: An Efficient XSS Attack
Detection Approach Based on Machine Learning Classifier on SNSs. JIPS, 13(4),
1014-1028.

[11] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

[12] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed rep-
resentations of words and phrases and their compositionality. In Advances in neural
information processing systems (pp. 3111-3119).

[13] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.
E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation
network. In Advances in neural information processing systems (pp. 396-404).

[14] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735-1780.

[15] Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S.
(2000). Digital selection and analogue amplification coexist in a cortex-inspired sil-
icon circuit. Nature, 405(6789), 947-951.

[16] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.


	Introduction
	Related Work
	Architecture and Main Functionalities of the Improved Version of 3C-LSTM
	Designing a Better 3C-LSTM

	Experimental Design
	Results
	Demonstrations

	Conclusions
	Acknowledgments

