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Abstract. With the rapid increase in data storage capacity, the use of auto-
mated procedures to handle the massive volume of data available nowadays
is required by digital forensic practitioners. The Known File Filtering is one of
the techniques employed to reduce/separate data (based on their hash values)
for analysis, using a list of interest objects. However, due to the limitation of
hashes in this scenario (inability to detect similar objects), new methods have
been designed. These functions, called Approximate Matching (AM), are pos-
sible candidates to perform such a process because they can identify similarity
in a very efficient way by creating and comparing compact representations of
objects. In this work, we show how to perform the similarity search task (using
AM) more efficiently using the Similarity Digest Search Strategies and perform
a detailed analysis. Given the limitations found, we also propose a new strategy.
Furthermore, we address some limitations of AM tools regarding the similarity
detection, where many matches pointed out as similar, were indeed false pos-
itives. Another improvement made was in the comparison function of one of
the most known AM tools after a theoretical assessment of it. We identified
and mitigated some limitations, proposing a new and more precise similarity
measurement. New applications of AM are also presented and analyzed: One
for fast file identification (using sampling) and another for efficient fingerprint
identification. This text is a summary of a Doctor of Science thesis presented
and approved in Feb./2020 at the School of Electrical and Computer Engineer-
ing, University of Campinas, São Paulo, Brazil, and submitted to the Thesis and
Dissertations Competition of SBSeg 2020.

1. Introduction

Digital forensics is a branch of forensics aiming at investigating digital devices in the
search for crime evidence. One particular problem of this field is that, due to technology
improvements, storage devices’ capabilities have increased significantly in the past years.
The growth is a result of the popularity of digital devices that became more accessible
to people due to a decrease in costs. This trend imposes a severe challenge on forensic
practitioners, who, even in ordinary investigations, have to handle terabytes of digital evi-
dence. Consequently, the time and effort to undertake analysis on seized devices remain a



challenge, forcing practitioners to explore solutions to handle the massive volume of data
in a short time.

One possible approach to deal with the problem mentioned above more efficiently
is the Known File Filter (KFF) method, which separates relevant from irrelevant infor-
mation in prior analysis. Practitioners can use lists of interest objects to remove known
good files from the analysis (objects of operating systems, known software, and other in-
offensive ones in a white list) and/or separate bad ones (illegal or suspicious objects in a
blacklist). Cryptographic hash functions (e.g., MD5, SHA-1, SHA-2, etc.) are a straight-
forward technique to perform KFF. However, hashes do not perform well in this scenario
since even small changes in an object will produce an entirely different hash, which will
make the correlation of the original object and its modified version almost impossible.

Suitable candidates to mitigate hash limitations are the Approximate Matching
(AM) functions. Using a small and compact data representation (digest), they can identify
the similarity between objects in a way that similar objects will have similar digests;
small changes in the input reflects in minor variations in the digest. When comparing two
digests, AM produces a score related to the amount of content shared between them.

The downside of AM is that they are computationally more expensive than hash
functions. Comparing two digests is not as straightforward as the string comparison of
hashes. Specifically, AM requires a particular function to determine the similarity of two
digests that is more complex and tool-dependent. Besides, current functions present other
limitations regarding compression rates and/or precision. Each solution usually focuses
on addressing satisfactorily one of these aspects to the detriment of others. Another ob-
stacle of the AM adoption for KFF is that the straightforward comparison solution usually
adopted is the brute force (all-against-all). Every reference list digest is compared to every
digest created for the target device under analysis in this mode. This way, the complexity
of this search is quadratic, and the whole process becomes very time-consuming.

Given the limitations of the field, new solutions are required to handle the massive
volume of data found in investigations nowadays. In this work, we present new solutions
to deal with current AM limitations. We show how digital forensic practitioners could
benefit from using such functions and how to use them to perform a similarity search,
where large data sets are compared to identify similar objects. We estimate the (theo-
retical) minimum similarity detected by AM functions and improve current AM tools to
perform better over large data sets and produce more reliable results. Finally, we present
new applications for AM functions.

2. Background
The main concepts in the Approximate Matching field are briefly presented in this section.

2.1. Approximate matching
NIST [Breitinger et al. 2014b] defines approximate matching functions (AM) as a
”Promising technology designed to identify similarities between two digital artifacts. It
is used to find objects that resemble each other or find objects that are contained in an-
other object”. They can be classified according to their operational level. The first level
is bytewise, which relies on the byte sequence of the object. The syntactic considers some
object’s internal structure, while the semantic tries to interpret the object and extract some



contextual attributes. Our work focuses on the bytewise level for its interesting character-
istics: Format independence and efficiency. We highlight it is not the focus of this work
to deal with encrypted data, memory dumps, or malware since this sort of data requires
extra procedures before we can use AM tools to search for similar content.

There is a vast range of applications for AM. One can use it to identify new ver-
sions of documents and software, embedded objects (e.g., jpg file inside a word docu-
ment), objects in network packets (without reconstructing the packet flow), locate variants
of malware families, code reuse (intellectual property protection and/or bug detection),
and so on [Roussev 2011, Harichandran et al. 2016].

We can find many tools implementing AM concepts to perform the similar-
ity identification using digests at the byte level. The more promising ones and tar-
get of our research are ssdeep [Kornblum 2006], sdhash [Roussev 2010], mrsh-v2
[Breitinger and Baier 2013], and TLSH [Oliver et al. 2013].

2.2. Strategies for digest similarity digest search
The major bottleneck in digital forensic investigations when performing KFF based on
AM is the similarity digest search. An examiner, who usually has a reference list con-
taining objects of interest, needs to compare each object from this set to each one ob-
tained from the target system under analysis. The goal here is to find similar objects,
which can be efficiently done using one of the AM tools. However, the usual brute force
mode performed in most investigations (an all-against-all comparison) could be too time-
consuming when dealing with large data sets.

To cope with this problem, researchers have proposed techniques aiming to re-
duce the time involved in the similarity digest search, which we refer to Similarity Di-
gest Search Strategies (SDSS). They are efficient approaches for comparing large data
sets of objects. Some strategies proposed in the literature are F2S2 [Winter et al. 2013],
MRSH-NET [Breitinger et al. 2014a], and HBFT [Breitinger et al. 2014c].

3. FSDS: A new Similarity Digest Search Strategy
In this section, we present our first contributions to the field, related to the Similarity Di-
gest Search Strategies (SDSS). They are an efficient alternative to brute force, which is
too time-consuming and even prohibitive for dealing with large data sets. More details
about our results can be found in Chapters 3 and 4 of the thesis. We performed a compar-
ison of current SDSS to point out strengths and weaknesses [Moia and Henriques 2017d]
[Moia and Henriques 2017a] [Moia and Henriques 2017c]. We also provided a detailed
analysis of some strategies’ operational costs, showing how they scale with different data
set sizes and which performed best. Our results demonstrated that even though some
strategies outperform others in some aspects, they fail in others. For instance, the F2S2
strategy has low memory consumption but fails in the lookup complexity. The same
happens for other strategies with different metrics. In conclusion, there is no suitable
approach satisfying the most relevant requirements.

Another problem with current SDSS is that they are specific for a particular AM
tool, being ssdeep and sdhash the most predominant choices. Other tools with inter-
esting characteristics for investigations do not have better forms to perform the similarity
search other than the brute force. For this reason, we propose the Fast Similarity Digest



Search (FSDS)1 strategy [Moia and Henriques 2017b], aiming to perform efficiently over
large amounts of data using the TLSH tool, which presents interesting characteristics for
investigations, such as robustness to random changes and adversarial manipulations and
space and time efficiency.

FSDS uses a particular kind of hash table to store digests, consisting of a central
array (main table) and buckets. Each position in the main table, referred to as a bucket,
can keep multiple entries composed by one field only, the ID, which links to the corre-
sponding digest. When storing an object into its structure, the strategy first creates its
digest using TLSH. Then it uses a distance function to map each digest to a position in the
main table according to their distance to a reference point. It is expected that similar ob-
jects are mapped to near positions in the main table. This way, when performing a search,
one needs to calculate a TLSH digest for the given object and compute its distance to the
reference point. The resulting value will point to a position in the table where similar ob-
jects will be located. Using the TLSH comparison function with all digests located in the
given position and with others stored around it (in the r near buckets), we can figure out
whether or not similar items reside in the structure. We performed experiments showing
the efficiency of our approach compared to brute force in three different scenarios, where
a reduction of about 95% in time was observed with a minimum impact on recall (from
100% to 85%). FSDS also presented a small memory requirement, only 375 KiB to store
4457 objects (compression of 99,98%).

4. The impact of common blocks on Approximate Matching
The next contribution to the field is the improvement of the similarity detection process of
AM tools and hence their effectiveness in producing valid results, as shown in Chapter 5
of our thesis. By simulating real-world investigations, we figured out that many matches
pointed out as similar by current solutions were not similar when we visually inspected
them and looked for content in common, such as paragraphs, figures, tables, and other
elements created by users. We found out that matches were indeed a result of common
blocks, i.e., common structures found in many objects of the same and different types.
Since these structures may repeat in many different files, they are not suitable for assessing
similarity in some contexts. Examples are header/footer information, color palettes, font
specifications, or other data structures belonging to particular software vendors. Table 1
shows some of the blocks that repeated the most across different file types and includes
its hash (FNV-1a), number of files having the block, and a brief description of its content.

In our work [Moia et al. 2020], we discuss how common blocks are spread
across different objects and show their frequency. We came up with a classification
of the matches according to the kind of similarity detected (e.g., user-generated con-
tent, application-generated content, and template content) and proposed a new version of
sdhash that removes the common data among objects from the similarity digest, called
NCF sdhash2. Our results showed a significant reduction in the number of matches. Ta-
ble 2 presents some of our findings. The number of matches is drastically decreased when
changing the N value, responsible to define when a block should be considered common.

In a followed work [Moia et al. 2019], we measured how precision/recall rates are

1GitHub page: https://github.com/regras/fsds
2GitHub page: https://github.com/regras/cbamf

https://github.com/regras/fsds
https://github.com/regras/cbamf


Table 1. Most repeated blocks per file type and their content.

File type FNV-1a hash Occurrences Contentper number of files

doc c5e7aeb2482c56c0 442 / 533 Necessary stream of compound files, specific
of Microsoft Office Word documents.

ppt ef9a5a76d0df0c16 357 / 368 Part of a document summary information
stream with application defined properties.

pdf d5fb4ee41392d833 347 / 1,073 Piece of an indirect object of a pdf stream,
belonging to RGB color space.

xls b3310ce89e000aa4 226 / 250 Font specification.
jpeg f0a05cdcac5796d4 108 / 362 RGB color palette.
html cbac5aaf609ccf54 61 / 1,093 Sample of a well-known piece of java script

code to make web pages have rollover images.
text 69c06bea6c3a3f10 18 / 711 Part of a template content.
gif c91811dfd69ce32b 5 / 67 Global color table, which is a sequence of

bytes representing RGB color triplets.

affected by common blocks and show how the recommended threshold score to identify
similar matches used by sdhash is affected. Figs. 1 and 2 show one of the scenar-
ios discussed in the paper, where we want to find all matches related to user-generated
content and template. We can observe a small decrease in precision for NCF sdhash
(especially with N = 20) compared to a significant increase in recall as we decrease the
threshold. The impact of such a reduction for sdhash shows how common blocks affect
(negatively) the similarity assessment.

Table 2. Number of file matches by score range using sdhash and NCF sdhash
for ALL file types, discarding common features with occurrences > N.

Score sdhash NCF sdhash for N
3 5 10 20 50 100

= 1 2,992 65 93 152 195 253 311
≥ 1 9,220 409 622 1,188 1,541 2,123 2,371
≥ 10 1,795 241 356 745 963 1,249 1,262
≥ 21 1,038 181 267 563 799 925* 925*
≥ 50 459 79 114 237 414 475 472
≥ 90 86 20 21 55 58 85 85

= 100 18 6 6 15 15 30 30

5. Mitigating sdhash limitation with Jaccard Distance

In this section, related to Chapter 6 of the thesis, we present the results of a theoretical
study of the sdhash detection capabilities. We show the conditions for which it works
efficiently and the ones where it struggles. We figure out that, in general, the larger
the object, the better the performance of sdhash; it requires 0.50% of similar content
between two objects to detect similarity. On the other hand, it requires about 35% of
similar data to produce valid scores for small objects. By identifying sdhash’s limitation
(inconsistency when dealing with small objects), we proposed a change in its comparison
function. We developed an improved version of it where we use the Jaccard Similarity



Figure 1. Common blocks removal:
Precision vs. score

Figure 2. Common blocks removal:
Recall vs. score

instead, called J-sdhash3. Our results showed that the new version generated an easier
to interpret score (percentage value) that can be adjusted to work in different scenarios.
Besides, the tool works well independent of the object size and, differently from other
tools, its score reflects the real amount of bytes in common between objects.

Some of our findings can be found in Table 3. Here, we present recall and pre-
cision rates of sdhash and some versions of J-sdhash, where we change one of its
internal parameters controlling the minimum percentage of commonality to the tool to
detect similarity between objects. We also present the results for a new metric referred to
as diff , an average value that measures how far the score produced by AM functions are
from the real similarity found; the lesser the value, the better.

Metric sdhash
J-sdhash

γ=30% γ=20% γ=15% γ=10%

Recall 89.0% 90.91% 93.18% 93.18% 95.45%
Precision 100.0% 100.00% 36.94% 10.87% 1.93%

diff (all matches) 4.16 1.55 1.35 0.86 1.65
diff (only true matches) 4.16 1.55 1.19 1.20 1.31

Table 3. J-sdhash settings varying the minimal percentage of common content
of similarity in the beginning of objects (44 similar matches).

6. New applications for Approximate Matching functions
Our last contribution to the field was towards new applications for AM functions, as pre-
sented in Chapter 7 of the thesis. We show how to use AM combined with sampling tech-
niques for fast file identification [Moia and Henriques 2016]. We present how sdhash
could be used and possible ways to reduce its overall costs for investigations using sam-
pling techniques and clustering disk sectors. Besides reducing the number of comparisons
and features generated, the new approach showed effectiveness in finding similar objects
of interest and presented a lower false positive rate.

We also show how to apply AM for fingerprint identification where individu-
als can be identified over large data sets [Moia and Henriques 2018]. Our proposal, the
MCC-HBFT4, is a new fingerprint identification strategy that leverages the efficiency of

3GitHub page: https://github.com/regras/J-sdhash
4GitHub page: https://github.com/regras/mcc-hbft
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the AM field and the accuracy of the state-of-the-art fingerprint representation MCC. We
showed how our strategy works and outperforms a commonly used fingerprint indexing
approach on public domain databases.

7. Conclusions
Digital forensic investigations suffer from the massive amount of data available nowadays,
where time is a scarce resource. In this work, we presented Approximate Matching (AM)
functions as a candidate to deal with such a problem when performing the similarity
search. We presented the main concepts of AM and the limitations of current solutions.
Our contributions to the field focused on new solutions to mitigate current limitations, as
described below.

• Comparison of the similarity digest search strategies, pointing out their strengths
and weaknesses. Identification of limitations of the field.

• Proposal of a new similarity digest search strategy, called FSDS.
• Proposal of a new way to identify and remove common blocks from the similarity

assessment of AM, showing how they affect digital forensics investigations.
• Theoretical analysis of sdhash and identification of limitations in the similarity

assessment process. Proposal of J-sdhash to mitigate these limitations.
• Proposal of new applications for AM: Fast file identification (using sampling tech-

niques) and Fingerprint identification (when dealing with larger data sets).

All these contributions are also documented in the papers published in national
scientific conferences and some renowned international journals, as pointed out along
this paper. Besides, a copy of the thesis described in this paper can be found in http:
//repositorio.unicamp.br/jspui/handle/REPOSIP/346315.
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