
Improving cloud based encrypted databases
Eduardo Lopes Cominetti1, Marcos Antonio Simplicio Junior1

1Departamento de Engenharia de Computação e Sistemas Digitais (PCS)
Escola Politécnica – Universidade de São Paulo (USP)

{ecominetti,mjunior}@larc.usp.br

Abstract. Databases are a cornerstone for the operation of many services, such
as banking, web stores and even health care. The cost of maintaining such
a large collection of data on-premise is high, and the cloud can be used to
share computational resources and mitigate this problem. Unfortunately, a great
amount of data may be private or confidential, thus requiring to be protected
from both internal and external agents. Moreover, this data needs to be ma-
nipulated to provide useful information to its owner. In this dissertation, we
propose modifications to CryptDB, a state-of-the-art encrypted cloud database,
aiming to enhance its efficiency, flexibility and security; this is accomplished by
improving or changing its underlying cryptographic primitives.

1. Introduction
A database is a usually large collection of data organized especially for rapid search and
retrieval [Merriam-Webster 2017]. Databases are used in processes that need to correlate
information, such as maintaining and operating a web store, which requires the associa-
tion of a person, his/her address, a purchase, and a payment method to process a sale.

Generally, a database is stored on-premise, which means that its owner is responsi-
ble for providing the infrastructure and for maintaining the system. However, on-premise
costs for large databases are quite high [Buckel 2013]. In comparison, using the cloud to
store a database can help mitigate the costs by sharing resources among different compa-
nies [Roggero 2013]. Unfortunately, though, the data stored may be private or confiden-
tial, which is the case for credit card numbers or medical history, for example. Therefore,
it must be protected from internal and external agents. As a result, privacy-preserving
cloud databases become essential to the deployment of confidential data in the cloud en-
vironment.

1.1. Motivation

Security and privacy concerns remain among the major cornerstones for the widespread
adoption of cloud solutions [Oracle 2015, Schulze 2016]. These concerns are legiti-
mate, since the number of online attacks that try to recover confidential data is consid-
erable: only in the United States, more than 9 million records were compromised since
2005 [Privacy Rights Clearinghouse 2017].

Data must be encrypted to prevent its disclosure in case of attacks. However,
it is not always possible to use traditional encryption schemes in databases, as then the
encrypted data cannot be manipulated and correlated without decryption. This limitation
of traditional schemes brings forward a challenge: is it possible to encrypt data and still
be able to compute on it without decryption?

Figure 1. Homomorphic Encryption: morphism between operation ? performed in
plaintexts m1 and m2 and operation � performed in ciphertexts c1 and c2.

In 1978, Rivest, Adleman, and Dertouzos proposed a class of special encryption
functions they called “privacy homomorphisms” [Rivest et al. 1978]. These special en-
cryption functions allow encrypted data to be operated without decryption. Figure 1
presents a visual reference of homomorphic encryption. Given two plaintexts m1 and m2

and their encryptions c1 and c2, there is an operation � performed on the ciphertexts that is
equivalent to an operation ? performed on the plaintexts. In other words, the decryption
of c1 � c2 is equal to m1 ? m2. If they can be used on a database, the underlying data can
be protected and operated on the cloud without revealing classified information. For in-
stance, an addition of multiple rows can be simply achieved by homomorphically adding
these rows. Furthermore, convoluted database operations can be expressed as logic gate
digital circuits. Hence, if there is an homomorphic encryption that allows any operation
to be performed, it can be used to create logic gates and any database operation can be
performed homomorphically. Following this concept, many Partially Homomorphic En-
cryption (PHE) schemes that allow one function to be computed over encrypted data were
proposed. Unfortunately, schemes that allow any operation to be performed on encrypted
data, called Fully Homomorphic Encryption (FHE), are still impractical for real world
applications [Bajaj and Sion 2011].

FHE’s poor performance compels cloud database developers to adopt new and
creative strategies. One of such strategies is to use a collection of different encryption
functions, each one allowing a specific database operation to be performed. An example
is CryptDB, a cloud database designed by MIT in 2011 [Popa et al. 2011]. It uses a myr-
iad of encryption schemes and modes to permit the database to operate on data without
publicly exposing it. As the solution relies on many different algorithms, overall database
performance, functionality and even security is greatly affected by their individual be-
haviour. Thus, the study, improvement and modification of these algorithms is essential
to enhance cloud databases and make them a better alternative to on-premise systems.

1.2. Goals and Contributions

Our main goal is to improve the cryptographic schemes used on privacy preserving cloud
databases in order to enhance their security, functionality and efficiency. To accomplish
this, we use CryptDB as a basis, for it is considered one of the state-of-the-art privacy

preserving cloud databases and its framework and source code are publicly available. In
this dissertation, we:

1. enhanced CryptDB’s homomorphic layer performance by up to 1300 times
through the replacement of the layer’s algorithm by a novel PHE scheme devel-
oped by us presented in Section 3, at the cost of additional storage space. This
algorithm was later published on IEEE Transactions on Information Forensics and
Security [Cominetti and Simplicio 2020];

2. enhanced CryptDB’s deterministic layer performance by up to 7.4 times through
the replacement of the layer’s algorithm by a hash function, at the cost of addi-
tional storage space;

3. enabled wildcard search, thus expanding the system’s functionality, through the
modification of the CryptDB’s search layer algorithm, at the cost of additional
storage space and additional performance overhead; and

1.3. Outline

The rest of this paper is organized as follows. Section 2 briefly presents the CryptDB
database system, the basis state-of-the-art privacy preserving cloud database used in this
work. Section 3 briefly introduces a novel symmetric PHE, created specifically for the
scenario of privacy-preserving cloud databases. Section 4 presents our modifications to
CryptDB. Finally, we present our concluding remarks in Section 5.

2. Related Works

Although there are some solutions for privacy-preserving cloud databases (e.g.,
[CipherCloud 2015, Egorov and Wilkison 2016]), we focus our attention on the CryptDB
system.

CryptDB [Popa et al. 2011] is an encrypted database designed by MIT. CryptDB
uses a (User)-(Secure Proxy)-(Server) framework, so that (1) the user interacts with the
secure proxy as if the proxy was a plain database, and (2) the secure proxy is responsible
for encrypting data and storing it on the server. The data encryption by the secure proxy
in done in "onion layers". There are multiple onions for each data and each onion has
multiple layers. Data is encrypted from "more information revealing" layers to "less in-
formation revealing" layers. Each layer uses a different algorithm and is responsible for
a specific database operation. Moreover, CryptDB’s secure proxy is responsible for data
encryption, storage of keys and conversion of a plain SQL query provided by the user to
an encrypted query sent to the server.

Improvements to CryptDB’s security, functionality and efficiency can be achieved
by changing individual layer algorithms, since each layer deals with specific SQL opera-
tions. This modularity is an important feature of CryptDB, since it allows a more struc-
tured analysis when looking for improvement opportunities. In this work, we performed
changes in 3 specific layers: the Deterministic layer (DET), the Search layer (SEARCH),
and the Homomorphic Addition Layer (HOM).

DET provides the equality check functionality. It enables the computation of se-
lects with equality operators, GROUP BY, COUNT, DISTINCT, among others. This layer
uses a pseudorandom permutation (PRP) in CMC mode [Halevi and Rogaway 2003] with

a zero Initialization Vector (IV). The outcome is a deterministic encryption. This allows
the equality check between values without exposing the unencrypted value.

SEARCH allows a word to be searched on the database without revealing it.
This layer enables the SQL operand LIKE in the database. It uses the SWP encryption
scheme [Song et al. 2000].

Finally, HOM permits the sum of values without first decrypting them. This allows
the database to perform the SQL SUM operation and averages. The layer is implemented
by the Paillier algorithm [Paillier 1999].

3. New Fast Additive Partially Homomorphic Encryption

To improve CryptDB’s HOM efficiency, we present two novel additive, partially homo-
morphic encryption schemes built upon the Approximate Common Divisor (ACD) Prob-
lem [Howgrave-Graham 2001]:
Definition 1: The Approximate Common Divisor (ACD) Problem

Let p be a prime number of size η, in bits. Let q be an integer in the interval [0, 2γ/p),
where the γ parameter gives the number final size. And let r be a positive or negative
random noise whose size in bits is defined by the ρ parameter. Define the efficiently
sampleable distributionDγ,ρ(p) as

Dγ,ρ(p) = {p · q + r | q← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ)}.

The ACD problem consists in computing p from polynomially-many samples xi

drawn fromDγ,ρ(p).

We name them Fast Additive Homomorphic Encryption (FAHE) 1 and FAHE2.
One of the main particularities of the proposed solutions, which enable relevant simpli-
fications and optimizations, is that they rely on symmetric keys for data encryption and
decryption. Hence, on one hand, just a trusted party can encrypt and decrypt data. Ho-
momorphic additions, on the other hand, can be performed very efficiently by any entity
(e.g., cloud servers).

In a nutshell, FAHE1 and FAHE2 are symmetric probabilistic encryption algo-
rithms that use a prime number as private key. Both schemes rely on the ACD as under-
lying security problem. However, whereas FAHE1 is a simple application of the ACD,
FAHE2 provides shorter ciphertexts but requires slightly stronger security assumptions.
A detailed description of these algorithms is available at [Cominetti and Simplicio 2020].

The main idea for FAHE1 is to use the ACD problem and append the message m
to be encrypted at the end of the noise noise, before adding the result to p · q. Since
the resulting string containing the message m and noise remains smaller than the η-bit
prime p, the corresponding plaintext can be recovered via modular reduction, during the
decryption procedure. Figure 2 illustrates FAHE1’s ciphertext structure.

For FAHE2’s design, the basic idea is to create an open space at a given position
pos inside the noise employed in the ACD problem. Then, we embed the message in that
position before adding the result to p ·q. As a result, the difference between the noise size
ρ (composed of noise1, noise2, and the message) and the key size η is smaller than in

q p

noise0s0s message

Figure 2. A visual description of FAHE1’s encryption process.

q p

noise10s0s messagenoise2

pos

Figure 3. A visual description of FAHE2’s encryption process.

FAHE1. Consequently, as the ciphertext size γ is dependent of this difference, it is also
smaller than in the previous variant. Figure 3 illustrates FAHE2’s structure.

Table 1 presents the parameters size in bits for FAHE1 and FAHE2, messages of
32 and 64 bits, security parameter of λ = 128 and 2α−1 allowed additions.

4. Modifications to CryptDB
The main result of this dissertation is the modification performed on CryptDB’s HOM.
We propose the substitution of the Paillier Encryption (PHPE) on HOM by FAHE2.

HOM uses PHPE to provide additive homomorphism in the encrypted database
values. PHPE’s underlying security problem requires a public key n of size similar to
RSA. For a desired security level λ = 128 bits, n = 3072 [Barker and Dang 2016, Table
2]. Since PHPE uses the square of the key, n2, to operate, the ciphertext final size is 6144
bits. As a result, the encryption and decryption require modular exponentiations and
multiplications over a large cyclic group. Moreover, PHPE is not secure against quantum
computer attacks, as the integer factorization of n allows the computation of the private
key [Shor 1997].

In opposition, our algorithms allow considerable speed ups in every process (key
generation, encryption, decryption, and homomorphic sum). These speed ups are pre-
sented in Table 2. The gains are computed using a message size of 64 bits. Furthermore,

Table 1. Parameters for FAHE1 and FAHE2 for λ = 128 (in bits).

FAHE1 FAHE2
|mmax| = 32 |mmax| = 64 |mmax| = 32 |mmax| = 64

α = 6 α = 33 α = 6 α = 33 α = 32 α = 33 α = 29 α = 33
ρ 128 128 128 128 192 193 221 225
η 172 226 204 258 224 226 250 258
γ 35402 175616 105619 309029 25921 27683 23866 31359

Table 2. FAHE2 results (in cycles) compared to Paillier at the same (pre-quantum)
λ = 128 security level.

Process |mmax| = 32 |mmax| = 64 Pailler Gain
α = 32 α = 33 (Paillier/FAHE2)

KeyGen 17651582 23832773 2253611712 94.56
Enc 254619 294839 351458572 1192.04
Add 1820 2384 211829 88.85
Dec 198096 262719 347251790 1321.76

Table 3. AES-CMC and peppered SHA2 results (in cycles).

AES-CMC Peppered SHA2
Hiding (entire dictionary) 697580460 93961082

Search (single entry) Positive 2110 444
Negative 2018 290

our schemes are based on the Approximate Common Divisor (ACD) problem, believed to
be resistant to quantum computer attacks.

We also modified CryptDB’s DET by substituting the CMC mode by a simple
hash with a pepper. A pepper is a constant secret string concatenated with the hash’s
input. This modification enhanced DET’s performance.

Since a hash output is different for every different input, even plaintexts that share
all bits but one have different hash values. The pepper’s function is to be an affix to
randomize the hash’s output. Because the pepper is a secret, an attacker cannot build
a lookup table to discover the hash input. Additionally, an attacker cannot recover a
secure hash preimage, by definition. Also, the hash’s output has a fixed length, preventing
inference attacks due to the database entry size.

As a result, we improved DET’s performance. As presented in Table 3, it is 7.4
times quickker to hide a 49057 entries dictionary and up to 6.95 times faster to perform a
match operation. The drawback of the method is that the peppered SHA2 method cannot
be decrypted and needs an additional layer on the database. The additional layer adds 256
bits for each hidden row. To decrypt data using our method, another onion of CryptDB
must be used.

Finally, we present a modification to SEARCH. Currently, SEARCH is able to
search only for full words. In a database, a fragment word search is desirable, as the user
may want to look for data patterns. To allow word fragments to be searched, we propose
a modification on how data is encrypted by SWP.

Instead of encrypting the whole word, we propose that the user chose a token size.
This token size is the fragment word size to be encrypted. The word will be divided in
multiple tokens. Appended to the token, the position of the fragment in the word is added,
forming the final plaintext to be encrypted. The last token also has a second copy with
the special terminator, `. Moreover, if the last token is smaller than the token size, the
final token repeats part of the previous fragment to reach the token size. For instance, the
word “cryptography”, with a token size 2, will be divided in the fragments “cr1”, “yp2”,

Table 4. Traditional and modified Search results (in cycles) to encrypt a 49057 entries
dictionary, to generate the search token and to search all encrypted entries.

Traditional Modified
(Full words) (Single character, fixed position)

Encrypting (entire dictionary) 2486218658 59039053083
Generate search token 9140 8420

Search (all encrypted entries) 1366376385 21827182139

“to3”, “gr4”, “ap5”, “hy6”, and “hy`”. The word “Alice”, with the same token size, will
be divided into “Al1”, “ic”, “ce3”, and “ce`”. These fragments will be then encrypted
instead of the whole word.

When the user searches for a fragment, the proxy rewrites the search query and
adds the appropriate positions to the fragment. One search query may have to be rewritten
as many times as there are possible positions for the fragment. This modified query is then
used to perform the search.

Unfortunately, the solution has drawbacks and one limitation. The fragment word
search is still limited to fragments of a giving size. Moreover, if the fragment is partially in
one token and partially in other (e.g. searching for the fragment “ry” in our example), this
result will not be produced. Because of this, the wildcard operator is not fully enabled.
To fully enable the wildcard operator, the token size must be made equal to 1. This brings
forth the important drawback of our solution.

The major drawback of our solution is that it increases the ciphertext size. Since
each fragment must be individually encrypted to allow its search, there is a ciphertext
expansion compared to the unmodified protocol. Therefore, the performance of a search
decreases as the token size is made smaller. An example with toke size 1 is presented in
Table 4.

5. Conclusion

In this dissertation, we presented methods to improve the CryptDB system, a cloud based
encrypted database. We accomplished this by: (1) designing a new partially additive
homomorphic algorithm which is more efficient than the current state of the art used on
CryptDB; (2) exchanging the deterministic layer’s AES-CMC algorithm for the SHA2
hash function to improve the layer’s performance; (3) modifying the search layer’s SWP
algorithm to allow wildcard searches to be executed, adding a new functionality to the
system.

According to our experimental results and analysis, all our solutions are satisfac-
tory. Solutions 1 and 2 are able to improve the system performance by increasing the
system storage. Additionally, solution 3 enables wildcard search if the size of the words
to be stored are decreased to a still reasonable value.

As a direct result from this work, solution 1 was published on IEEE Transactions
on Information Forensics and Security[Cominetti and Simplicio 2020].

The full version of this dissertation is available at https://doi.org/10.11606/
D.3.2019.tde-29052019-072659.

https://doi.org/10.11606/D.3.2019.tde-29052019-072659
https://doi.org/10.11606/D.3.2019.tde-29052019-072659

References
Bajaj, S. and Sion, R. (2011). Trusteddb: A trusted hardware based database with privacy

and data confidentiality. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’11, pages 205–216, New York, NY,
USA. ACM.

Barker, E. and Dang, Q. (2016). Nist special publication 800–57 part 1, revision 4.

Buckel, C. (2013). The real cost of enterprise database software. Accessed April 3, 2017.

CipherCloud (2015). Guide to cloud data protection.

Cominetti, E. L. and Simplicio, M. A. (2020). Fast additive partially homomorphic en-
cryption from the approximate common divisor problem. IEEE Transactions on Infor-
mation Forensics and Security, pages 1–1.

Egorov, M. and Wilkison, M. (2016). Zerodb white paper. arXiv preprint
arXiv:1602.07168.

Halevi, S. and Rogaway, P. (2003). A tweakable enciphering mode. In Annual Interna-
tional Cryptology Conference, pages 482–499, Santa Barbara, CA, USA. Springer.

Howgrave-Graham, N. (2001). Approximate integer common divisors. In CaLC, vol-
ume 1, pages 51–66, Providence, RI, USA. Springer.

Merriam-Webster (2017). Database. Accessed March 29, 2017.

Oracle (2015). Cloud computing comes of age.

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity
classes. In Advances in cryptology - EUROCRYPT’99, pages 223–238, Prague, Czech
Republic. Springer.

Popa, R. A., Redfield, C., Zeldovich, N., and Balakrishnan, H. (2011). Cryptdb: pro-
tecting confidentiality with encrypted query processing. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pages 85–100, Cascais, Por-
tugal. ACM.

Privacy Rights Clearinghouse (2017). Chronology of data breaches. Accessed March 29,
2017.

Rivest, R., Adleman, L., and Dertouzos, M. (1978). On data banks and privacy homo-
morphisms. Foundations of secure computation, 4(11):169–180.

Roggero, H. (2013). Sample pricing comparison: On-premise vs. private hosting vs. cloud
computing. Accessed March 29, 2017.

Schulze, H. (2016). Cloud security spotlight report.

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509.

Song, D. X., Wagner, D., and Perrig, A. (2000). Practical techniques for searches on
encrypted data. In 2000 IEEE Symposium on Security and Privacy, pages 44–55,
Berkeley, CA, USA. IEEE.

	Introduction
	Motivation
	Goals and Contributions
	Outline

	Related Works
	New Fast Additive Partially Homomorphic Encryption
	Modifications to CryptDB
	Conclusion

