Secure and efficient software implementation of QC-MDPC
code-based cryptography

Antonio Guimaraes', Diego F. Aranha? (advisor), Edson Borin' (co-advisor)

"nstitute of Computing, University of Campinas, Campinas, Brazil
?Department of Engineering, Aarhus University, Aarhus, Denmark

{antonio.guimaraes, edson}@ic.unicamp.br, dfaranhaleng.au.dk

Abstract. The emergence of quantum computers is pushing an unprecedented
transition in the public key cryptography field. Algorithms in the current stan-
dard are vulnerable to attacks using quantum computers and need, therefore,
to be replaced. Cryptosystems based on error-correcting codes are considered
some of the most promising candidates to replace them for encryption schemes.
Among the code families, QC-MDPC codes achieve the smallest key sizes while
maintaining the desired security properties. Their performance, however, still
needs to be greatly improved to reach a competitive level. In this work, we
optimize the performance of QC-MDPC code-based cryptosystems through im-
provements concerning both their implementations and algorithms. We first
present a new enhanced version of QcBits’ key encapsulation mechanism, which
is a constant time implementation of the Niederreiter cryptosystem using QC-
MDPC codes. Comparing with the current state-of-the-art, the BIKE imple-
mentation, our code performs 1.9 times faster when decrypting messages. We
then optimize the performance of QC-MDPC code-based cryptosystems through
the insertion of a configurable failure rate in their arithmetic procedures. Us-
ing a failure rate negligible compared to the security level (271%), we achieve
speedups of 1.6 to 2 times in some arithmetic algorithms. By inserting these al-
gorithms in our enhanced version of QcBits, we were able to achieve a speedup
of 1.9 on the key generation and up to 1.4 on the decryption time. Compar-
ing with BIKE, our final version of QcBits performs the uniform decryption 2.7
times faster. Moreover, the techniques presented in this work can also be applied
to BIKE, opening new possibilities for further improvements.

1. Introduction

Public-key cryptography has a major role in providing computing systems with capa-
bilities such as data confidentiality, authentication, and integrity. These capabilities, in
turn, are often essential when transmitting information and, more generally, in most hu-
man interactions with modern technology. The current standards of public-key cryp-
tography for encryption are the RSA [Rivest et al. 1978] and elliptic curve cryptography
(ECC) [Koblitz 1987]. They are considered secure and computationally efficient tech-
niques and meet present needs. However, the computing field might be on the verge of a
new technological breakthrough: the creation of large scalable quantum computers. De-
veloping applications that could benefit from them is mostly an open field of study, but
their impact on the current public-key cryptography standard has long been known. In

1994, Peter Shor formulated an algorithm that can solve integer factorization in polyno-
mial time using a quantum computer [[Shor 1994]]. This is the problem in which the RSA
is based, and a polynomial-time solution for it entirely undermines the security. The same
occurs with the discrete logarithm problem, the base of the ECC.

While the community diverges over predictions, some specialists foresee quantum
computers capable of breaking the 2048-bit RSA in the next few decades [Moody 2016].
Therefore, a secure and efficient replacement for the current standard of public-key
cryptography is necessary. Considering this, in 2016, the USA’s National Institute of
Standards and Technology (NIST) started the standardization process for post-quantum
public-key cryptography [NIST 2016]. Among the many alternatives, the code-based
cryptography presents some of the most promising candidates. Discovered in 1978 with
the McEliece Cryptosystem [McEliece 1978], it is based on a known NP-complete prob-
lem (the decoding of general linear codes) and has so far shown to be resistant against
attacks using quantum computers.

In its original form, the McEliece cryptosystem relies on very large public keys,
which represents an obstacle to the cryptosystem adoption. Derivatives using smaller
keys have been proposed, but they usually result in the introduction of vulnerabilities.
An exception to that is the implementation of McEliece using QC-MDPC codes, which
is believed to be secure. Presented in 2013 [Misoczki et al. 2013]], the cryptosystem pro-
vides keys about 100 times smaller than the original McEliece, but it comes at the cost of
deteriorating the performance and introducing perceptible failure rates to the decryption
process. In this context, performance improvement to QC-MDPC code-based cryptosys-
tems is necessary and, in this workﬂ, we present some contributions toward this goal.

We build our contributions over QcBits [Chou 2016, a constant-time implementa-
tion of a QC-MDPC code-based encryption scheme. We compare our results with the vari-
ant 2 of the BIKE suite [Aragon et al. 2017]], which is the current state-of-the-art imple-
mentation for QC-MDPC codes. BIKE is a candidate at NIST’s competition [NIST 2016
and its variant 2 implements the same encryption scheme as QcBits. The constant-time
execution, presented by QcBits, is an important feature to avoid timing side-channel at-
tacks. To briefly define, side-channel attacks are those that exploit the possible correlation
between the cryptosystem secret data (keys and plain-text) and the physical behavior of
the hosting machine during its execution. In the case of timing side-channel attacks, an
attacker could, for example, measure the execution time of multiple executions of the
cryptosystem and try to infer some information about the data being processed. In a
constant-time implementation, such as QcBits, the execution time does not depend on
any data being processed, except for data that is public by construction (e.g. the pub-
lic key, the security parameters, and message length). A uniform implementation is a
more relaxed version of this concept (Section 2.5.1 of the dissertation). Unless indicated
otherwise (e.g. Uniform Decryption), all of our implementations in this work feature
constant-time execution.

IThe complete dissertation is available at http://repositorio.unicamp.br/bitstream/
REPOSIP/334351/1/GuimaraesJunior_AntonioCarlos_M.pdf

http://repositorio.unicamp.br/bitstream/REPOSIP/334351/1/GuimaraesJunior_AntonioCarlos_M.pdf
http://repositorio.unicamp.br/bitstream/REPOSIP/334351/1/GuimaraesJunior_AntonioCarlos_M.pdf

1.1. Contributions and Publications

The contributions presented in this work are divided into three sets. The first two
concern the development of new implementation techniques aiming at optimizing the
performance of QcBits. They are presented in Sections 2] and 3| and were published
at the Brazilian Symposium on High-Performance Computational Systems (WSCAD-
2017) [Guimaraes et al. 2017] and at Wiley’s Concurrency and Computation: Practice
and Experience (CCPE) journal [[Guimaraes et al. 2018]]. The last one concerns the pre-
sentation of improvements in the basic arithmetic algorithms necessary to implement a
QC-MDPC code-based cryptosystem. This set presents contributions much more generic
and that can be explored in other fields of cryptography, even though they were planned
in a specific context. It is presented in Section 4] and was published at the International
Workshop on Code-Based Cryptography [Guimaraes et al. 2019].

In 2019, this dissertation received the Best Dissertation Award at the CTD of the
Brazilian Symposium on High-Performance Computational Systems (WSCAD 2019).

2. Accelerating the decoding of QcBits

The original QcBits presents a very good performance level due to the employed
techniques and some of the algorithm choices. However, it does not exploit modern in-
struction set extensions which could improve the performance even further. The decoding
of QC-MDPC codes is probabilistic and, hence, it is usually hard to efficiently imple-
ment it in constant-time. Considering this, we start our optimizations of QcBits with the
decoding process and presented the following contributions.

* The vectorization of the entire code using SSE, AVX2 and AVXS512 instructions.

* The implementation of a pre-calculation technique in a word permutation proce-
dure that used to take almost 40% of the execution time.

* A performance gain estimation that could be as high as 5.06 times considering the
introduction of simple and generic extensions to the Intel x86 architecture.

* The mitigation of all known power vulnerabilities found in the original implemen-
tation with an almost negligible (< 1%) impact on the overall performance.

In terms of performance, our contributions led to speedups of up to 2.6, 4.3 and
10.5 times using SSE, AVX2 and AVX512 instructions, respectively. It should be noted
that these gains surpass the number of SIMD lanes found on these standards. Figure [1]
shows the final speedups achieved using three industry-standard compilers on two differ-
ent architectures. REF and CLMUL indicate two different versions of the original QcBits.

3. An enhanced version of QcBits

The decoding process is arguably the most critical implementation in QC-MDPC cryp-
tosystems considering both performance and security. Nonetheless, key generation and
encryption are also important procedures that we could improve in QcBits. Since QcBits
was published using outdated parameters that achieve only a 40-bit quantum security
level, we decided to continue our optimization by entirely rewriting it, updating the secu-
rity level, optimizing all its processes and reapplying all our previously developed tech-
niques. Our contributions are summarized below.

-+ I SSE REF # AVX2 REF BEm AVX512 REF e SSECLMUL mmm AVX2 CLMUL e AVX512 CLMUL ----

Spedup relatively to Original version

GCC

CLANG
Haswell

ICC GCC CLANG

Skylake

ICC

Figure 1. Final speedups achieved with the optimization (relatively to the corre-
sponding Original version execution)

* The update of the security level from the 40-bit quantum security level to the 128-
bit quantum security level, meeting NIST’s highest security level required for the
standardization process.

* The vectorization of the entire implementation using AVXS512 instructions.

* The replacement of some of the core algorithms with others that have a better
performance in the face of the new AVXS512 instructions.

* The implementation of BIKE’s batch key generation using QcBits’ algorithms.

Our rewritten version of QcBits confirms the impact of our previously developed
optimization techniques as well as the new improvements. We achieved speedups of up
to 1.9 times in comparison with BIKE and most of our optimizations can be applied to
BIKE itself, which could bring even faster implementations for QC-MDPC code-based
cryptography. Table [I] details our results. BIKE does not present a constant-time im-
plementation of the key generation procedure for us to compare with. Comparing with
the non-constant-time key generation of BIKE, ours is only 3.1 times slower, which is
generally a small slowdown for a constant-time implementation.

Table 1. Performance comparison between this work and BIKE (in cycles)

Operation This work BIKE 2 Speedup over BIKE
Key Generation 40,265,904 | 12,944,920 0.32 ¢
Batch Key Gen. (100 keys) ¢ | 1,231,700 967,331° 0.79 ¢
Batch Key Gen. (400 keys) ¢ | 928,994 422,133 ° 0.45¢
Encryption 259,306 348,227 1.34
Constant Time Decryption 9,803,835 - -
Uniform Decryption 5,008,429 9,572,412 1.91

@ BIKE’s polynomial inversion is not constant time.

b Result from a fully non-constant time version.
¢ Cost per key

4. Introducing failures to accelerate QC-MDPC code-based cryptography

One of the main features of QC-MDPC cryptosystems is the use of the Quasi-Cyclic (QC)
structure, which enables cryptosystems to be entirely implemented using arithmetic over
binary polynomials. Three arithmetic operations are executed over them: addition, mul-
tiplication, and inversion. The first is efficient, but the others usually represent over 90%

of the execution time. Algorithms for arithmetic over binary polynomials are very well-
known and studied. Hence, new generic optimizations for them are usually restrained
to the implementation aspect only. In this work, we optimize binary field arithmetic fo-
cusing specifically on the case of QC-MDPC code-based cryptography. We modified the
algorithms to accept configurable parameters that greatly accelerate them at the cost of
introducing a negligible probability of failure depending on the input. Then, we defined
methods to correlate this probability of failure (or failure rate) of each algorithm with the
impact on performance. In this way, we present the following contributions.

* We introduce the concept of using arithmetic subroutines with a controlled failure
rate to accelerate QC-MDPC code-based cryptosystems.

* We present constant-time algorithms for multiplication and inversion over binary
polynomials that operate with configurable failure rates.

* We define methods to obtain a correlation between failure rate and performance
improvement for each algorithm.

* We show that these algorithms provide a significant performance improvement
while introducing an arithmetic failure rate that is negligible (< 271%%),

Table [2| shows the execution time of the arithmetic algorithms. By introducing
them in our enhanced version of QcBits, we achieve a speedup of 1.9 times on the key
generation and 1.4 times on the decryption process. Comparing with BIKE, our final
version of QcBits performs the uniform decryption 2.7 times faster. Table [3] details the
results. They show a significant performance impact of our approach, while the negligi-
ble failure rate has almost no downsides to the cryptosystem. The correlation between
failure rate and performance improvement was also shown to be very promising, once
it is possible to achieve much lower failure rates with little performance penalties. The
algorithms we presented were evaluated in the context of QC-MDPC cryptosystems, but,
ultimately, they are generic algorithms for arithmetic in GF(2") and, thus, could be used
in other contexts.

Table 2. Comparison among implementations of multiplication and inversion.
Bolded texts represent results from this section.

Operation Implementation | Failure Rate | Constant Time | Cost (cycles)
Wu et al. modified 2-128 Yes 20,773,925
Wu et al. modified 10°8 Yes 14,979,764
Inversion Wu et al. 0 Yes 39,747,301
NTL [Shoup 2003]] 0 No 12,088,846
Itoh-Tsujii 0 Yes 243,226,595
Sparse Mult. 2-128 Yes 79,843
Multiplication Sparse Mult. 0 Yes 130,023
NTL [Shoup 2003]] 0 ? 161,715
References

Aragon, N., Barreto, P. S. L. M., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.-C.,
Gaborit, P., Gueron, S., Guneysu, T., Aguilar Melchor, C., Misoczki, R., Persichetti,
E., Sendrier, N., Tillich, J.-P., and Zémor, G. (2017). BIKE: Bit Flipping Key En-
capsulation. Submission to the NIST post quantum standardization process. Website:
http://bikesuite.org/l

http://bikesuite.org/

Table 3. Execution time (cycles) of QcBits, with (this Section) and without (Section @) the
Arithmetic Failure Rate; and of the official BIKE implementation, for comparison.

128-bit QcBits BIKE-2
This section | Section lé| Speedup | Additional | Speedup
Key Generation 21,332,058 | 40,265,904 1.89 12,944,920 0.61 *
Encryption 256,655 259,306 1.01 348,227 1.36
Constant-Time Decrypt. | 8,016,312 9,803,835 1.22 w *k
Uniform Decryption 3,505,079 5,008,429 1.43 9,572,412 2.73

* BIKE’s polynomial inversion is not constant-time.
** BIKE does not present constant-time decryption.
The results for BIKE are equivalent to the column “Constant time implementation” and line “AVX-512” from Table 19 in their pa-
per [Aragon et al. 2017].

Chou, T. (2016). QcBits: Constant-Time Small-Key Code-Based Cryptography. In Gier-
lichs, B. and Poschmann, A. Y., editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2016, pages 280-300, Berlin, Heidelberg. Springer Berlin Heidelberg.

Guimaraes, A., Aranha, D. F., and Borin, E. (2017). Optimizing the decoding process of a
post-quantum cryptographic algorithm. XVIII Simpésio em Sistemas Computacionais
de Alto Desempenho-WSCAD, 18(1/2017):160-171.

Guimaraes, A., Borin, E., and Aranha, D. F. (2019). Introducing Arithmetic Failures to
Accelerate QC-MDPC Code-Based Cryptography. In Baldi, M., Persichetti, E., and
Santini, P., editors, Code-Based Cryptography, pages 44—68, Cham. Springer Interna-
tional Publishing.

Guimaraes, A., Aranha, D. F., and Borin, E. (2018). Optimized implementation of QC-
MDPC code-based cryptography. Concurrency and Computation: Practice and Expe-
rience.

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation,
48(177):203-209.

McEliece, R. J. (1978). A public-key cryptosystem based on algebraic coding theory.
Deep Space Network Progress Report, 44:114—116.

Misoczki, R., Tillich, J. P., Sendrier, N., and Barreto, P. S. L. M. (2013). MDPC-
McEliece: New McEliece variants from Moderate Density Parity-Check codes. 2013
IEEE International Symposium on Information Theory, pages 2069-2073.

Moody, D. (2016). Post-quantum cryptography: NIST’s plan for the future. Talk
given at PQCrypto. https://pgcrypto2016.jp/data/pqc201l6_nist_
announcement .pdf.

NIST (2016). Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process. NIST web page. http:
//csrc.nist.qgov/groups/ST/post—quantum—-crypto/documents/
call-for—-proposals—final-dec—-2016.pdf.

Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120-126.

https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 124-134.

Shoup, V. (2003). Number Theory C++ Library (NTL).

	Introduction
	Contributions and Publications

	Accelerating the decoding of QcBits
	An enhanced version of QcBits
	Introducing failures to accelerate QC-MDPC code-based cryptography

