
Library Application for a Fair, Traceable, Auditable and
Participatory Drawing Tool for Legal Systems

Marcos Vinicius M. Silva1, Marcos A. Simplicio Jr.1

1 Escola Politécnica – University of São Paulo (USP), Brazil

Abstract. Several applications require random sampling to be protected against
a biased behavior. When conflicting parties have different interests in its result,
the system must guarantee that collusion among any number of entities cannot
influence the resulting computation. Such is the case of legal systems, in which
jurors and judges must be randomly picked to ensure impartiality in judicial
cases. However, when informational systems are used to generate randomness,
it should also provide auditability of its mechanisms to promote confidence in
its fairness. This article presents a tool of one such mechanism that combines
the randomness provided by hash functions with active social engagement. Each
stakeholder in a legal proceeding contribute with his/her own share to the draw-
ing, so that fairness is achieved if at least one entity is honest. Any interested
party can audit a drawing using only public information, and misconduct of any
party can be traced back to the culprit as soon as the result is computed. Our
open-source implementation provides security by design, not depending on the
secrecy of its component to attain all the required security properties.

1. Introduction

The process of randomization is largely used in several applications where the results can
be biased towards a manipulated output or the confidence in its methods can be degraded,
such as scientific experiments, medical trials, and operation of legal systems. Not only
does it protect against a malicious adversary attempting to corrupt the execution, but also
from spurious manipulations unintended by the system designer or its users. In medical
trials, for example, knowledge of interference may lead participants to behave in unin-
tended ways, leading to artificial inferences about the effects of a new drug or procedure
[Solomon 1949]. Therefore, randomized interference provides a safeguard for achieving
more reliable results, by not allowing the participants to know whether they are receiving
the intervention or only a placebo.

Another scenario in which randomization is critical is that of judicial proceedings.
Several countries employ randomized methods in a way to select jurors [Duxbury 2002]
or judges [Eisenberg et al. 2012] to get unbiased decisions. When using informational
systems to generate (pseudo)random values, however, fairness can only be achieved with
two new requirements: auditability of the execution, and active social engagement. On
one hand, auditability guarantees that the output of random functions can be verified by
any entity outside of scope of the execution. Hence, it improves trust in the system where
statistical deviations may result in suspicion in non-auditable procedures. On the other
hand, an active, self-reflective and well-coordinated participation by pertinent members
of a community can result in more engagement and inclusiveness, relevant aspects of
social practices that also apply to the legal system [Stern 2018].



One proposed method for a fair drawing procedure is presented in
[Silva et al. 2020], which provides both auditability and social participation. The pre-
sented methods are capable of electing a candidate from a row of participants, if the
probability of sampling any participant is known. In this article, we present an imple-
mentation of such methods in the form of a library in the Java language. The correctness
of the implementation (and of the proposed procedure) can be observed by reproducible
tests, for both honest and corrupt behavior. A simple interface was also developed for
better presentability of the execution of a drawing.

The remainder of this document is divided as follows: Section 2 summarizes the
protocol as defined in [Silva et al. 2020], which is the source of our implementation. Sec-
tion 3 details the library, together with two simple implementations that will be demon-
strated. Section 4 presents the steps of the intended demonstration. Finally, we conclude
in Section 5.

2. Auditable Random Draw
In this section, we describe the implemented methods for randomly drawing some en-
tity among a list of eligible candidates. The algorithms here presented were proposed in
[Silva et al. 2020], which not only defines the implemented methods, but also analyzes the
security of the cryptographic methods and extends the discussion for non-uniform prob-
ability distribution of candidates. In this article, we focus on the two methods available
in the library for uniform distribution: (1) a random drawing for a single legal proceed-
ing, and (2) a random drawing for multiple proceedings with the same stakeholders. In
both cases, the idea behind the protocol was discussed by M. Blum for solving the “coin-
flipping by telephone” [Blum 1983]. In this scenario, two mutually untrusted parties plays
a coin-flipping game, attempting to communally generate a random bit in a way that nei-
ther party can bias the outcome. The solution proposed is a two-step protocol known as
commit-and-reveal [Naor 1990]: first, each party generates a random share and commits
to it, sending only the commitment to the other party; then, once both commitments were
received, each party reveals their share, which is verified regarding the commitment. The
security is guaranteed if no share can be guessed from their commitments, and if it is
infeasible to reveal a share different from the committed one. Although this method can
be applied to a variety of applications, in this article we focus on the context of legal
proceedings, assuming that entities like judge, juror(s) or rapporteur must be selected at
random from a known row of candidates.

2.1. Overview
In this application, a drawing procedure Draw is defined as the set of fields
(DID, S, E, info), in which:

• DID is the unique identifier of the procedure in the system and directly depends on
the legal proceedings it represents. It is defined as a set DID = {PID||cnt}, where
each element is defined as the legal proceeding unique identifier PID concatenated
to a drawing counter cnt, which is incremented as new drawings are required for
the same proceeding. In the implementation, the PID is specified as a character
string, and is separated from cnt with the character #. For example, the first
drawing to the proceeding identified by PID = 123.456−7 will define the drawing
procedure DID = 123.456−7#0.



• S is the set of all stakeholders sj that must participate in the drawing procedure for
all legal proceedings in the drawing. These entities are selected according to the
proceedings, and may include public entities (e.g., Ministry of Justice, Supreme
Court, and bar council) or proceeding-specific one (e.g., defense lawyer, prosecu-
tor, and judge). Since these entities are responsible for generating the shares for a
drawing, they are identified by their public key or associated digital certificate is-
sued by a trusted Certificate Authority. In this way, their signature can be verified
during the protocol execution, providing the necessary authenticity.
• E are the lists of eligible candidates ej , where each proceeding in the drawing has

a list with its own candidates. It may refer, for example, to all judges with no con-
flict of interest to each proceeding, when one must be selected. Each candidate is
uniquely identifiable (e.g., their social security number, functional identities, digi-
tal certificates) and, to avoid any ambiguity, the list must be sorted in a determined
order (e.g., in lexicographic order).
• info defines additional information about the legal proceedings and is presented

in a human-readable format. It may include the proceeding title, class, subject,
last modification date. This field is optional, as the information provided by
{PID||cnt} is enough to uniquely identify the proceeding in the system.

2.2. Drawing procedure for a single proceeding
For electing a candidate from Ei for a drawing procedure Drawi = {DIDi, Si, Ei, infoi},
each stakeholder sj ∈ Si engages in the following two-phase procedure:

Commitment Each stakeholder sj generates a random share 0 6 sharei, j < |Ei|,
that will be this stakeholder’s contribution, and a mask maski, j

$← {0, 1}λ (for some
security level λ), that will be used to hide the share in the commitment. The commit-
ment is computed as Ci, j ← H(Drawi,maski, j, sharei, j), where Drawi is common to
all stakeholders. By concatenating the mask in the input of the hash function, the poten-
tially low-entropy share cannot be guessed from Ci, j . The commitment in then signed in
σi, j ← S(skj, {Drawi, Ci, j}) by the stakeholder to provide both authenticity and non-
repudiation. Finally, the set (Ci, j, σi, j) can be sent to all stakeholders of this draw-
ing, and each receiver ensures that the commitment is valid by verifying the signature
V(pkj, {Drawi, Ci, j}, σi, j).

Reveal After the commitments were received from all stakeholders, any party
can reveal their share for all other participants. Each stakeholder, then, sends the
set (sharei, j,maski, j), that can be verified by recomputing the hash and checking if
Ci, j

?
=H(Drawi,maski, j, sharei, j) holds true. Since this hash was signed in the commit-

ment phase, it is not necessary to sign it again, as the share was indirectly signed when
computing σi, j . After all shares were received, the result of the draw is computed as
d = (

∑|Si|−1
j=0 sharei, j) mod |Ei|, which corresponds to the index of the candidade in the

ordered list Ei of the drawing.

2.3. Drawing procedure for multiple proceedings with the same stakeholders
The process from Section 2.2 can be extended for executing the drawings simultaneously
for several proceedings that share the same set of stakeholders. Considering ∆ = {Drawi}
a list of random drawing procedures {DIDi, S, Ei, infoi} with the same set S of stake-
holders, we follow the same structure of a two-phase procedure:



Commitment Each stakeholder sj generates a random share 0 6 sharei, j < |Ei| for
each Drawi ∈ ∆, that will be this stakeholder’s contribution to each drawing, and a single
mask mask0, j

$← {0, 1}λ (for some security level λ), that will be used to hide the shares
in the commitments. The commitment is computed interactively (for 0 6 i < |∆|) by
Ci, j ← H(Drawi,maski, j, sharei, j), and updating the subsequent mask maski+1, j =
Ci, j . The last commitment C|∆|−1, j is then signed and broadcast to all other stakeholders
in S.

Reveal After the commitments were received from all stakeholders and their signa-
tures verified, the interested parties can reveal their share for all other participants. Each
stakeholder, then, sends the mask mask0, j and all the shares sharei, j (for i > 0). This
allows every entity to recompute interactively the commitments up to the last C|∆|−1, j ,
which will only hold true if all shares (and the mask) were the originally committed.
After all shares were received, the result of the draw is computed for each share as
di = (

∑|Si|−1
j=0 sharei, j) mod |Ei| for each i > 0.

3. Implementation Details
The proposed library was developed in Java, using the version 14 of the OpenJDK
compiler with compliance with Java language version 8. It is currently available at
https://doi.org/10.24433/CO.6108166.v1 under the MIT License, with
three main projects:

• The library code in the br.usp.larc.securedraw package contains the ba-
sic code for the execution of the fair drawing protocol. For using the library, it
is required to implement communication and storage interfaces, depending on the
actual architecture it will be built upon.
• The automatic tests in the securedrawsimple package contains a naive im-

plementation of the library interfaces, relying in the Java Virtual Machine (JVM)
execution stack for communication. This was used to test both correctness and
some malicious attempts to subvert the execution.
• The graphical interface in the securedrawgui package contains a simple

graphical user interface (GUI) to demonstrate how an actual system may be de-
signed for human interaction. This interface can run standalone, but have the au-
tomatic tests incorporated to a more user-friendly execution. This is the package
used in the demonstration.

In what follows, we present more details of the components of these projects.

3.1. The library

The library is divided in three packages, depending on the functionalities presented in
its classes: the default, comm, and model packages. The default package contains the
implementation of the fair drawing procedure and of the underlying cryptographic algo-
rithms. A stakeholder handler controls the execution of the drawing procedure as defined
in Sections 2.2 and 2.3. The cryptographic methods were designed implemented using
the standard Java Security API. Therefore, the hash function for generating commitments
was instantiated using the SHA256 algorithm, and the signature scheme was the ECDSA
on the elliptic curve NIST P-256 (signing a SHA256 digest). This choice of parameters
leads to 128 bits of security.



The model package contains the serializable implementation of all entities and
artifacts that are either stored or transmitted to other parties. It represents the drawing pro-
cedure (for either a single or multi-proceeding), its stakeholders and eligible candidates,
and the generated shares and commitments. These classes contains only the minimum
information required as presented in this article, but they can be extended if additional
information is required to be represented.

The comm package contains the interfaces that require specific implementations
depending on the architecture choices, whose methods are called directly from the stake-
holder handler. The communication interface is a simple interface used to allow two
parties to exchange messages. The storage manager is responsible for storing the draw-
ing information (namely, stakeholders, commitments and shares) of running procedures.
Finally, the handler listener which is responsible for observing the execution of the meth-
ods in the stakeholder handler, and notifying when relevant steps are completed or errors
found.

To compile the library, generating a JAR file, the following commands must be
executed in the terminal at the root of the project:

j a v a c −d . / b u i l d / b r / usp / l a r c / s e c u r e d r a w / ∗ . j a v a b r / usp / l a r c /
s e c u r e d r a w / comm / ∗ . j a v a b r / usp / l a r c / s e c u r e d r a w / model / ∗ . j a v a

j a r c v f SecureDraw . j a r −C b u i l d .

The source code also presents an embedded javadoc, which could by generated by
the command:

j a v a d o c −d . / docs / b r / usp / l a r c / s e c u r e d r a w / ∗ . j a v a b r / usp / l a r c /
s e c u r e d r a w / comm / ∗ . j a v a b r / usp / l a r c / s e c u r e d r a w / model / ∗ . j a v a

3.2. Automatic tests
The automatic tests were created in order to generate reproducible runs that could verify
the correctness of the scheme proposed. First, it verifies the correct execution of drawings
for single or multiple proceedings. Then, it simulates some malicious behaviors of an
attacker that tries to subvert the scheme. Namely, (1) the attacker tries to reveal a share
outside the specific interval for the number of candidates, (2) he/she tries to sign a message
different from the commitment, (3) he/she tries to reveal a share different of the committed
one, and (4) he/she tries to reveal a different mask for a committed share.

It can be compile together with the library, executing the following command in
the terminal at the root of the project:

j a v a c −d . / b u i l d / b r / usp / l a r c / s e c u r e d r a w / ∗ . j a v a b r / usp / l a r c /
s e c u r e d r a w / comm / ∗ . j a v a b r / usp / l a r c / s e c u r e d r a w / model / ∗ . j a v a
s e c u r e d r a w s i m p l e / ∗ . j a v a s e c u r e d r a w s i m p l e / comm / ∗ . j a v a
s e c u r e d r a w s i m p l e / m a l i c i o u s / ∗ . j a v a

j a r c v f e SecureDrawSimple . j a r s e c u r e d r a w s i m p l e . SecureDraw −C
b u i l d .

3.3. Graphical Interface
In this project, we present an implementation of a simple graphical user interface for test-
ing purposes that simulates the behavior of real stakeholders participating in some draw-



ing in a local environment. Figure 1 illustrates the creation of a new drawing, in which the
user can input the drawing identification and can select, from a list of pre-registered enti-
ties, the stakeholders that will participate in the drawing and the eligible candidates. And
Figure 2 illustrates the commitment phase, where the user can choose a value to commit to
the proceeding, and commitments received from other stakeholders can be seen. For the
presentation, each stakeholder receives a new tab, which represents an instance of their
execution on their devices. This simplification was made for better presentability, since an
actual interface would depend on the target platforms (such as desktops, smartphones, or
dedicated hardware) and the specific scenario (how stakeholders and eligible candidates
are defined). We note, however, that it does not limit the use of the library in a distributed
environment, as the interfaces can be easily adapted.

The graphical interface can be compiled together with the library and requires the
compilation of the automatic tests, since they can be called from the GUI. For that, it can
be compile to generate a runnable JAR by the command:

j a v a c −d . / b u i l d / b r / usp / l a r c / s e c u r e d r a w / ∗ . j a v a b r / usp / l a r c /
s e c u r e d r a w / comm / ∗ . j a v a b r / usp / l a r c / s e c u r e d r a w / model / ∗ . j a v a
s e c u r e d r a w s i m p l e / ∗ . j a v a s e c u r e d r a w s i m p l e / comm / ∗ . j a v a
s e c u r e d r a w s i m p l e / m a l i c i o u s / ∗ . j a v a s e c u r e d r a w s i m p l e / ∗ . j a v a
s e c u r e d r a w s i m p l e / comm / ∗ . j a v a s e c u r e d r a w s i m p l e / m a l i c i o u s / ∗ .
j a v a s e c u r e d r a w g u i / ∗ . j a v a s e c u r e d r a w g u i / comm / ∗ . j a v a

j a r c v f e SecureDrawGUI . j a r s e c u r e d r a w g u i . JFrameDraw −C b u i l d .
j a r u f SecureDrawGUI . j a r s e c u r e d r a w g u i / img /∗

4. Presentation
The only requirement for the presentation is a computer capable of executing a Java Vir-
tual Machine of version 8 or newer. It will be divided in two models: a drawing of a
single proceeding, and a drawing for multiple proceedings. In both cases, it will reflect
the following steps:

• Creation: The drawing procedure will be initiated by defining the proceed-
ing number and info, and then by selecting stakeholders and candidates from a
preloaded list. The interface generates a standard set of attributes, but they can be
modified by the user.
• Commit: Each stakeholder generates a random value in the valid interval, which

can be modified by the user. When submitted, it will be committed and sent to the
other stakeholders. This step can be observed by the other stakeholders as soon
they receive the commitments.
• Reveal: After receiving all commitments, the stakeholders can reveal their com-

mitted values to the others, which is verified in background.
• Result: After all values are revealed, the software automatically computes the

result, electing a candidate for each proceeding in the drawing. This result can be
audited by the drawing’s stakeholders, which have access to the commitments and
revealed values.

5. Final Remarks
As next steps, we plan to develop a full fledged, mobile meta-application. The goal is to
enable auditable random drawings in arbitrary contexts: users could register the drawing



Figure 1. Creation of a new drawing procedure

Figure 2. Commitment to a drawing procedure



information on a cloud server, and allow the participation of any interested (and, possibly,
authorized) parties.

Acknowledgements

This work was supported by: Ripple’s University Blockchain Research Initiative; CNPq
(Brazilian National Council for Scientific and Technological Development – grant PQ
301198/2017-9).

References
Blum, M. (1983). Coin flipping by telephone: a protocol for solving impossible problems.

ACM SIGACT News, 15(1):23–27.

Duxbury, N. (2002). Random Justice: On Lotteries and Legal Decision-Making. Oxford
University Press.

Eisenberg, T., Fisher, T., and Rosen-Zvi, I. (2012). Does the judge matter? exploiting
random assignment on a court of last resort to assess judge and case selection effects.
Journal of Empirical Legal Studies, 9(2):246–290.

Naor, M. (1990). Bit commitment using pseudo-randomness. In Advances in Cryptology
(CRYPTO’89), pages 128–136, New York, NY. Springer New York.

Silva, M. V. M., Jr., M. A. S., Pfeiffer, R. A. C., and Stern, J. M. (2020). A fair, traceable,
auditable and participatory randomization tool for legal systems.

Solomon, R. L. (1949). An extension of control group design. Psychological bulletin,
46(2):137.

Stern, J. M. (2018). Verstehen (causal/ interpretative understanding), erklaeren (law-
governed description/ prediction), and empirical legal studies. Journal of Institutional
and Theoretical Economics, 174(1):105–114.


