
Towards to fair trade with item validation using Bloom Filters
and Smart Contracts

Matheus Cunha Reis, Ivan da Silva Sendin

1Faculdade de Computação – FACOM
Universidade Federal de Uberlândia (UFU)

Uberlândia – MG – Brazil

matheuscunhareis30@gmail.com, sendin@ufu.br

Abstract. Smart Contracts bring a new set of possibilities in the secure protocol
development: participants gain guarantees of the correct execution of the pro-
tocol steps. In contrast, current Smart Contract solutions do not provide data
privacy, this scenario is particularly bad in the commerce of e-goods. In this
work, we present a fair trade protocol based Smart Contract and Bloom Filter
for the problem of e-goods trading where the involved parts do not trust each
other.

1. Introduction
A protocol is called fair if at the end of its execution, all participants receives the previ-
ously agreed or none of them receives anything. Fair protocols gained importance due to
the need to establish security in the online sales of e-goods, in this scenario it is easy to
see that the part who takes the first action - delivers the product or makes the payment - is
at a disadvantage compared to the other [4, 20]. The fairness can be achived using Trusted
Thirty Party as a intermediary, gradual release or optimistic protocols [3, 18]. Another
recurring problem in the e-goods commerce is item validation problem: the merchant
can deliver the product - a bit string - but it is difficult to establish whether the delivered
product is really what the buyer expected [21].

This work addresses the problem where two parts not mutually trustworthy want
to negotiate the sale of information - represented by a set of strings - in a secure man-
ner, that is, the buyer will receive the information for which he actually paid for and the
seller will receive the money for the information. This scenario arises, for example, when
A and B are working independently in a large database, selecting items using some
pre-established criteria, for example selecting symptoms from a set of medical records or
Blockchain addresses with specified properties. After a while, each one is expected to
produce their own list with a non-empty intersection and someone want to buy the items
and pay only for the new items.

1.1. Smart Contracts

Introduced by Szabo in [22], Smart Contracts (SC) are programs that we trust in their
correct execution. Currently, the Ethereum ecosystem is the main platform for the devel-
opment and execution of SC[23]. Shortly, the desired security properties of smart contracts
are obtained with the redundancy of the execution of the SC on nodes of a P2P network.
Each participating node receive an economic incentive for the correct execution of the
contracts. The SC owner pays a fee - called gas on Ethereum - for the execution of the

contract. This fee depends on the computational power - both processing and memory -
necessary to execute the contract.

This approach causes a loss of confidentiality, both in the SC itself and in the data:
all nodes in the P2P network have access to data and code 1.

1.2. Bloom Filters

Bloom Filter[8] is a data structure that implements the add and contains methods; the
Bloom Filter is probabilistic: sometimes the contains method produces false positive.

The backend of a Bloom Filter is a bit vector with size n; to add some element e
to a filter, a family of k cryptographic hash functions2 is used set on k bits of the backend
vector. In Figure 1 is presented a Bloom Filter containing two elements - A and B. When
someone query this BloomFilter for C, a false positive occurs. Given expected number
of elements and a tolerable probability of false positives, the parameters k and n can be
determined.

A

?

?

?

B

C

Figure 1. A Bloom Filter with n=14 and k=3.The elements A and B were included
in this Bloom Filter. Consulting if C is in this Bloom Filter results a false positive.

Bloom filters are space-efficient and have some powerful properties like:

• Set Union: Given two filter with the same size and using the same family of hash
functions, the set union operation is given by the bitwise OR operation;

• Set Intersection: Similarly, the set intersection is obtained by bitwise AND;
• Set Size: The number of elements added to filter can be calculated approximately

by this formula given X , the number of bits ’1’ in the filter:

S = −n
k
− ln(1− X

n
).

Although bloom filters are built using cryptographic hash functions with proper-
ties of unidirectionality and second pre-image resistance, bloom filters offer very limited
privacy in some scenarios: given a Bloom Filter determining a x that is in the filter has

1The data from SC can also be easily obtained using services offered by services such as etherscan.
io.

2Cryptographic hash functions produces hash codes not suitable to be used directly as index to an array,
usually just some bits of hash code is used.

difficulty limited by the probability of false positives of the filter. In the context of a ”dic-
tionary attack”, an opponent can easily brute force the dictionary and test each element.
In some scenarios, the privacy properties are enough and Bloom Filter are used in some
cryptocurrency protocols (see [10] for example).

Some authors propose advances in Bloom Filters to provide better privacy. In [17]
the authors propose the partitioning of the filter in order to obtain privacy. The use of
cryptographic schemes based on Pohlig-Hellman Encryption [6], and the use of Blind
Signatures and Oblivious Pseudorandom Function [19] are also proposed.

2. Related Work

Recently, the cryptocurrency ecosystems has attracted attention and several fair protocols
have been developed using the capabilities of Blockchain.

Several protocols use advanced features of Bitcoin transactions to develop Smart
Contract that implement fair protocols.

In [12, 15, 7, 16, 5] some protocols are proposed to achieve secure multi-party
computation. In [9] the authors propose a protocol for signing contracts: after the partici-
pants agree on the contract, if someone give up from signing, he suffer a financial penalty.
Also, in [13] a fair protocol which anonymity for both buyer and merchant is presented.

3. Fair Trade Protocol

In this section we present the FairContract protocol that uses Bloom Filters and Smart
Contracts to provide a fair trade with item validation. The protocol is optimistic: the role
of the contract is minimal when the involved parties behave honestly.

3.1. Preparation

As stated before, an entity A owning a list of words LA wants to buy from B only ”new
words” of LB. A and B agree with a Bloom Filter specification and a initial collateral to
be paid in case of misbehavior. After that, each one produces in private their respectives
filters: BFA and BFB.

A creates and deploy the FairContract and send to it a commitmentCommitA for
BFA and a previously accorded collateral $Col

A . AfterB send his commitmentCommitB and
the collateral $Col

B (step 2 in Figure 2) A sends BFA and get the collateral back. This
step of the protocol is symmetrical, so B acts in the same way. Both participants are
compelled to act honestly with the penalty of losing the collateral or the privacy of LB.

A BFair
Contract

1

CommitA,$Col
A

2

CommitB,$Col
B

3 BFA 4 BFB

5 $Col
A ,BFB 6 $Col

B ,BFA

Figure 2. FairContract preparation.

At this point, both participants known BFA and BFB and approximately calcu-
late the size of the set of new words

|LB| − |LA ∩ LB|.

The bulk computations performed in this phase are private, each entity performs
the computation on your own equipment. The off-chain comunication can be executed
using traditional secure means3.

An important feature about using Bloom Filters in this protocol is that it allows
one party to verify the honesty of the other party even before the data or values change
take place. Using BFA and BFB, A can estimate the size of |LA ∩ LB|, and in this way
have some thoughts about the ”quality” of LB: if the size of estimated intersection is too
small, A concludes that B created his filter with random words and gives up on buying
LB.

At this point, B creates a subset Lr
B from LB such that the BFr filter created

from Lr
B have the following property:

BFA ∨BFB = BFA ∨BFr,

where ∨ stands for bitwise or operator.

Lr
B is the list with the items that A is buying, B creates this list for two main

reasons:

• In case A just switch to ”1” some bits from BFA- just to pay less to B- A would
get no bennefits from this once it gets proportionally fewer items;

• In the case of litigation, less gas will be spent (see Table 1).

Ideally, Lr
B should be the minimal set that meets the restriction of covering. Find-

ing such minimum subset of coverage is NP-Hard[14]. As Lr
B does not impact the correct

execution of the protocol, only at a possible cost, a greedy algorithm is sufficient.

3.2. Protocol Execution

Using off-chain communication, A and B agree on the following values:

• $A: to payment for LB;
• vB: a collateral to be deposited by B;
• α: a value to define a penalty factor to be paid according with the situation (see

Table 1).

The steps to implement the protocol are presented next, first of the honest behavior
of the participants and then of the scenarios of possible misbehavior.

3.2.1. Honest Execution

Whenever A and B behave honestly, the protocol is straightforward:

3Secure e-mail or instant messaging.

A BFair
Contract

1 Off chain negotiation

2

$A,vB,α 3 $B

4Lr
B

5 Ok/Timeout 6 $A,$B

Figure 3. FairContract execution for honest A and B.

• A sends $A, the agreed collateral value vB and α factor;
• B binds to FairContract sending $B, corresponding to vB;
• B sends Lr

B to A, this step is off chain;
• A verifies Lr

B, if Lr
B corresponds to previously agreed BFB, A sends a ”sale

accepted” message to contract, that allows B withdraw the payment($A) and the
collateral($B), finishing the FairContract.

The steps for honest behavior are described in Figure 3.

3.2.2. B Acting Dishonestly

If B does not send the correct Lr
B, A activates the contract’s litigious mode (Figure 4).

This action involves two alternatives scenarios:

1. B sends Lr
B to FairContract, once Lr

B is validated using BFB, B receives
$A and α$B (Steps 1,2 and 3 in Figure 4);

2. If after a certain amount of time that the litigious mode is activated B does not
send Lr

B to the FairContract, A invokes FairContract and receives $A and
$B , penalizing B(Steps 1 and 2′ in Figure 4).

3.2.3. A Acting Dishonestly

Even receiving Lr
B, A can trigger the litigious mode of the FairContract.

As B has Lr
B, the list will be sent to the FairContract, A will have no financial

benefit from this action and lose the confidentiality of the list just purchased.

A BFair
Contract

1Litigation 2 Lr
B

3 $A,α$B2′ $A,$B

Figure 4. FairContract in litigious mode. B sends Lr
B to FairContract and

receives the payment. If not, after a timeout, A receives the contract values.

Dishonest Behavior Reaction Penalty
A(or B) don’t open FairContract blocks the collateral The collateral is lost.
the commit for filter
A inflates BFA B creates Lr

B based on the A receives less
with random bits difference of BFA from BFB information from B
B don’t send Lr

B A put FairContract in litigious mode B loses $B
A calls litigious B sends Lr

B through FairContract A loses Lr
B confidentiality

improperly B loses (1− α)$B
B ”holds” Lr

B A calls litigious mode, A loses Lr
B confidentiality

B sends Lr
B through FairContract B loses (1− α)$B

Table 1. Summarization of dishonest behavior and penalties in FairContract.

4. Protocol Analysis

Below we present an empirical analysis of the contract, for the sake of simplicity we
will not consider the cost of execution, the gas charged by the Ethereum platform, for
reasonable prices negotiated in the contract it is expected that this cost will be negligible.

• The expensive task of creating BFA , BFB and Lr
B is executed off chain;

• A can verify p7lausibility of BFB testing if some of items from LA are in BFB,
this procedure minimizes the likelihood of B creating a filter with random bits;

• A has no gains in increasing or decreasing the BFA using random bits;
• When the parties involved act honestly the cost of the contract is small, the bulk

of data transmission and computing is executed off chain. As Lr
B does not go

through the contract, its privacy is preserved;
• If B is unable to present the items to A or to FairContract, it loses the collat-

eral;
• If A acts dishonestly, calling litigious mode even after receiving Lr

B, B is forced
to send Lr

B through the contract, causing loss of confidentiality;
• If B delays the release of Lr

B, forcing the litigious mode, causing loss of confi-
dentiality, B loses (1− α)$B.

It is important to note that the contract fails to distinguish between the scenario
in which A acts dishonestly by calling the litigious mode improperly and the scenario in
which B ”holds” Lr

B waiting for A to call the litigious mode. In these two cases both
participants are penalized: A loses Lr

B confidentiality and B loses (1-α)$B. Thus, to
avoid these scenarios, the values of $B and α need to be chosen according to an estimated
value of Lr

B confidentiality. A summary of dishonest behavior is presented in Table 1.

5. Implementation

The fair protocol was implemented using the Truffle Suite (Truffle & Ganache) [11]. Truf-
fle is the most popular Ethereum framework to create, execute and test smart contracts.
It allows developers to deploy, link libraries, write automated tests and manage network
artifacts with an easy and fast API. Among their usabilities, Truffle provides the commu-
nication between the tests and the deployed contracts on Ethereum networks. Ganache is
a tool that creates a personal Ethereum blockchain where you can execute commands, run

tests, inspect and debug the state of contracts easier and faster than using online Ethereum
networks.

In this implementation, along with Truffle Suite, Web3.js [2], a library that allows
you to interact with a local or remote Ethereum node using HTTP, IPC or WebSocket,
and Mocha [1], a framework for build test scenarios, helped in the creation of tests for
the possible situations of contract operation. The contract and his tests are available at
https://github.com/matheuscr30/Word-Sale-Fair-Contract.

6. Conclusions and Future Work

In this paper, we introduced a fair protocol based on Smart Contract and Bloom Filter,
where the parties are encouraged to behave honestly, otherwise they suffer financial and
confidentiality losses. The use of the Bloom Filter allows items to be validated at low cost
before financial transactions take place.

The proposed protocol is optimistic in the sense that if the parties behave honestly,
the participation of the contract is minimal. The part of the protocol that requires signif-
icant CPU costs is executed in privately by the parties involved, saving gas charged by
Ethereum.

The use of regular Bloom Filter provides the necessary privacy in some scenarios.
But in others - for example when an adversary can test some item in the filter instead of
producing them - this approach is not enough. In future, we plan to study the viability of
extending this work by using more secure alternatives to Bloom Filters.

References

[1] Mocha project. https://mochajs.org/, 2020. Accessed: 2020-05-22.
[2] Web3 project. https://web3js.readthedocs.io/en/v1.2.11/, 2020.

Accessed: 2020-05-22.
[3] Abdullah Alotaibi and Hamza Aldabbas. A review of fair exchange protocols. In-

ternational Journal of Computer Networks & Communications (IJCNC), 4(4):307–
319, July 2012.

[4] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. Proceedings of the ACM Conference on Computer and Communications
Security, pages 6–17, 1997.

[5] Adam Back and Iddo Bentov. Note on fair coin toss via bitcoin. CoRR,
abs/1402.3698, 2014.

[6] Steven Michael Bellovin and William R. Cheswick. Privacy-Enhanced Searches
Using Encrypted Bloom Filters. Columbia University Academic Commons, pages
CUCS–034–07, 2007.

[7] Iddo Bentov and Ranjit Kumaresan. How to use Bitcoin to design fair protocols.
Lecture Notes in Computer Science (LNCS), 8617(PART 2):421–439, 2014.

[8] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[9] Josep Lluis Ferrer-Gomila, M. Francisca Hinarejos, and Andreu Pere Isern-Deyà.
A fair contract signing protocol with blockchain support. Electronic Commerce
Research and Applications, 36(June):100869, 2019.

[10] Arthur Gervais, Srdjan Capkun, Ghassan O. Karame, and Damian Gruber. On the
privacy provisions of bloom filters in lightweight bitcoin clients. In Proceedings
of the 30th Annual Computer Security Applications Conference, ACSAC ’14, page
326–335, New York, NY, USA, 2014. Association for Computing Machinery.

[11] Truffle Blockchain Group. Truffle suite. https://www.trufflesuite.com,
2020. Accessed: 2020-05-22.

[12] Lijuan Guo, Xuelian Li, and Juntao Gai. Multi-party Fair Exchange Protocol with
Smart Contract on Bitcoin. International Journal of Network Security, 21(1):71–82,
2019.

[13] Danushka Jayasinghe, Konstantinos Markantonakis, and Keith Mayes. Optimistic
fair-exchange with anonymity for bitcoin users. Proceedings - 11th IEEE Interna-
tional Conference on E-Business Engineering, ICEBE 2014 - Including 10th Work-
shop on Service-Oriented Applications, Integration and Collaboration, SOAIC 2014
and 1st Workshop on E-Commerce Engineering, ECE 2014, pages 44–51, 2014.

[14] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[15] Ranjit Kumaresan and Iddo Bentov. How to Use Bitcoin to Incentivize Correct
Computations. Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security - CCS ’14, pages 30–41, 2014.

[16] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to Use Bitcoin to Play De-
centralized Poker. Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security - CCS ’15, pages 195–206, 2015.

[17] Pierre K Y Lai, S M Yiu, K P Chow, C F Chong, and Lucas C K Hui. An efficient
bloom filter based solution for multiparty private matching. Proceedings of the 2006
International Conference on Security & Management, SAM, pages 286–292, 2006.

[18] Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In
Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed
Computing, PODC ’03, page 12–19, New York, NY, USA, 2003. Association for
Computing Machinery.

[19] Ryo Nojima and Youki Kadobayashi. Cryptographically secure bloom-filters.
Transactions on Data Privacy, 2(2):131–139, 2009.

[20] Henning Pagnia, Holger Vogt, and Felix C. Gärtner. Fair Exchange. The Computer
Journal, 46(1):55–75, 01 2003.

[21] F. Piva and R. Dahab. E-commerce and fair exchange - the problem of item vali-
dation. Proceedings of the International Conference on Security and Cryptography,
pages 317–324, 2011.

[22] Nick Szabo. Formalizing and Securing Relationships on Public Networks. First
Monday, 2(9), 1997.

[23] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

