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Abstract. The Transport Layer Security (TLS) protocol is the de facto standard
for global Internet security. Despite its performance and security improvements
over previous versions, there are still challenges regarding user privacy and se-
curity against future quantum attackers. Although there are several initiatives to
address these challenges, there is no specialized tool to analyze these new fea-
tures. This paper presents the TLS 1.3 Handshake Analyzer, a tool for security
and performance analysis of TLS connections. Users can obtain security infor-
mation about their connections, and server administrators can use it to validate
the effects of TLS in their network applications, such as handshake timings and
the sizes of transferred cryptographic objects.

1. Motivation

The Secure Data Network System (SDNS), which is regarded one of the antecedents
of today’s Transport Layer Security (TLS) protocol, was developed by a collaborative
initiative of US agencies in 1986. TLS gained prominence under a different name, Secure
Sockets Layer (SSL), which was initially published in 1995. TLS 1.3 [Rescorla 2018]
was released to the public after 23 years, and it is now the most recent version of the
Internet’s most-used security protocol.

Several sources indicate the widespread usage of TLS on the Internet. Web
applications and Internet browsing are typical use cases, however TLS can also be
used in embedded devices, automobile electric charging systems, and microservices
[Naylor et al. 2014, Chan et al. 2018, Paracha et al. 2021]. Undoubtedly, Internet users
will continue to utilize TLS in the near future.

Throughout the years, the ongoing improvement of TLS has resolved security vul-
nerabilities, such as the Bleichenbacher attack (solved in TLS 1.3 [Rescorla 2018]). Still,
TLS 1.3 does not adequately protect user privacy, and it is vulnerable to the threat of quan-
tum computers, according to security experts. In addition to these problems, non-expert
users may be unaware of whether their connections leak information (such as the websites



they browse) or whether they are employing quantum-vulnerable algorithms. An adver-
sary could record TLS packets today and break TLS confidentiality in the future, even if
there is no known quantum computer capable of breaching today’s security parameters.
This assault is known as record-now-decrypt-later [Bindel et al. 2019], and it poses the
greatest threat to Internet security from quantum computers.

Fortunately, initiatives exist to address both the quantum threat and pri-
vacy concerns. One example is the TLS Encrypted Client Hello (ECH) extension
for user privacy [Rescorla et al. 2022] and the Open-Quantum Safe (OQS) Project
[Stebila and Mosca 2016] to safeguard users against future quantum assaults. However,
most users have little to no knowledge about the security of their TLS connections. More-
over, these approaches may have a negative impact on network performance. The impact
is mostly driven by the larger amount of data that must be sent by these more recent meth-
ods. Even though these methods are not yet standardized in TLS, it is likely that they
will be used in the near future. ECH is being implemented and quantum-safe experiments
have been conducted by major internet corporations [Braithwaite 2016, Patton 2022].

We introduce the TLS 1.3 Handshake Analyzer tool, which is designed to help
end users to better understand the security and performance issues of TLS connections.
In addition, web-application managers can assess the impact of ECH and quantum-safe
algorithms on performance in comparison to current TLS handshakes. By examining TLS
packets with our tool, users will be able to determine whether or not their connections
employ privacy and quantum-safe techniques. The key features are:

• Supports analysis of TLS 1.3 handshakes, with or without TLS keylog files;
• Indicates whether quantum-safe algorithms from the OQS project are being uti-

lized and if ECH extensions are present in the handshake;
• Based on CIPHERSUITE.INFO webservice [Rudolph and Grundmann 2022], dis-

plays whether insecure symmetric ciphersuites were used; and
• Displays handshake statistics and the size (in bytes) of exchanged TLS objects.

The structure of this document is as follows: Section 2 provides the necessary
context. In Section 3, we describe the design of our tool. In Section 4, the tool is demon-
strated in detail. Section 5 contains conclusions and future work.

2. Preliminaries
This section provides background information on TLS, the Encrypted Client Hello exten-
sion, Post-Quantum Cryptography (PQC), and existing SSL/TLS analyzers.

2.1. TLS 1.3 Overview

The TLS 1.3 protocol offers a confidential and authenticated channel for network appli-
cations. The security properties of TLS include: Authenticated Encryption with Asso-
ciated Data (AEAD); Forward Secrecy (FS), where past communications are not com-
promised if a long-term cryptographic key is compromised; Downgrade protection; Non-
replayability; and others [Rescorla 2018]. TLS 1.3 has three components: the Handshake
Protocol, responsible for establishing TLS sessions; the Record Protocol, which protects
application data with symmetric cryptography; and the Alert Protocol, which specifies
error conditions and counteractions.



The handshake protocol specifies the client’s first interaction with the server.
The client initiates sending a ClientHello message, containing an ephemeral pub-
lic key and additional metadata, such as the Server Name Indication (SNI). The server
then responds with a ServerHello (including the corresponding ephemeral key), a
Certificate (usually in the x509 standard format), a CertificateVerify (i.e., a
digital signature), EncryptedExtensions, and a Finished message. These mes-
sages conclude the handshake (from the perspective of the server). If the client verifies and
accepts those messages, he sends his Finishedmessage, accompanied by encrypted ap-
plication data, and then the session is established between the two parties. Additionally,
the handshake protocol also specifies the client authentication scenario and connection
resumption mode [Rescorla 2018].

2.2. Encrypted ClientHello Extension
One problem with the TLS 1.3 handshake is that it discloses (in clear) information about
the connection, such as SNI and Application-Layer Protocol Negotiation (ALPN) lists,
raising privacy concerns. SNI, for instance, displays the user’s connection destination.
Knowing this problem, different entities proposed solutions, but none of them are stan-
dardized by the Internet Engineering Task Force (IETF) yet. One promising solution is
the Encrypted ClientHello (ECH) extension [Rescorla et al. 2022], which is already being
adopted by companies such as Cloudflare [Patton 2022].

As the name suggests, the solution encrypts the ClientHello message under
the public key of a co-located server (called a client-facing server). The purpose of this
co-located server is to be in the middle of the communication (like a proxy), hiding the
desired termination server that the client wants to connect to. So, the public key is dis-
tributed using a DNS-over-HTTPS (DoH) service, and thus clients have to obtain this
public key prior to the communication. After obtaining the public key, the clients then
create an ECH-inner message (encrypted) and an outer ClientHello message. The
outer contains the inner, and the client-facing server can process which termination server
the client wants to connect to. Therefore, the ECH extension reveals only that a client is
connecting to a particular service provider, but it does not reveal the desired termination
server. The termination server responds in the same way as the regular TLS 1.3 handshake
but with some limitations. For instance, TLS 1.2 servers cannot use the ECH extension.

2.3. Post-Quantum Cryptography (PQC)
Several network protocols (such as TLS) rely on classical public-key cryptography not
only for peer authentication but also for Key Exchange (KEX) mechanisms. Since classi-
cal cryptography is known to be vulnerable when a Cryptographically-Relevant Quantum
Computer (CRQC) [Mosca 2018] is available, TLS (and the other protocols) are also
vulnerable. Mainly, public-key schemes like RSA and ECDSA are vulnerable to Shor’s
algorithm [Shor 1994], but also symmetric primitives are affected. In theory, Grover’s
algorithm [Grover 1996] reduces the security of symmetric primitives by half.

In order to solve this issue, researchers started to study new schemes of cryptog-
raphy, called Post-Quantum Cryptography (PQC) or Quantum-Safe Cryptography (QSC)
[Stebila and Mosca 2016]. These schemes can be executed on standard computer archi-
tectures (non-quantum) and they are based on different mathematical problems which are
not known to be vulnerable to quantum computers.



The most notorious effort related to PQC is the standardization process conducted
by the US National Institute of Standards and Technology (NIST) [NIST 2016]. Recently,
the end of the third round of the process defined which algorithms will be standardized:

• Kyber, for Key Exchange and Public-Key Encryption; and
• Falcon, Dilithium and Sphincs+, for authentication (digital signatures).

Additionally, NIST defined a fourth round in which other algorithms will be
analyzed for standardization. BIKE, Classic McEliece, HQC, and SIKE are KEX
mechanisms that passed to the fourth round (although SIKE was broken shortly after
[Castryck and Decru 2022]). In this fourth round, NIST expects new proposals for dig-
ital signatures, with a particular interest in schemes in which the signatures have small
sizes (compared to other PQC schemes). Nevertheless, the standardization process has
not yet concluded. It is expected that, from now on, network protocols will gradually start
adopting PQC schemes in their designs.

2.4. Existing Solutions
There are several tools available to test SSL/TLS connections [Geekflare 2022]. Table 1
provides a qualitative comparison of existing solutions. Some are open source, and most
of them display security information (at least ciphersuites available). The majority of the
tools do not show performance information and none mention ECH support.

Table 1. Comparison of existing SSL/TLS tools

Tool Open
source?

Shows
security

information?

Checks
PQC/ECH
Support?

Shows
performance
information?

User
Interface

ssl-handshake 3 7 7 Yes CLI
howsmyssl 3 3 7 7 Web
SSL Labs 7 3 7 7 Web
SSL Checker 7 3 7 7 Web
TLS Scanner 7 3 7 7 Web

SSL Tester 7 3 7
Yes (server-
to-server) Web

Observatory 3 3 7 7 Web/CLI
CryptCheck 7 3 7 7 Web
SSLChecker.com 7 3 7 7 Web
OQS-OpenSSL 3 3 PQC only Yes CLI
TLS 1.3 Handshake Analyzer
(This work) 3 3 3 Yes Web/CLI

In particular, the OQS-OpenSSL fork [Stebila and Mosca 2016] allows checking
security information and measuring performance using CLI commands. It includes PQC
algorithms but no ECH support is provided (at this time of writing). Another interesting
tool is the SSL Tester [Wormly 2022], since it provides security and performance infor-
mation, obtaining handshake times for each ciphersuite supported by the server. It also
shows the handshake sizes when choosing different ciphersuites. However, all timings are
obtained from where the tool is hosted to the target website. Therefore, it does not reflect
the handshake time considering the geographical location of the user. In the next section,
we describe the tool proposed in this work.



3. Design and Implementation
Figure 1 shows the high-level overview of the tool. The user interacts through a web in-
terface, but a CLI is also provided. The tool starts parsing the input capture file (.pcap
or .pcapng files), with or without the corresponding TLS keylog file, aided by the
pyshark module [Green 2022]. The tool retrieves handshake information and com-
pares it with a local Object ID (OID) database, which is a list of quantum-safe algo-
rithm OIDs based on the OQS project [Stebila and Mosca 2016]. Optionally, it checks
for the ECH extension and also makes an HTTP POST request to CIPHERSUITE.INFO
[Rudolph and Grundmann 2022] to retrieve security information about the ciphersuites in
use: recommended, secure, weak, or insecure. The difference between weak and insecure
is that the latter means a ciphersuite known to be vulnerable or “broken with minimal
effort”; and the former means that it is an old ciphersuite and is not recommended by the
IETF anymore. After retrieving all the required information, the tool computes handshake
statistics (performance information) and presents them to the user.

Retrieve handshake(s)
information

TLS 1.3 Handshake Analyzer

Ciphersuite.info

TLS Message 
Parsing

POST request

Check
 Ciphersuite(s)

Quantum-safe
Algorithm

OIDs

Ciphersuites
KEX algorithm
Digital Signature
Timings
Sizes
ECH ext.


pyshark 

moduleinput TLS

keylog
(optional)

input pcap file

Compute
handshake(s) 


statistics

...  ....  ....
...  ....  ....
...  ....  ....

0xC0 insecure
0x0D weak
 .	   ...


1. Web Interface

2. CLI

Figure 1. High-level overview of the tool design

The tool parses each TLS 1.3 complete handshake in the capture file. Currently,
older versions of TLS and the resumption handshake are not supported. Normally, the
resumption uses a Pre-Shared-Key (PSK) mode that can be used after a full handshake.
Therefore, we focused on the complete handshake. After parsing, the following informa-
tion is displayed to the user:

• Security Information:
– Cryptographic algorithms used: the handshake metadata contains the KEX

algorithm negotiated between the parties. Also, it includes the symmetric
ciphersuite and, when the TLS keylog file is provided, the tool is able to de-
crypt CertificateVerify and Certificatemessages, recovering
the digital signature (and certificates) used for authentication. It is worth
noting that the tool indicates whether or not quantum-safe algorithms are
in use.



– Ciphersuite check: optionally, the tool checks if the selected cipher-
suite is secure, based on the information provided by CIPHERSUITE.INFO
[Rudolph and Grundmann 2022].

– ECH check: optionally, the tool parses the handshake looking for the ECH
extension message in ClientHello. The presence of the extension in-
dicates that this privacy-preserving method is supported.

• Performance Information: two metrics are used to evaluate performance, namely
handshake timings and sizes. Regarding timings, they are based on the data pro-
vided in the capture file and are computed by subtracting the timestamps of the
server’s Finished message minus the ClientHello message. When more
than one handshake is found, it shows average and standard deviation statistics.
For sizes, the tool sums all handshake messages (in bytes) and plots their sizes.

The TLS 1.3 Handshake Analyzer is developed using the Python language (re-
quired version 3.9 or above). The web interface uses Dash [Plotly 2022], which is based
on the Flask framework. Our tool can be executed directly or built using a Docker file,
allowing easier deployment and usage. Additional documentation, such as README file
and UML class diagrams, is provided at our repository [Giron et al. 2022].

4. Demonstration
We demonstrate our tool by analyzing two capture files: one handshake using PQC
and the other with classical cryptography. Both captures were performed using
the TEST.OPENQUANTUMSAFE.ORG webserver, which allows one to benchmark post-
quantum TLS. Table 2 summarizes the handshake characteristics, and Figure 2 shows the
per-message size graph created by our tool.

Table 2. Information retrieved from sample capture file

HS Ciphersuite KEX Algo. Auth algo. ECH Support? HS Time (ms)

1 TLS AES256 GCM SHA384 kyber512 dilithium2 No 306.5
2 TLS AES256 GCM SHA384 x25519 ecdsa secp256r1 sha256 No 307.4
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Figure 2. Per-message sizes of TLS sample capture



The tool indicates to the user whether the handshake used post-quantum al-
gorithms. In this demonstration, HS #1 is quantum-safe but HS #2 is not. Addi-
tionally, both handshakes did not show support for the ECH extension. Nonetheless,
the ciphersuites in use are secure. According to CIPHERSUITE.INFO, the ciphersuite
TLS AES256 GCM SHA384 is recommended for use.

Regarding performance information, the tool shows the handshake time (in mil-
liseconds) and sizes. Note that both handshakes have similar performance, but in this
test server only the HS #1 signature and KEX are PQC. The certificate chain of both
handshakes remain with the same classical algorithm. No average or standard deviation is
computed in this case because they are two separate capture files with only one handshake
each. Nevertheless, the tool does support capture files with more than one handshake (and
then providing additional statistics). Those and other sample capture files are available at
our repository [Giron et al. 2022], along with a video demonstration of the tool.

5. Conclusions
Due to the transparency of TLS usage in web applications, users are unaware whether
their connections have quantum-safe and privacy-friendly mechanisms. Aided by our TLS
1.3 Handshake Analyzer tool, users can now visualize detailed security and performance
information about their connections, given that they provide the capture files.

Future work aims to improve the tool’s usability: since pyshark provides a live-
capture mode, we plan to integrate this feature into our analyzer. Still, there will be an
additional requirement regarding the TLS keylog file configuration for this new feature.
The live mode would allow users to check the security and performance of their connec-
tions in real-time.

6. Acknowledgments
Thanks go to the Federal Institute of Education, Science and Technology of Rio Grande
do Sul (Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, IFRS)
and to the Federal University of Technology - Parana (UTFPR), which allowed doctoral
studies for Frederico Schardong and Alexandre Augusto Giron, respectively.

References
Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., and Stebila, D. (2019). Hybrid key

encapsulation mechanisms and authenticated key exchange. In Ding, J. and Stein-
wandt, R., editors, Post-Quantum Cryptography, pages 206–226, Cham. Springer.

Braithwaite, M. (2016). Experimenting with post-quantum cryptography.
Available at: https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html. Accessed on 2021-02-25.

Castryck, W. and Decru, T. (2022). An efficient key recovery attack on sidh (preliminary
version). Cryptology ePrint Archive, Paper 2022/975. https://eprint.iacr.
org/2022/975.

Chan, C.-l., Fontugne, R., Cho, K., and Goto, S. (2018). Monitoring tls adoption using
backbone and edge traffic. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 208–213. IEEE.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975


Geekflare (2022). 10 online tools to test ssl. Available at: https://geekflare.
com/ssl-test-certificate/. Accessed on 2022-08-27.

Giron, A. A., Schardong, F., and Custódio, R. (2022). Tls handshake ana-
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