
LabEAD AutoTest: Online Tests of Hardware Designs

Victor T. Hayashi1, Wilson V. Ruggiero1, Felipe V. de Almeida1

1 Escola Politécnica – Universidade de São Paulo (USP)

{victor.hayashi,wruggiero,felipe.valencia.almeida}@usp.br

Abstract. The outsourcing of hardware production to third-party foundries (of-
ten overseas) for cost reduction presents additional challenges to the security of
hardware devices. If Hardware Trojans are added to hardware devices during
the fabrication phase, design-time approaches are not enough. LabEAD Au-
toTest is an open-source tool useful to perform automated tests in a hardware
design in runtime. It is based on the MQTT protocol, the remote lab LabEAD
and Python Notebook. An example of a glitch in an adder described in the
VHDL Hardware Description Language was used to show the soundness of the
proposed tool. LabEAD AutoTest may be useful to aid in the hardware device
validation process.

1. Introduction

The outsourcing of hardware production to third-party foundries (often overseas)
for cost reduction presents additional challenges to the security of hardware de-
vices [Fyrbiak et al. 2019, Hu et al. 2020]. If Hardware Trojans are added to hard-
ware devices during the fabrication phase, design-time approaches are not enough
[Kulkarni et al. 2016].

Another relevant attack scenario is a malware in an open-source tool used in the
hardware development process [Hu et al. 2020]. It is feasible to include a malicious code
in a specific open-source Integrated Development Environment (IDE) that adds a Hard-
ware Trojan when generating the final bitstream, so that it becomes impossible to detect
the incorrect behavior earlier (i.e., in the simulation phase) [Krieg et al. 2016].

Moreover, a static analysis approach may result in a NP-complete problem.
For example, a proposed solution that aims to detect a Hardware Trojan in a larger
hardware design using graph theory results in the subgraph isomorphism problem
[Fyrbiak et al. 2019].

Considering the reasons presented, it is reasonable to propose an automated tool
to test a hardware design in runtime to complement the static analysis approaches. Such
open-source tool may be useful to aid in the hardware device validation process. Figure
1 presents some methods and tools one may use in the hardware development process,
including the proposed testing tool.



Figure 1. Tools and Mechanism in the Hardware Development Process

The text is organized as follows. In Section 2, the automated testing tool is pre-
sented. The demonstration is described in Section 3. Section 4 contains the open-source
files, documentation and demonstration video. Final considerations are presented briefly
in Section 5.

2. LabEAD AutoTest

2.1. Building Blocks

A Field-programmable gate array (FPGA) is an integrated circuit which can be configured
to act as a myriad of different digital systems. An FPGA board contains the FPGA to-
gether with peripherals like keys, buttons and LEDs, which can be used to map the FPGA
inputs and outputs.

One way to configure the FPGA is using a Hardware Description Language (HDL)
such as VHDL. VHDL was developed by the US Department of Defense for the purpose
of documenting digital systems. It was standardized latter by the IEEE, enlarging its usage
by the circuit designers.

The advantages of using a FPGA together with HDL is how quickly we can de-
scribe, simulate, synthesize and test a digital system. It is even possible for the project
designer to describe a complex system with a small number of code lines, leaving the
work to the synthesizer, that will generate an equivalent system using components such
as registers, multiplexers, adders and others.

LabEAD [Hayashi et al. 2020] is an educational project developed with the pur-
pose of allowing teachers and students to interact with lab infrastructure remotely. Taking
the digital system design as an example, students in their residences can interact with
the FPGA board located in the lab using the developed architecture. The design cycle
composed by VHDL description of the system, simulation, system syntheses and FPGA
programming can all be done with remote commands.

We opted to use non-proprietary components and protocols in a way that our open-
source project could be easily replicated. The main communication protocol used was the
Message Queuing Telemetry Transport (MQTT) [OASIS 2014]. MQTT is a lightweight
protocol based on the publisher-subscriber pattern. Each device connected to the network



that uses it is called a MQTT Client, and each client can publish or subscribe to a different
number of topics. The topic here acts as a label, which the message router called MQTT
Broker will use to route the messages between publishers and subscribers. Many pro-
gramming languages have libraries that implement MQTT Clients. Python, for example,
has the paho-mqtt library1, which we used in the project.

A Python notebook is a virtual environment that is used for programming. There
are different solutions that implement notebook platforms such as Jupyter Notebook or
Google Colab. The native notebook extension (.ipynb) was developed to run Python code,
which means that it is possible to create a MQTT Client by using the paho-mqtt library
inside a notebook.

2.2. Architecture
The architecture of the proposed testing tool is illustrated in Figure 2. The testbench
has a computer with a IDE for hardware simulation, synthesis and load to the FPGA
(Device under Test). During tests, the FPGA may be monitored by a webcam and the I/O
signals are given by a supporting Internet of Things device (in red), which communicates
with the other devices using the MQTT protocol. Manual tests can be performed by the
smartphone interface, which publishes commands in specific topics. Automated tests can
be performed using the LabEAD AutoTest, which consists of two Python Notebooks.
All commands from manual or automated tests are relayed to the specific testbench and
consequently to the desired device under test by the MQTT Broker of the LabEAD.

Figure 2. LabEAD AutoTest Architecture

All tools used in the development of the proposed testing tool are open-source.

2.3. Main Functions
Based on a test description, the Subscriber notebook connects to the MQTT broker and
subscribes to the Device under Test (DuT) output topics of interest. The Publisher is con-

1https://pypi.org/project/paho-mqtt/



nected to the broker before the test initiation. For each test, the Publisher publishes in
specific DuT input topics. These commands are relayed to the supporting IoT installed in
the testbench, which changes the DuT inputs accordingly. The changes in the DuT’s out-
puts are detected by the supporting IoT, which publishes the results in DuT output topics.
The broker relays the results to the Subscriber Notebook. After the last publication, the
Publisher sends the test id, and this information is sent to the Subscriber notebook. Upon
receival, the Subscriber notebook compares the expected result of the test description and
the obtained result to analyze if the behavior of the DuT is correct. This test sequence is
portrayed in Figure 3.

Figure 3. Test Sequence Diagram

2.4. Development Process

The developed digital system to test the soundness of the proposed tool was a 4-bit adder.
An HDL structural description of the system was used, first describing the full-adder in
a block, then connecting the blocks using the VHDL port map resource. Figure 4 shows
the system Register Transfer Level (RTL) viewer.



Figure 4. 4-bit adder RTL viewer

Two versions of the same system were developed. The first one is correct version,
where the two 4-bit numbers are inputted in the system and the correct sum, with the carry
out, is always outputted. The second one is the glitched version that creates a situation
with the wrong sum output.

We opted to describe a comparator that checks if one of the inputs assumes one
specific value for the situation that triggers the glitch. In this case, the comparator emits
a signal responsible for inverting the output bits that correspond to the sum output (0
becomes 1 and 1 becomes 0), showing the result in a 1’s complement notation.

Figure 5 shows a high-level vision of the digital system second version.

Figure 5. High-level view of the 4-bit adder glitched version



3. Demonstration

3.1. Required Materials

The required materials are:

• The correct 4-bit adder VHDL description available on this project’s GitHub.
• The glitched 4-bit adder VHDL description available in this project’s GitHub.
• The Subscriber and Publisher notebooks available in this project’s GitHub.
• A MQTT broker with enabled authentication using user-password. It is possible

to use the University of São Paulo’s broker or build from the open-source HiveMQ
community edition2 or the Eclipse Mosquitto3.

• A testbench of the LabEAD: computer with remote access and IDE for hardware
development, webcam and an IoT device using the PubSub MQTT library4. For
replication of LabEAD, please refer to its GitHub5. A demonstration with the
LabEAD deployed in the University of São Paulo may also be scheduled.

• (Optional) a smartphone or web client of MQTT (e.g., HiveMQ MQTT client6)
for complementary manual tests.

It is possible to use a cloud notebook tool, such as the AWS SageMaker or Google
Colab, or the open-source Jupyter Notebook locally to run the Subscriber and Publisher
notebooks.

3.2. Planned Demonstration

The planned demonstration is described in the following steps:

1. Set the correct 4-bit adder in the FPGA;
2. Begin MQTT connection of the Subscriber notebook;
3. Begin MQTT connection of the Publisher notebook;
4. Perform the tests using the Publisher notebook;
5. Disconnect the Subscriber and the Publisher notebooks from the MQTT broker;
6. Change to the glitched 4-bit adder in the FPGA and repeat steps (2) to (4).

The results of the correct and the glitched versions of the 4-bit adder using the
LabEAD AutoTest tool are presented in Figures 6 and 7, respectively. The notebook
results are depicted on the left side of the figures, the webcam views are presented in the
center, and the MQTT mobile client screenshots (optional) are in the right side.

2https://www.hivemq.com/developers/community/
3https://mosquitto.org/
4https://github.com/knolleary/pubsubclient
5https://github.com/vthayashi/labead-labdig
6https://github.com/hivemq/hivemq-mqtt-client



Figure 6. Results of the correct version of the 4-bit adder

Figure 7. Results of the glitched version of the 4-bit adder

4. Open-source

4.1. Where is the code?

The code is available in this project’s GitHub:

https://github.com/vthayashi/labead-autotest

4.2. Where are the docs?

The instructions are available also in the GitHub repository:

https://github.com/vthayashi/labead-autotest

4.3. Do you have a video?

A video with the demonstration is available in YouTube (Brazilian Portuguese):

https://youtu.be/pjhnV2qPIEY

https://github.com/vthayashi/labead-autotest
https://github.com/vthayashi/labead-autotest
https://youtu.be/pjhnV2qPIEY


5. Final Considerations
This paper presented LabEAD AutoTest, a tool for performing automatic online tests of
hardware designs described in VHDL and deployed on a FPGA development board. It is
an open-source tool based on the MQTT protocol, the remote lab LabEAD and Python
Notebook. An example of a glitch in an adder described in the VHDL Hardware Descrip-
tion Language was used to show the soundness of the proposed tool. LabEAD AutoTest
may be useful to aid in the hardware device validation process.

The limitation of the tool is related to its underlying testing approach. It is not
reasonable to perform all possible tests to detect Hardware Trojans. However, in future
work it is possible to integrate data collection in the Subscriber module. The data obtained
in previous tests may be useful to optimize the testing strategies using a statistical learning
method.

Another opportunity in future work is to expand the tool to perform a random test-
ing approach to discover behaviors that are not in the scope of the known and expected
functionalities (i.e., unknown behaviors beyond the device specification). One such ex-
ample is a device whose specification is of a 4-bit adder, but that works as a subtractor
given a specific trigger.

References
[Fyrbiak et al. 2019] Fyrbiak, M., Wallat, S., Reinhard, S., Bissantz, N., and Paar, C. (2019).

Graph similarity and its applications to hardware security. IEEE Transactions on Com-
puters, 69(4):505–519.

[Hayashi et al. 2020] Hayashi, V., Almeida, F., Arakaki, R., Teixeira, J. C., Martins, D.,
Midorikawa, E., Cugnasca, P. S., and Canovas, S. (2020). Labead: Laboratório remoto
para o ensino de engenharia. In Anais dos Workshops do IX Congresso Brasileiro de
Informática na Educação, pages 187–194. SBC.

[Hu et al. 2020] Hu, W., Chang, C.-H., Sengupta, A., Bhunia, S., Kastner, R., and Li, H.
(2020). An overview of hardware security and trust: Threats, countermeasures, and
design tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 40(6):1010–1038.

[Krieg et al. 2016] Krieg, C., Wolf, C., and Jantsch, A. (2016). Malicious lut: A stealthy
fpga trojan injected and triggered by the design flow. In 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE.

[Kulkarni et al. 2016] Kulkarni, A., Pino, Y., and Mohsenin, T. (2016). Svm-based real-
time hardware trojan detection for many-core platform. In 2016 17th International
Symposium on Quality Electronic Design (ISQED), pages 362–367. IEEE.

[OASIS 2014] OASIS (2014). Mqtt version 3.1. 1. URL http://docs.oasis-
open.org/mqtt/mqtt/v3, 1:29.


	Introduction
	LabEAD AutoTest
	Building Blocks
	Architecture
	Main Functions
	Development Process

	Demonstration
	Required Materials
	Planned Demonstration

	Open-source
	Where is the code?
	Where are the docs?
	Do you have a video?

	Final Considerations

