Event2Ledger: Container traceability using Docker Swarm
and consortium Hyperledger blockchain

Marco A. Marques', Marcos A. Simplicio Jr.!, Charles C. Miers?

'Escola Politécnica — Universidade de Sdo Paulo (USP)
Sdo Paulo — SP — Brazil

2Universidade do Estado de Santa Catarina (UDESC)
Joinville — SC — Brazil

Abstract. Cloud computing employing container-based virtualization enables
dynamic allocation of computational resources, providing scalability and fault
tolerance, etc. However, this flexibility could imply a drawback: container en-
vironment monitoring is highly challenging due to the large flow of calls and
(de)allocations. In this work, we present event2ledger, a blockchain-based so-
lution that implements a distributed log with data sent by authorized and cus-
tomized collectors to a permissioned consortium blockchain, responsible for or-
dering and storage in a distributed and auditable manner. A proof-of-concept
is implemented with a Hyperledger Fabric consortium blockchain, composed
and maintained by the scenario actors (i.e., Providers, Users, and Developers),
which stores signed container life cycle events.

1. Introduction

Cloud computing applications usually are designed using a micro-services architecture
where instead of a unique monolith file containing all functions and services, are several
small ephemeral components (called micro-services) executed on demand. This charac-
teristic offers many benefits to cloud applications, such as scalability and availability, but
monitoring arises as a challenge, as these environments are composed of many applica-
tions with hundreds of micro-services, producing a high volume of data. In this context,
monitoring consists of observing the execution of the virtual environment, collecting, and
making available for analysis, periodically, a set of predefined variables.

Usually, cloud computing providers offer a monitoring system to the consumers,
but they can also deploy an independent monitoring service [Dawadi et al. 2017]. This
possibility brings autonomy to the actors, allowing the design and development of new
monitoring solutions adapted to their needs. However, when there are different concur-
rent monitoring solutions to the same environment, disagreements regarding the collected
information could happen, leading to different analyzes of the same scenario. Central-
ized monitoring solutions, by its side, depend on trusting to one actor all responsibility
for not only the integrity but also availability and confidentiality of the collected data.
Figure 1 represents the proposed scenario in which a distributed application, hosted on
a cloud computing provider, is offered by the developer to a customer. The presented
scenario shows the interaction between two main groups of actors, called Providers and
Consumers. The Consumer group is composed of the developers, who host their applica-
tions at the cloud computing provider, and the users of these applications.

Figure 1. Use case scenario.

/ Provider \

[Orquestrator] [Registry]

\ 4 \ 4

{ Container mechanism } { Container mechanism }

Host Host ¢
| |IEHI | £ |2
1\ \4 vY_A 1\ A\ \ 4 1\
\ | | j
T A\ T T
p [\ | \ N
/ \ Consumer I \

[Cow) Cowr) | Comotor [oomton]])

.

Each actor has different perspectives and needs, and the monitoring data is crit-
ical in some decision-making processes. In this scenario, their actions depended on the
monitoring solution reliability, as its data are important input metrics for billing, perfor-
mance, and usage analysis. Considering the proposed scenario, the problem presented by
this work is: how to guarantee the validation and consensus among the actors participat-
ing in container virtualization environments about the order of container life cycle events
and its data, allowing to audit them by any of the parties, and how to maintain this data
preserving its integrity, authenticity, availability, and traceability.

This work is organized as follows: Section 2 presents the generic proposal so-
lution to the problem. Section 3 presents the proposed architecture model adopted by
Event2ledger, and details about the component integration. Section 4 details the min-
imum computational resources and prerequisites needed to execute the demonstration
and characteristics about the blockchain and collector implementation. This section also
brings information about the public repository containing the necessary files to execute
the presented demonstration. Then, Section 5 discusses details about the solution im-
plementation and execution, while Section 6 presents the conclusions about event2ledger
implementation and how it can be adapted to several different scenarios.

2. Proposed Solution

This work presents a distributed monitoring solution called event2ledger, which allows
the joint and consensual actors to participate in container event validation, ordering, and
storage processes. In the proposed solution, each cluster host executes an instance of
the even2ledger collector. This collector connects directly to the local Docker daemon
events endpoint and starts to listen for new income events. For each event in that host
is generated a JSON formatted event register that is used by the collector to populate
a new transaction proposal. Then this proposal is signed by the collector and sent to a
Hyperledger Fabric consortium blockchain that performs distributed ordering, validation
and storage, according to the policies defined in blockchain creation.

Thus, considering the proposed proof of concept scenario presented in Figure 1,
the Provider is responsible for the cluster hosts’ execution and maintenance, the container
mechanism and orchestrator, and other infrastructure components necessary to execute
the environment. The Developer, on the other hand, is responsible for creating and de-

ploying applications that are available for User execution on the cluster hosts. The User,
by its side, executes the Developer’s applications in the Provider’s environment. From
the Event2ledger point of view, the distributed consensus mechanism and the distributed
ledger responsible for the storage of collected data are composed of a set of hosts main-
tained by all the actors (as presented in Section 3) that, following predefined security
policies, grant the distributed model of the proposed solution. Typically Docker con-
tainer life cycle composition has four states: Execution, Paused, Stopped, or Deleted.
The transition between these states generates events that are the objective of the presented
collector process. Figure 2 depicts the possible transitions between the life cycle phases

of Docker containers.
Figure 2. Container life cycle. Adapted from [Mouat 2015].

Pause
Create and start container
Y

Execution
Finish process

problems

\ 4
Restart ;
container Termmatel(—i Error }

The transition actions between the life cycle stages can be performed by user ac-
tion through a Command Line Interface (CLI) or using an orchestrator, with the Docker
mechanism being the component responsible for managing the life cycle of the contain-
ers. Each object managed by Docker has a specific set of events related to its life cycle.
Among the events available for the container object, this work focuses on the collection of
creation, pause, finalization, and destruction events, specifically: create, destroy, pause,
unpause, start, and stop. The proof of concept aims to demonstrate how ease is to adapt
the collectors and chaincode, allowing the collection of any data regarding events, logs,
and other similar order-based needs.

3. Architecture

The generic solution model, presented in Figure 3, details how the application architec-
ture is deployed and executed in a proof of concept environment. The implementation
environment considers a Docker cluster composed of three hosts, one as the orchestration
manager and the other responsible for the application container execution that generates
the events (1). Each host runs a collector that connects directly to the local container
mechanism, receiving generated events in real time and in a non-intrusive way (2). To
guarantee the collector’s authenticity, asymmetric encryption is employed. For this, the
collector that receives an event creates a transaction containing the event data, the chain-
code function to be executed, and the necessary parameters, signing this transaction with
its private key validated in a future step of blockchain transaction architecture. After gen-
erated and signed, the collector sends the transaction to the blockchain endorsing nodes
(3). When receiving the transaction, these nodes execute the called chaincode function
signing the results, but the blockchain world-state is not updated yet. The executed trans-
actions are forwarded to a consensus mechanism that allows the actors to agree on their
order (4). Finally, the events are validated and stored in a distributed repository (5) com-
posed of three instances belonging to the actors.

Figure 3. Generic solution model.

Orchestrator

[Container mechanism |

JLX
Collector

/ \
Host J \ Host
(Container mechanism] (Container mechanism
@Dy @y @i ®) @i RO O\
‘/Application \(Application | (Application | Application |

(EIREjENRIE} °°é'§{‘°’ g;}“‘” (] | [t e |
] J ¥

y
Blockchain

The fact that each actor has a complete copy of the repository, together with
the cryptographic chaining mechanism and the permissions policies applied to the
blockchain, allows the auditing and tracking of changes to the stored data, improving
the integrity, availability, and auditing characteristics. The proposed model allows high
flexibility due to the possibility of creating customized collectors and chaincode functions
according to actors’ needs. Also, in agreement with a predefined set of policies defined
in the blockchain configuration, actors can update the existing chaincode functions or
discard old data that may not be useful anymore.

4. Demonstration & Implementation

The Event2ledger demonstration in this work implements the proof of concept scenario
presented in Figure 3. This demonstration aims to implement a Hyperledger Fabric
blockchain in a Docker environment where collectors connect to container event sources
sending them to Event2ledger. With the environment and Event2ledger up and running,
two test scenarios are performed, to demonstrate how the events are generated on the
Docker side being collected, ordered, and stored in the blockchain nodes.

Considering that the event2ledger collector instances running in the cluster nodes
execute the same way, this demonstration focus on the manager node instance that runs
all solution components. This implementation can be replicated in other nodes from the
same environment or used as a reference for different and new models. The available
repository includes the necessary files to run the proposed Hyperledger Fabric blockchain
(as detailed in Section 4.2), and the collector model presented in 4.3, which will connect to
the local Docker daemon and start generating transactions as Docker events are collected.
The event2ledger documentation is available at the Github repository!, containing the
prerequisites and the tutorial to reproduce this demonstration and also to implement it in
all Docker Swarm cluster nodes.

Thttps://github.com/marques-ma/e21_v0.5/blob/main/README.md

4.1. Environment

The proof of concept is implemented in a virtualization environment using Docker con-
tainer and Docker Swarm orchestrator [Docker 2022]. The cluster that composes the
Docker Swarm has, in total, three nodes: one manager and two workers. As all blockchain
nodes are implemented in Docker containers and executed in the Docker Swarm manager
node, this node represents the minimum hardware requirement for deployment and exe-
cution of this demonstration, allowing the event flow generation, collection, and storage.
Table 1 presents the computational resources allocated to each node, considering the man-
ager as the minimum requirement and all the nodes for the complete installation.
Table 1. Computational resources allocation in cluster mode.

Node vCPU vVRAM Disk

Manager 2 8 GB 60 GB
Worker 1 2 2GB 20 GB
Worker2 2 2 GB 20 GB

The computational resources proposed in Table 1 consider the execution of
the complete proposed infrastructure, including an orchestrator (i.e., Docker Swarm),
blockchain peers and orderer nodes, event2ledger collectors, and any other containers,
applications, and services to support the proof of concept execution and simulation of
events for collection and storage. All three cluster nodes run, as a base, a GNU/Linux
Debian 11. For demonstration purposes, this work implements only the manager node,
which runs a Docker instance and all the blockchain, reducing to the minimum the total
resource needed to execute the complete flow of event generation, collection, and storage.

4.2. Hyperledger Fabric Blockchain

For ordering, validation, and storage of collected events, event2ledger uses a Hyperledger
Fabric consortium blockchain version 2.2, in which nodes are containers created and ex-
ecuted in the Docker environment to be monitored, running specifically in the Docker
Swarm manager node (Figure 3). The prerequisites necessary to install the blockchain,
its API and execute the chaincode are listed in [Hyperledger 2022b]. With these require-
ments met, is possible to deploy a chaincode and perform all the cryptographic, ordering,
and storing functions necessary to execute the proof of concept.
Figure 4. Proposed blockchain transaction flow.

event2ledger
collector

@ @ @
SR ™
‘\ Peer ‘

. [Couchbel

@ ® @) PR A
Orderer nodes Peer ‘
o) RN
L Coucton lcouchos |/
C—JProvider CJUser [Developer

The proposed blockchain model, presented in Figure 4, represents the blockchain
components and the main steps performed after an event collection by any collector in-
stance. When the collector receives an event from Docker, it generates a transaction

containing the received data, signing with its private key issued by one of the authorized
Certified Authority (CA), and forwarding it to the Hyperledger Fabric endorsement nodes
(1). The Endorsement nodes execute the requested chaincode function with the received
parameters, sign the result, and send it back. When the minimum number of signatures
defined in endorsement policies are collected, the transaction is sent to ordering nodes
(2) [Hyperledger 2022a], which will generate a block containing ordered transactions,
sending it to all blockchain nodes (3). These nodes will validate the received transac-
tions based on the blockchain policies and store the results in the ledger (i.e., CouchDB)
(4). The described process run in a Hyperledger Fabric secure communication channel,
created during the blockchain implementation, to which the actor’s nodes that compose
the network are connected. This channel runs the chaincode containing a set of func-
tions, allowing the interaction and execution of application-specific tasks. To demonstrate
Event2ledger functionality the available chaincode functions include collected events cre-
ation and visualization. Table 2 summarizes the main configuration parameters.

Table 2. Blockchain parameters implemented in proposed scenario.

Parameter [Value
Number of channels 1
Chaincode language Go
Ledger model CouchDB
Endorsement policy Major Endorsement
Transactions per block 50
Consensus mechanism Raft

The proposed blockchain configuration includes the creation of only one channel,
to which all nodes are connected. The solution uses CouchDB as the blockchain ledger,
allowing the elaboration of complex queries. The endorsement policy adopted requires
transactions to be validated by the majority of participants (i.e., at least two, in a proof of
concept scenario). The block size can have a maximum number of 50 transactions, and
the consensus mechanism adopted is Raft, the Hyperledger Fabric default option. Raft is
a Crash Fault Tolerant (CFT) mechanism operating in a permissioned network that can
perform transaction ordering with low resource consumption.

4.3. Collectors

The Event2ledger collector model is build as a containerized application using a prede-
fined script (available at the Event2ledger Github repository), ensuring the correct instal-
lation of all necessary dependencies. Due to its simplicity, this component can be adapted
to interact with different data sources, converting the received data into transactions and
sending to the blockchain. Each collector instance has an asymmetric key pair used in
authentication and transaction signature. In the proof of concept scenario collector has
two functions: (i) connect to Docker daemon events endpoint to receive all container life
cycle events, and (ii) send collected data as well-formatted transactions to be ordered,
validated and stored by blockchain nodes.

As Docker and Hyperledger Fabric blockchain supports many integration alter-
natives like API and via CLI, this work chose to use a CLI based collector, both for
communication with Docker and with blockchain nodes. Thus, after starting the collec-
tor container, the collection of events is done through the command docker events —filter
‘type=service’ —filter "type=container’ —format *{{json .}}’, which allows the collector
to receive specific events from services and containers in JSON format. The sending is

done through Hyperledger Fabric CLI command peer chaincode invoke, followed by the
necessary arguments, among which the access path to the collector’s private key, used
in the transaction signature, also the endorsement node addresses and the collected event
data. As a result, every service or container event generated by Docker is collected and
validated, and the resulting signed transaction is stored in the blockchain for further anal-
ysis.

5. Solution Analysis

The objective of this work is to demonstrate the viability of event2ledger, implemented
in a cloud-container virtualization environment, with or without a container orchestrator.
This implementation uses Docker Swarm, but other orchestrating tools like Kubernetes
can be used. The solution can also be implemented without an orchestrator, as it connects
directly with Docker daemon. In proof of concept scenario, the goal is to collect events of
”service” and “container” types (i.e., referring to containers and applications life cycle)
directly from the local Docker daemon. To assess the viability of Event2ledger, two test
scenarios were designed:

1. Generation of ”’service” events through application life cycle simulation: Simulate
an application life cycle comprising the creation, resizing, and finalization of an appli-
cation. For this test, an application is created and executed as a single replica. Then,
the number of replicas is changed to three, starting with two new instances. When
there are three replicas in execution, the application is finalized.

2. Container events generation through CLI: Since the collector connects directly to
the local Docker daemon, the event capture performed by event2ledger collectors is in-
dependent of any orchestrator solution. To validate this functionality, the container life
cycle transition should be performed through Docker CLI, specifically those related to
the creation, pause, resume, and finalization.

In either case, the expected result is that all generated events should be collected
by event2ledger collectors running on the node where it was generated. For each event,
a corresponding transaction must be generated, signed, ordered, and validated, and its
results stored in the ledgers and accessible through a chaincode query. After the pro-
posed tests execution, the demonstration presents how to interact with the blockchain and
retrieve collected data and other metrics about the installed chaincode and transactions.

Code 1: Transaction containing collected event.

1 { “Transaction ID”: 7deciw95xncg3in 12 ”Attributes™: {
2 ”Validation Code”: 0 13 “name”: “appdemo”
3 "Payload Proposal Hash™: 14
a52ee818c2dee32aa214154ee86a52ee81 15 1
4 “Endoser”: {"ProviderMSP”,’DeveloperMSP”,"UserMSP"'} 16 “scope’: “swarm”,
5 ”Chaincode Name”: eventdb 17 “time”: 1625360377,
6 “Type”: ENDORSER_TRANSACTION 18 “timeNano™: 1625360377017468923
7 7Value™: { 19 “sender”: “e2]_manager”
8 "Type”: “service”, 20 s
9 ”Action”: "create”, 21 “Timestamp”: ”2021-01-30 16:25:37.356 +0000 UTC”,
10 ”Actor”: { 22 “IsDelete”: "false” }

11 ”ID”: “ciw95xncg3inlpbte8h2kmiba”,

Code 1 presents a transaction containing a collected event. This transaction con-
tains in its payload the collected event and additional data regarding the transaction itself,

such as the validation code, the payload hash, and the timestamp among other relevant
information. During the proof of concept, scenario execution was possible to identify
the successful collection of all generated events as the respective validated transactions
through the interaction with blockchain query functions and with the Blockchain Explorer
tool, as described in detail in Event2ledger documentation, available in the repository.

6. Considerations & Repository

The proposed solution has as a differential the implementation of an append log solution
using a consortium blockchain, offering high flexibility by allowing the collection of dif-
ferent data types from multiple data sources. The solution also offers traceability of every
collected event through the collector and endorsers’ signatures and secure communication
by using Transport Layer Security (TLS). Distributed storage and cryptographic chaining
ensure the integrity and availability of collected data. In addition, it is also possible to cus-
tomize and update the installed chaincode to implement new features, since the required
policies are satisfied and agreed upon by all actors.

The event2ledger source code, containing the collectors and necessary files to
create and start the blockchain is available at the author’s GitHub (https://github.com/
marques-ma/e21_v0.5.git). The repository also contains the solution documentation detail-
ing the installation, usage, and chaincode functionalities. [Marques and Miers 2021] and
[Marques. et al. 2021], provide additional information about this work, including related
works research and theoretical details can be found.

Acknowledgments: The authors thank the support of FAPESC, and LabP2D / UDESC.
This work was supported by Ripple’s University Blockchain Research Initiative (UBRI)
and in part by the Brazilian National Council for Scientific and Technological Develop-
ment (CNPq - grant 304643/2020-3).

References
Dawadi, B., Shakya, S., and Paudyal, R. (2017). Common: The real-time container and migration
monitoring as a service in the cloud. Journal of the Institute of Engineering, 12:51.

Docker (2022). Docker swarm services. https://docs.docker.com/engine/swarm/services/.

Hyperledger (2022a). Hyperledger fabric endorsement policies. https://hyperledger-
fabric.readthedocs.io/en/release-2.2/endorsement-policies.html.

Hyperledger (2022b). Hyperledger fabric prerequisites. https://hyperledger-
fabric.readthedocs.io/en/release-2.2/prereqs.html.

Marques, M. and Miers, C. (2021). Event2ledger: Container allocation and deallocation traceabil-
ity using blockchain. Master’s thesis, Santa Catarina State University, UDESC.

Marques., M., Miers., C., and Simplicio Jr.., M. (2021). Container allocation and deallocation
traceability using docker swarm with consortium hyperledger blockchain. In Proceedings of
the 11th International Conference on Cloud Computing and Services Science - CLOSER, pages
288-295. INSTICC, SciTePress.

Mouat, A. (2015). Using docker: Developing and deploying software with containers.

