
iplite: a lightweight packet filter for NuttX

Eduardo Menezes Moraes1, Rodrigo Teixeira de Souza1,
Rafael Oliveira da Rocha1, Lourenço Alves Pereira Jr.1

1Divisão de Ciência da Computação (IEC)
Instituto Tecnológico de Aeronáutica (ITA)

12228-900 – São José dos Campos – SP – Brazil

{eduardo.moraes,rodrigo.souza}@ga.ita.br, {ljr,rafaelror}@ita.br

Abstract. The project proposes a lightweight packet filter in a Real-Time Op-
erating System (RTOS), aiming to provide an additional security layer to em-
bedded systems, allowing the users to create their security policies through the
filtering process of the ingress network packets. The iplite firewall was im-
plemented on NuttX OS based on the best practices of the Linux Netfilter firewall
and consists basically of two parts: an application on user space, homony-
mously called iplite, which serves to provide the user CLI, besides a module
on kernel space, netfilterlite, responsible for providing the APIs. As an
open-source project, our solution allows the reproducibility of the experiments
and the firewall core adaptation to other operating systems.

Resumo. Esse projeto propõe a implementação de um filtro de pacotes leve
para um Real-Time Operating System (RTOS), visando fornecer uma camada
adicional de segurança aos sistemas embarcados, permitindo que os usuários
criem suas próprias polı́ticas de segurança, através do processo de filtragem
de pacotes de ingresso na rede. O iplite foi implementado no NuttX OS,
sendo composto por uma aplicação na userspace, homonimamente iplite,
que serve para fornecer a CLI ao usuário, e um módulo no kernel space,
netfilterlite, responsável por prover as APIs. Esse é um projeto de
código aberto, permitindo que outros reproduzam experimentos, bem como
repliquem conceitos utilizados desse firewall em diferentes sistemas opera-
cionais.

1. Introduction
Nowadays, there is a tendency for the internet of things to be increasingly more
present in people’s lives, even intensified by the COVID-19 pandemic — there is no
lack of estimates that indicate a relevant increase in its usage in the coming years
[Wegner 2022, Idzikowski et al. 2018]. The rise of those systems came together with the
digital transformation as it pervades multiple application domains, from smart homes and
smart cars, in the medical, to industrial and public institutions. However, cybersecurity is
not always able to keep up with this growth. Hence, IoT devices can have serious security
issues since they usually have weak update cycles and poor maintenance, as seen in some
malware attacks such as Mirai [Chacos 2016] and Mozi [McMillen 2021].

Besides, researchers reported in one study [Cui et al. 2009] that embedded devices
were over 15 times more vulnerable to Internet-based threats than enterprise networks,



whereas computational constraints suppress robust solutions [Gayle 2016]. Despite con-
solidated firewalls in the open-source world, such as Netfilter, lightweight firewall solu-
tions for low-power devices remain an open issue. Thus, given the difficulty of finding an
open-source firewall for embedded systems, we propose the iplite to fill this gap.

Therefore, we aim to develop a packet filter for NuttX, an embedded RTOS, that
filters unauthorized network packets and prevents malicious traffic from targeting vul-
nerabilities on embedded devices, focusing initially on connection-oriented transmissions
(TCP transport layer). However, the problem with creating a firewall for embedded sys-
tems is that it’s usually not convenient to use other operating systems’ common and popu-
lar packet filters. For example, the Linux firewall, composed, respectively, of Iptables and
Netfilter in its user and kernel space, was aimed to run in more complex and resourceful
hardware. Thus, it probably would not perform satisfactorily in tiny chipsets, including
those commonly used in IoT (Internet of Things). Consequently, a light packet filter,
carrying only the main commands focused on the needs of a specific embedded design,
would be truly useful and welcome for many low-power chipsets, which according to
[Niedermaier et al. 2019] represents an important part of the industrial scenario. In that
regard, iplite is a lightweight firewall for NuttX - based on the Linux firewall’s best
practices, but using its original functions, patterns, and commands, totally redesigned to
facilitate developers to understand how to work with it, besides being lighter than the
Netfilter project, attending better to tiny chipset restrictions.

To accomplish the aforementioned, the iplite was divided into two parts: the
userspace app, the iplite, and the kernel space module, the netfilterlite. The
iplite is the CLI responsible for receiving the user input, which is a command specify-
ing the packet filtering rule composed of IP addresses, TCP ports, and the rule. Moreover,
the netfilterlite will provide the APIs that are used by the userspace tool and store
the user-specified rules in a chain table in the kernel space.

In the next sections, we will go through the architecture and main functionalities
of our packet filter, as well as some fundamentals, and basic concepts that are essential
for understanding our project. Furthermore, a guide on how to configure the environment
and install the necessary dependencies for setting up the project and reproducing the ex-
periments will be available, as well as a tutorial video with a demonstration of the tool.
Then, the next sections will be divided in the following way: project architecture and
main functionalities, experiments, and conclusion.

2. Architecture and Main Functionalities

2.1. iplite

iplite is a utility program that allows users to configure the packet filter rules. The user
interacts with it via NuttX shell CLI by adding the rule followed by a tuple composed of
the source IP address, source TCP port, destination IP address, and destination TCP port.
The input rule is passed to netfilterlite module, which creates a new entry on the
chain rule. In this initial version, iplite applies only to the IPv4 protocol.



2.1.1. Implementation

The iplite is a CLI utility that receives five arguments in the following order: the
filtering rule, source IP address, destination IP address, source TCP port, and destination
TCP port, as shown in Figure 1.

Figure 1. iplite call.

Besides receiving user input, iplite translates this entry data into a proper struc-
ture used in the kernel space, as shown in some code snippets in Figure 2.

The filtering rule input (DROP/ACCEPT) is translated to an equivalent integer
used in the netfilterlite module by processing the received text and associat-
ing an enumerable to it when the input is valid. This enumerable is defined on the
netfilterlite module as a rules type, being 0 associated to the DROP rule and 1
to the ACCEPT rule.

On netfilterlite module, the IP addresses are represented as in addr t,
a structure commonly used on C/C++ socket programming for representing IP addresses
as a 32-bit unsigned integer. This conversion of IP address format from text to binary
is done by a socket API function called inet pton, which receives arguments in the
following order, converting the IP address to little-endian: specifier of the family of the
address (AF INET or AF INET6), IP address in text format, the variable reference used
to save the converted IP address.

Yet on netfilterlite module, the transport layer ports are represented as
in port t, another structure used on C/C++ socket programming, commonly used for
representing TCP ports as a 16-bit unsigned integer. The socket API function called
htons implements the endianness conversion and translates an unsigned short integer
into the network byte order. This function receives as an argument the unsigned short
integer to be put into network byte order and returns the translated short integer. More
details about the used network structures and functions mentioned can be found in its
library documentation, arpa/inet.h [TheOpenGroup 1997].

Obtained the netfilterlite addrule arguments, now we can add the rule
to the netfilterlite chain rule.

2.2. netfilterlite
netfilterlite is a framework that allows some networking-related operations and
functions for packet filtering and also provides the functionality required for directing
packets through a network and prohibiting packets from reaching sensitive locations
within a network. This lite adaptation of Netfilter implements DROP and ACCEPT oper-
ations, serving as a simple firewall for blocking and allowing specific traffic by IP address
and TCP port, focusing on the TCP/IP stack and connection-oriented transmissions (TCP
transport layer).



Figure 2. Snippets of the iplite implementation.

2.2.1. Main structure

iplite rules are structured similarly as in Iptables. First, a table stores all the rules,
and each row is a linked list, where a node represents the packet data to be filtered. The
action rule (DROP or ACCEPT) and four-tuple (source IP, source TCP port, destination
IP, destination TCP port) identify each chain rule. Those chain rules are loaded in the
kernel memory space for later use in the filtering process, done by the netfilterlite
module.

The Netfilter is the packet filter used to base the netfilterlite implementa-
tion conceptually. It is composed of a chain rule implemented using a linked list, where
each node on the chain carries the rule data, and an API set to support Iptables user
demands. This way, similarly to the Netfilter chain rule structure, our data structure
for storing the packet filter rules is a singly linked list of chain nodes. In our imple-
mentation, there are two references used in our linked list structure: chain head and
last rule. The chain head variable is a reference to the beginning of the linked
list, and the last rule variable is a reference to the end of the linked list used to add
rules to the chain in constant time.

2.2.2. APIs

The netfilterlite has APIs that are used along NuttX kernel and in iplite. They
are used for initializing the needed data structures, adding a rule to the chain rule, and
verifying if a packet is valid or not. Those functions are described below.

netfilterlite initialize

This function is used for initializing the data structures of netfilterlite



module. It consists of creating a sentinel node for the linked list head node (named
chain head) and initially setting the last node of the chain as the head node. Its imple-
mentation is shown in Figure 3.

Figure 3. netfilterlite initialization function.

netfilterlite addrule

This function is used for adding a rule to the chain rule. It is implemented by
adding a new chain node to the end of the linked list by receiving the rule parameters as
input, creating a new chain node with those parameters, and then appending this node
to the end of the linked list. In the end, it returns true if this process was successful and
false otherwise. Its implementation is shown in Figure 4.

Figure 4. netfilterlite function for adding rules.

netfilterlite verify ipv4

This function verifies an intercepted packet in the ingress traffic by checking its
IPv4 header. The device receives the corresponding address reference to that buffer in



memory for each ingress packet and uses it to access the TCP and IPv4 headers. With
those headers, we can get information about destination and origin IP addresses and TCP
ports for further verification. With that information, we traverse the chain rule linked list,
looking for some match between the received info and the existing ones on the chain rule.
If a match happens, the packet needs to be dropped since this first implementation only
verifies DROP rules, and the function returns false; otherwise, it returns true. Its
implementation is shown in Figure 5.

Figure 5. netfilterlite function for verifying IPv4 header of a packet.

3. Experiments
In order to simplify the iplite prototype development, we used the NuttX simulator, a
regular program on Linux that simulates an embedded system running NuttX OS, to avoid
the necessity of hardware, such as a microcontroller. Thus, it eases the initial implemen-
tation and use of the tool. This way, to validate the packet filter’s functionality, we have
to test if the data structures are initializing, the rules are being created, and taking effect.

3.1. Adding rules

Before we add a rule, let us verify that the NuttX simulator and the Linux machine can
communicate. For this, we will do two tests: a ping between one machine and another and
opening a TCP/IP connection with an open channel for communication, with the Linux
machine being the server.

Initially, before adding the rules, we sent a ping from NuttX (10.0.1.2) to
Linux (10.0.2.4) and then from Linux to NuttX, in order to test the connection on
both directions. From the Figure 6 we can see that ping works bidirectionally.

Having verified that the communication using ping was successful, we will try
to block it by adding address filters. For this, we will use iplite to add rule shown in



Figure 6. Ping test before address filter.

Figure 7. Notice on the iplite command that arguments with value 0 are unspecified,
meaning that we are not applying the filter for those arguments.

Figure 7. Application of address filter.

3.2. Verifying packet filtering
Added the rule; now we have to check if the packet filtering. To test the packet filter
coming from the IP address 10.0.2.4, we send a ping from Linux to NuttX and vice
versa and observe the result. Note from Figure 8 that in both cases, all ICMP echo requests
do not have a corresponding ICMP echo reply, causing the ping to relate 100% packet loss.

Figure 8. Pings triggered after IP address filter application.

4. Conclusion
This work presented the iplite packet filter and showed its implementation and exper-
iments using it.

After some experiments using a prototype version of iplite, it is clear that
the project implementation is plausible. However, it can be made in a more sophisti-
cated way, using a complete parser on iplite user layer application and allowing the
netfilterlite to work in other different settings.

For future works, we plan to update iplite userspace app to parse more
complex commands, including adding and removing rules by the IP address and port,



egress/ingress traffic filtering, and support of UDP transport protocol to allow UDP port
filtering. Consequently, the netfilterlite will receive the support to handle these
other different scenarios, providing more complex APIs to satisfy the userspace needs.

Our project is available in the following GitHub repository: https://
github.com/c2dc/iplite-sbseg2022

The project manual and instructional videos are available at the following link:

https://drive.google.com/drive/folders/1e99Oy9Wesl_
QHDRpuwlZAygaNjsgaq6_

References
Chacos, B. (2016). Major ddos attack on dyn dns knocks spotify, twitter, github, paypal,

and more offline. https://www.pcworld.com/article/410774. Published
21 Oct 2016; accessed 08 Aug 2022.

Cui, A., Song, Y., Prabhu, P. V., and Stolfo, S. J. (2009). Brave new world: Pervasive
insecurity of embedded network devices. In Kirda, E., Jha, S., and Balzarotti, D.,
editors, Recent Advances in Intrusion Detection, pages 378–380, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Gayle, D. (2016). ’smart’ devices ’too dumb’ to fend off cyber-attacks, say ex-
perts. https://www.theguardian.com/technology/2016/oct/22/
smart-devices-too-dumb-to-fend-off-cyber-attacks-say-experts.
Published 22 Oct 2016; accessed 08 Aug 2022.

Idzikowski, F., Chiaraviglio, L., Liu, W., and van de Beek, J. (2018). Future internet
architectures and sustainability: An overview. In 2018 IEEE International Conference
on Environmental Engineering (EE), pages 1–5.

McMillen, D. (2021). Minternet of threats: Iot botnets drive surge in net-
work attacks. https://securityintelligence.com/posts/
internet-of-threats-iot-botnets-network-attacks. Published 22
Apr 2021; accessed 08 Aug 2022.

Niedermaier, M., Striegel, M., Sauer, F., Merli, D., and Sigl, G. (2019). Efficient intrusion
detection on low-performance industrial iot edge node devices.

TheOpenGroup (1997). arpa/inet.h - definitions for internet operations. https:
//pubs.opengroup.org/onlinepubs/7908799/xns/arpainet.h.
html. Accessed 08 Aug 2022.

Wegner, P. (2022). Global iot market size grew 22% in 2021 — these 16 fac-
tors affect the growth trajectory to 2027. https://iot-analytics.com/
iot-market-size. Published 30 Mar 2022; accessed 08 Aug 2022.


