
A Vote Tallying System Based on Computer Vision

Paulo Victor Fernandes Sousa1, Julio Cesar da Silva Rodrigues1,
Charles Figueredo de Barros2

1Curso de Graduação em Ciência da Computação
Universidade Federal de São João del-Rei

São João del-Rei – MG – Brazil

2Departamento de Ciência da Computação
Universidade Federal de São João del-Rei

São João del-Rei – MG – Brazil

p.victorsousa2@aluno.ufsj.edu.br,julio.csr.271@aluno.ufsj.edu.br,

charlesbarros@ufsj.edu.br

Abstract. In this paper, we describe an ongoing project on a vote tallying sys-
tem based on computer vision. The core idea consists of recording the votes into
paper ballots containing markings that can be read by a software using com-
puter vision. The software reads the markings from a video recorded during the
elections. The video can be made publicly available, so that any interested party
can check that the tallying is correct.

1. Introduction

Electronic voting has been in use around the world for about three decades. The use of
computers during elections has brought many benefits, together with many challenges re-
garding security and reliability. While it is true that electronic voting systems are capable
of mitigating some of the security problems underlying paper-based systems, they also
bring other issues due to the conflicting nature of the security requirements of an election.

One of the main threats on electronic voting system is the fact that any er-
ror or malicious change in the software may affect the election result. This is an
intrinsic feature of the so-called software dependent systems [Rivest and Wack 2008],
based solely on the use of electronic voting machines (EVMs). Without a redun-
dant medium for storing the votes, these systems are susceptible to malicious attacks
or even accidental changes in the election result caused by software malfunctioning
[Prasad et al. 2010, Calandrino et al. 2007, Aranha et al. 2019].

Due to the fact that software bugs may be hard to spot (even harder if we
consider complex systems consisting of thousands of lines of code), it becomes in-
feasible to guarantee the integrity of an election solely by putting trust in the in-
tegrity of the system software. This is the main reason for the development of vot-
ing systems that either record the votes into redundant media (typically paper ballots,
used for post-election audit and possibly recount) or offer some verifiability feature
[Ryan et al. 2009, Chaum et al. 2009, Rivest 2006, Adida 2008] (some kind of mathe-
matical proof that ensures the correctness of the election result and can be independently
verified by any interested party).



The first type of voting system comprises those capable of generating physical
evidence of each cast vote, in the form of a VVPAT (Voter Verifiable Paper Audit Trail),
a redundant copy of the electronic record that can be checked by the voter before vote
confirmation. The reason to use a paper trail is fairly simple: it can be directly verified
that the vote was cast as intended, simply by reading what was printed in the paper. The
same is not true for a digital record, where the vote is recorded in a human-unreadable
format.

When the vote is stored solely on electronic medium, we must trust that the soft-
ware responsible for encoding that vote and storing it is correctly doing its job. However,
the requirement for putting blind faith on the software integrity violates the principle of
transparency.

2. Tallying Votes With Computer Vision
Computer vision was created with the goal of analyzing how a machine sees the real world
[HONORATO and MILANO 2010]. It makes possible to obtain information and patterns
from images and videos, being widely used for face recognition, product quality control,
detection of geographic areas, etc..

Computer vision can be especially suited for tasks that would be too costly for hu-
mans, like counting a huge amount of votes in an election. It is well known that counting
paper ballots is a task prone to human error. With the aid of computer vision, it is possible
to guarantee the correctness of the process.

In this paper, we propose a vote tallying system based on computer vision. The
core idea is that voters cast their votes, using an electronic voting machine capable of
printing a ballot containing markings that encode the vote and can be read by a software
responsible for counting these votes.

2.1. Details of the Proposal
On the proposed tallying system, we assume the existence of an electronic voting machine
equipped with an interface through which voters can choose their candidates (for instance,
a physical keyboard or a touchscreen). However, instead of storing the votes in digital
format (like a DRE machine), the EVM prints a paper ballot containing markings that
encode the voter’s choices. Note that the markings are not supposed to be hand-filled by
the voter. Instead, they are filled by the voting software, so that the printed ballot is ready
to be cast into some sort of appropriate ballot box.

Each paper ballot is prepared according to the layout illustrated on Figure 1. Re-
gardless of the election format in action, every ballot presents various black rectangles
that operates as delimiters. They are placed strategically to enable operations responsible
for the recognition of the ballot’s components, such as the voting field, header and the
footer.

At the header, we can note the presence of three distinct components, and each of
them has their relevancy on the proposed layout. The barcode represents a unique serial
number given to each ballot on the printing process. The QR code corresponds to a digital
signature applied on the ballot’s contents, using an authentic public key provided by the
electoral authority. The logo slot can accommodate any kind of information about the
election (e.g., electoral body logo).



Generally, each voting field for each position in dispute will have the role’s name
at the top, followed by an empty grid destined to the voting choice by inserting the markers
(black rectangles). As already mentioned, the main idea is that this process would be made
via software, instead of allowing the voter to hand-fill the markings, but the first version
of the implementation does not have a module responsible for that marking yet. The
various markers surrounding the voting field only have the purpose of offering assistance
in the recognition process, providing references for identifying each digit, and the slots
located at the right side of the ballot (aligned with the QR code) are destined to portraying
pictures of the candidates.

Figure 1. Ballot layout including markers, QR Code and Barcode.

The number of positions in dispute varies from election to election. In our ex-
periments, we tested ballots suited for five positions, simulating a Brazilian presidential
election scenario.

2.2. Implementation
Our proposal was based upon a previously existing implementation, developed by a team
of undergraduate students from the Computer Science course at the Federal University of
São João del-Rei.

The system was implemented using Python language and it is publicly
available at https://github.com/Stanryu/VJPC-VoteCounter/tree/



gerarBoletas. We also used several Python and cross-platform libraries, such as a
main base set, composed by PyCryptodome, OpenCV, Barcode, qrcode, numpy, amongst
others. Finally, it is important to mention that a cross-platform image editor (GIMP)
was used to perform modifications on the ballot layouts that were necessary during the
developing stages of this system.

Briefly describing the original project, the system was already capable of execut-
ing the vote reading process for a unique ballot layout, in addition to performing the tally
processes given a set of ballots or a video containing the images of the ballots, divided
into one frame per ballot included in the media. Finally, the last relevant system function-
ality consisted of printing the results, since the candidates and the specific ballot layout
were properly specified before the execution of the election operations. Our goals then
were to generalize the application possibilities, expand the use cases, allow the use of any
ballot layouts, pre-configure the election, besides adding some cryptography resources in
order to guarantee the system security and integrity.

3. Main Changes to the Original Implementation

Given that we already had a pretty solid implemented base, capable of analyzing and
computing votes by the means of computer vision resources, we started to formalize and
build new modules, which were associated directly with the existing project. This brand
new modules were built to amplify the use cases of the proposed system.

The project was preceded by a theoretical study on the subject, so that we could get
sufficiently familiarized with the utilization of the computer vision library, and to select
carefully the first developing steps according to the most critical problems that the initial
project had at the start. Amongst that problems, we had to deal with some malfunctions
on the contours identifications, in addition to some frail logic that were spoiling the votes
printing process, inducing a variety of errors that were most noticed with ballots filled
”incorrectly” (e.g., identifying a null or void field of votes or more than a marker per
line).

3.1. Election Configuration Module

The first new module was developed to enable the creation of distinct election configu-
rations, which at first, would allow the system utilization on a wide variety of contexts
and environments (e.g., Collegiate members election). In details, this module allows the
election administrators to determine the number of election runs, their designations, or-
der, and finally the quantity of digits assigned to each run. We put this information set in
a .TXT extension file that will be utilized later to configure several aspects of the deter-
mined election, including a ballot layout generator, which will be presented and discussed
later in this article.

In order to adapt the vote reading functionality to the inclusion of a configuration
module, which allows to define multiple settings of election, the reading function was
modified. In the original design, it was set to read exactly five runs for a given election,
each run with a predefined number of digits identifying each candidate. In the modified
version of the reading function, it reads the number of runs from the configuration file and
chooses the correct parameters in order to be able to read the ballots.



3.2. New Ballot Layouts
The next developing step was not focused on the implementation, but on the ballot lay-
out. We introduced a threshold type (black rectangles) that delimiters the portion of the
ballots that corresponds to their header (where the logo is situated). Our goal with that
modification was to enable the detach of the voting fields to prevent any inconsistencies
that could be caused by the header portion presence on the interpretation process of the
votes (e.g., misleading identification of the header contours, processed as vote contours),
possibly leading to improper vote tally. The markers positioning are shown on Figure 2,
before and after they’ve been added.

Figure 2. Before and after header and foot markers insertion

Another important change was the application of a clipping process. The voting
area ranges from the black rectangles below the header where the numbers are located to
the rectangles at the bottom, as shown in Figure 3. Hence, everything that is not relevant
for the counting process in the ballot is discarded, leaving only the voting area. After
having the area cut out, the counting process begins. From this, using the openCV Python
library, it is possible to identify all the black rectangles. With openCV it is detected where
there are filled rectangles and from that they are stored in an array. After that, the matrix
is transformed into a matrix within python itself, and from an identification logic it is
possible to identify who the user voted for.

The initial version of the software did the counting without making this cut of
the matrix area. With the changes made in this project, with the user being able to edit
the ticket by changing the header, adding QR Code, barcode and being able to choose
how many voting fields it would have, this ended up causing problems when reading it
with openCV, since it could identify more rectangles in places other than the voting area
depending on the ballot disposal. Applying this clipping process, the problem was solved.

The ballot layout had to be altered by means of repositioning of the header, so that
it could contain the QR code and a barcode. The QR code encodes a digital signature of
the ballot, while the barcode contains the unique serial code that identifies the ballot.

Lastly, we also introduced a mechanism capable of generating the ballots layout,



Figure 3. Highlighted clipping area

a ballot generator. The basic behavior of this module is to produce a blank white image,
whose height dimension can vary according to the number of runs given by the election
configuration file mentioned earlier.

Thenceforth, we begin to position the elements that compose the ballot. In other
words, we set the basic components already produced, the header, voting field, footer,
and customize them, adding the logo, and the position names in the ballot. As a main
limitation on this generator, we can mention its inability to produce a ballot whose number
of digits for each run could vary. In other words, the implemented module can only
generate ballots whose number of digits for each run is immutable (we choose five digits
for each position by default).

3.3. Adding a Digital Signature Mechanism

One of the defense systems against fraud attempts is the use of digital signatures to ensure
that the ballot will not be exchanged or modifies in the middle of the process. A digital
signature is a technology that serves to authenticate documents, from encrypted keys, to
guarantee the integrity, authentication and non-repudiation of data, preventing malicious
attackers from inserting fake ballots.

For testing purposes, the authentication of the ballots was done with the El Gamal
[El Gamal 1985] digital signature scheme. Other schemes, such as ECDSA, should be
used for real applications. Prior to the election, the election authority builds a key pair
and distributes the public key.

The serial number encoded into the barcode is used to generate a digital signature,
which is encoded into a QR code and added to the top margin of the ballot. Prior to
counting the votes encoded in the ballot, the software reads the QR code and proceeds to
signature verification. If verification is successful, the votes are counted. Otherwise, the
ballot is rejected and any votes encoded into it will not be included in the final tally.



4. Future Works

There were some functionalities this system could benefit from by applying a new phase
of development to produce a future version of this implementation.

Amongst them, we could mention enabling of the vote tallying process by a live
video recording device. The basic idea of that functionality would be to create some sort
of auditable mechanism during the election process. With that feature in hands, we could
perform the counting in parallel with DRE machines for example, in addition to provide
a re-tallying process that would assess the result correctness and possibly eliminate a few
fraud schemes. It is important to reassure that this whole process would be assisted by the
cryptographic mechanisms described earlier, in order to guarantee the ballots authenticity
and integrity.

The second main improvement still to be made, is the flexibilization of the ballot
generator. As mentioned earlier in this article, the generator only produces ballots with
an immutable number of digits for each position. The upgraded version of that module
would be capable of creating a ballot which roles could have an unrestricted number of
digits, expanding the system’s utilization contexts.

The third approach to be made on the current state of the system would be to
provide a voting module, which would be responsible for receiving the voting choices by
the voters, and marking it properly on the electronic ballot.

Finally, one of the most important aspects that needs attention on a future step of
development of this implementation is the proper insertion of a digital signature at the
ballot. At this stage, only the barcode (serial number) is signed, but ideally, we must sign
not just the barcode, but also the ballot’s content, which includes the voter’s choices.

5. Final Remarks and Conclusions

We presented a vote tallying system based on computer vision that could increase the
reliability of the voting process by encoding the votes into paper ballots and allowing
software-assisted tallying. Encoding the votes into paper ballots brings more trans-
parency, because voters are able to verify that their votes were correctly cast. Using a
software to tally the votes, by means of computer vision techniques, eliminates human
errors typically associated with the manual process of counting paper ballots.

Applying some initial ordinary tests with personal and portable computing devices
(e.g., laptops and desktops), we measured the average time observed on the ballot detec-
tion process. It is pretty clear that the ballot layout can impact on this metrics. In other
words, the greater the number of roles and digits featured in the ballots, the longer the
vote tallying process will take. Simulating a Brazilian election scenario, the average time
spent on the reading process of the votes for each ballot was around 0.03 seconds.

Preliminary results suggest that this system could offer good levels of performance
on the tallying process for different scales of elections. Considering a reasonable average
country population worldwide as forty million people, this tallying process could take
from two to three weeks to be completed. That demanded time obviously would be re-
duced drastically increasing the computational power of the machine and distributing the
data to computing conglomerates. That could be an interesting approach in contrast with



the USA electoral tally system, providing results at a much shorter period of time utilizing
computer vision.

Although it is pretty clear this is a project whose development is still in progress,
we can notice that it is a possibility to benefit from the usage of a system like that. We
intend to deepen our studies on developing the features this system could provide for the
sake of democratic elections. The possibility of a implantation of a similar system could
bring several benefits to whoever utilizes voting systems that only perform vote storage
in one mean (e.g., Brazilian DREs), eliminating the blind trust of the voters on result
correctness required by the electoral body in some cases.

Acknowledgements
We would like to thank Vinicius Marques do Nascimento, from Accenture Applied Intelli-
gence, for providing us with valuable insights on the original implementation and guiding
us throughout the process of improving the initial project of which he is the main author.
We also thank the anonymous referees for their helpful comments and suggestions.

References
Adida, B. (2008). Helios: Web-based open-audit voting.

Aranha, D. F., Barbosa, P. Y., Cardoso, T. N., Araújo, C. L., and Matias, P. (2019). The
return of software vulnerabilities in the brazilian voting machine. Comput. Secur.,
86(C):335–349.

Calandrino, J. A., Feldman, A. J., Halderman, J. A., Wagner, D., Yu, H., and Zeller, W. P.
(2007). Source code review of the Diebold voting system.

Chaum, D., Carback, R. T., Clark, J., Essex, E., Popoveniuc, S., Rivest, R. L., Ryan,
P. Y. A., Shen, E., Sherman, A. T., and Vora, P. L. (2009). Scantegrity ii: end-to-
end verifiability by voters of optical scan elections through confirmation codes. IEEE
Transactions on Information Forensics and Security, page 13.

El Gamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology, pages 10 – 18,
Berlin, Heidelberg. Springer-Verlag.

HONORATO, L. B. and MILANO, D. d. (2010). Visão computacional. Universidade
Estadual de Campinas (UNICAMP).

Prasad, H. K., Alex, J., Gonggrijp, H. R., Wolchok, S., Wustrow, E., Kankipati, A., Kr-
ishna, S., and Yagati, S. V. (2010). Security analysis of india’s electronic voting ma-
chines.

Rivest, R. (2006). The threeballot voting system.

Rivest, R. L. and Wack, J. P. (2008). On the notion of software independence in voting
systems. PHIL. TRANS. R. SOC. A, pages 3759–3767.

Ryan, P. Y. A., Bismark, D., Heather, J., Schneider, S., and Xia, Z. (2009). Prêt à voter:
A voter-verifiable voting system. Trans. Info. For. Sec., 4(4):662 – 673.


