
BinclustRE: a configurable tool for binary clustering
Alex Marcelino Santee1, Fernando Antonio Dantas Júnior1, Françoa Taffarel,1

Osmany Barros de Freitas1 e Lourenço Alves Pereira Júnior1

1Divisão de Ciência da Computação – ITA – São Jose dos Campos, SP – Brazil

{alex.santee.101394,fernando.junior.101049}@ga.ita.br,
{taffarel,osmany,ljr}@ita.br

Abstract. This project presents BinclustRE. This Open-Source tool creates
a pipeline for automated clustering of executable binaries, which is helpful
for security because programs in the same group should have similar security
vulnerabilities. It implements a pipeline in which it’s simple to integrate new
techniques and run them using multi-threading and caching of intermediary
results. Our experiments show BinclustRE was able to cluster versions of
OpenSSL’s libssl vulnerable to heartbleed in different groups from versions
at least one year newer than the patch.

Resumo. Esse projeto apresenta o BinclustRE, uma ferramenta de Código
Aberto que cria um pipeline para agrupamento automatizado em binários de
executáveis, o que é útil para a segurança porque programas agrupados juntos
devem apresentar vulnerabilidades de segurança parecidas. Ele implementa
um pipeline no qual é simples integrar novas técnicas e executa-as com multi-
threading e cache dos resultados intermediários. Nossos experimentos mostram
que o BinclustRE foi capaz de agrupar versões da libssl do OpenSSL
vulneráveis ao Heartbleed em grupos diferentes a versões pelo menos um ano
mais novas que a correção.

1. Introduction
In the context of the Internet of Things (IoT), the number of devices is growing, with
the presence of 35.82 billion IoT devices since 2021, and an estimate of this number
getting to 75.44 billion by 2025 [Yaacoub et al. 2023]. According to [Liu et al. 2020],
the IoT devices that develop similar functions have the same software, and most use
the Linux Operating System. The possibility of utilizing open-source Software in
IoT devices can make this software present in machines from different manufacturers.
This practice has become increasingly common because using open-source code brings
cost reduction, flexibility, and transparency advantages. However, with the increase
of cybernetic attacks on IoT devices, especially Distributed Denial of Service (DDoS)
attacks [Kumari and Jain 2023], this open-source software reuse implies the growth of
the large-scale exploration by malicious agents since a vulnerability present in one device
may be present in similar devices.

That said, a strategy to find vulnerabilities on a large scale is to extract binaries
from the firmware of many devices and to determine similar groups. These clusters
may be helpful for vulnerability detection in two ways: if a vulnerability is discovered
in a binary, other binaries in the same group have a higher chance of having it, too,
and significant clusters indicate common versions of a binary, which are an interesting

Distance
MatrixFiles Clusters

Clustering
Method

Distance
Metric

Figure 1. Architecture diagram of BinclustRE

starting point to find vulnerabilities at scale. However, detecting similar software is
challenging because firmware analysis is usually a black box. After all, the exact source
code is, in principle, unknown since only compiled binaries are available. This binary
comparison is more complex than a simple byte-by-byte analysis because the same source
code can create different binaries because of other compilation characteristics, like target
architecture, compiler version, and optimization level.

This challenge of determining similar programs is called Binary Code Similarity
Analysis (BCSA), and it’s also useful for malware detection, plagiarism detection, and
authorship identification [Kim et al. 2023]. The similarity analysis can be seen as a
first step for clustering. However, to our knowledge, there is no initiative to make
clusters for vulnerability detection, even though there are many clustering studies for
malware analysis, as [Gibert et al. 2020] show in their literature review of machine
learning for malware detection. Some malware techniques use dynamic analysis to group
malware by its behavior, like HTTP headers, API calls, and syscalls, and others use
static analysis techniques, like Control-Flow Graph comparison, to determine groups of
malware executables.

Thus, this project presents BinclustRE, an Open-Source tool that allows the
use of different binary analysis strategies to determine the detection of IoT device
firmware binary clusters, aiming to help identify software binary vulnerabilities. Our
tool seeks to address these challenges by providing a robust solution for binary code
similarity analysis and clustering, thus improving the efficiency and effectiveness of
detection and subsequent mitigation of vulnerabilities in IoT devices with its results. Our
tool also proposes using the Damicore [Sanches et al. 2011] methodology, which uses
the normalized compression distance (NCD) [Cilibrasi and Vitanyi 2005] as a similarity
metric and makes clusters through algorithms of neighbor-joining and community
detection, a clustering strategy based on phylogenetics and complex networks. We add to
the Damicore methodology by creating a preprocessing step that allows it to work well
with compiled binary files instead of source code.

2. Architecture and Functionalities
The tool architecture is a two-step pipeline: the first step is using a similarity metric on
every pair to create a distance matrix, and the second one is making a clustering based
on this distance, as illustrated in Figure 1. As an example of its versatility, one can
embed Damicore’s pipeline into this architecture, with the NCD as the similarity metric
and neighbor-joining and community detection as the clustering strategy. In practice, we
observed that applying NCD to raw binaries creates groups primarily based on the CPU’s
architecture, so our pipeline adds a preprocessing step to the original to avoid this effect.
This modifications to Damicore’s pipeline is shown in Figure 2.

Distance
Matrix

Simplification
(Neighbor Join)

Files Dendrogram
Community
Detection

Clusters

Clustering
Method

Distance
Metric

Preprocessing

Preprocessed
files

NCD

Figure 2. Example of embedding the Damicore pipeline to our architecture with
the inclusion of our novel preprocessing step

There are many variations to experiment with in the pipeline. The theory
of NCD states that all real-world compressors are adequate for similarity calculation
[Cilibrasi and Vitanyi 2005], so there’s more to explore than just the default compressors
(i.e., ppmd, gzip and bzip2). From the NCD’s distance matrix, the next step creates via
neighbor-joining a dendrogram tree structure in which different community detection
algorithms can be used being fast-newmann , betweenness and random-walk available
by default. Finally, the preprocessing stage our tool adds is a variation to the method that
can be experimented with. Our implementation uses some readily available tools for this
job. Section 2.1 describes what we added in detail.

Our tool also has some functionalities to make it more practical to use. For better
performance, the distance calculation and preprocessing are done in a multi-threaded way,
keeping caches of its results so that the duplicate files don’t have to be processed twice
in case of multiple executions. Also, there is a Docker script to manage the dependency
installation since it’s intended to be used with many applications.

2.1. Preprocessing

A preprocessing stage is essential for Damicore’s pipeline because it’s based on the
NCD, which threatens the executable file as a sequence of bytes and tries to find patterns
between them. This has effects like the architecture being the most critical factor in the
similarity analysis because two binaries in the same architecture have the same opcodes
for their instructions. Still, similar instructions in different architectures have completely
different opcodes. Therefore, the following strategies are implemented in BinclustRE:

• String extraction: This should mostly get the texts that the program outputs or
sends through the network, which is compilation-independent and takes little
computational time.

• Control-Flow Graph (CFG): Analyzes program flow as a graph of possible paths
with little dependence on typical compilation options.

• Binary Lifting: Tries to bring the executable to a previous compilation state, like
intermediary representation or source code.

For each execution, the user can choose one of these preprocessing strategies,
which BinclustRE uses readily available applications for these jobs and is coded to
simplify adding new ones. The string extraction is made via strings, a common Unix*
Operating Systems tool. The CFG is obtained through radare21 or angr2. There are

1https://rada.re/n/radare2.html
2https://angr.io/

void thunk_FUN_001010a0(void) {
FUN_001010a0();
return;

}

(a) Raw output

void thunk_FUN_00000005(void) {
FUN_00000005();
return;

}

(b) After normalization
Figure 3. Comparison of Ghidra’s raw output and its normalization

docker build -t binclustre ./

docker run -v <input-folder>:/usr/src/app/input-binaries/ \
-v \$PWD/caches:/usr/src/app/caches/ -v $PWD/results:/usr/src/app/results/ \
binclustre input-binaries/ <args>

Code 1. Commands for building and running the docker image

two different binary lifting strategies: LLVM intermediary representation with retdec3

and C Pseudocode with ghidra4.

2.1.1. Normalization

One issue from the preprocessing stage is that the applications intended to create a
representation independent of compilation options often leak dependent information. For
example, ghidra uses the function’s address to make its name when unknown, but this
value depends on the architecture’s usual address space. It can affect the similarity score
from compression. So BinclustRE implements a step of normalization in which these
problematic values are changed to sequential addresses. Figure 3 shows an example of
this normalization process for ghidra.

3. Demonstration

3.1. Requisites
The Open-Source tool is available in a GitHub repository called BinclustRE5 that
includes a full manual in its README file. For a simple execution, the program can
be built and run with a docker script that handles all the dependency installing and
can be executed using the commands in Code 1. For the visualization of dendrogram
intermediary results, it’s recommended to install a newick file viewer like FigTree6.

3.2. Usage
For this example, the tool is run using CFG from radare2 preprocessing method at a
small collection of binaries from the BinKit [Kim et al. 2023] dataset, the binaries cat,
echo and cp with some variations of architecture and optimization level. Code 2 shows
the preprocessing step for one file.

The final result of BinclustRE is grouping the files in clusters, as shown in
Figure 4(a). The first column is the input filename, and the second is the group index.

3https://github.com/avast/retdec
4https://ghidra-sre.org/
5https://github.com/c2dc/BinclustRE
6https://github.com/rambaut/figtree

$ docker run \
-v $PWD/input-binaries/:/usr/src/app/input-binaries/ \
-v $PWD/caches: /usr/src/app/caches/ \
-v $PWD/results:/usr/src/app/results/ \
binclustre input-binaries/
[+] Starting static analysis with radare-cfg method
[+] Analysing cat-mipseb_32-02
cat-mipseb_32-02: INFO: Analyze all flags starting with sym.
[...]
[+] cat-mipseb_32-02 analysed in 4.85 s
[+] Normalizing cat-mipseb_32-02
[+] Found addresses to replace: 4
[+] cat-mipseb_32-02 normalized in 0.00 s
[+] Analysing echo-arm_32-02
echo-arm_32-02: INFO: Analyze all flags starting with sym
and entry (aa)

Code 2. Example of the tool’s typical usage

filename,cluster
cat-arm_32-O2,0
cat-arm_32-Os,0
cat-mips_32-O2,1
cat-mips_32-Os,0
cat-mipseb_32-O2,1
cat-mipseb_32-Os,0
cp-arm_32-O2,2
cp-arm_32-Os,2
cp-mips_32-O2,2
cp-mips_32-Os,2
cp-mipseb_32-O2,2
cp-mipseb_32-Os,2
echo-arm_32-O2,3
echo-arm_32-Os,3
echo-mips_32-O2,3
echo-mips_32-Os,3
echo-mipseb_32-O2,3
echo-mipseb_32-Os,3

(a) Clustering result

ec
ho

-m
ip

se
b_

32
-O

2

echo-mipseb_32-Os

cp-arm
_32-O

s

cp-mips_32-O2

ca
t-m

ip
s
_
3
2
-O

s
e
c
h
o
-a

rm
_
3
2
-O

s

echo-m
ips_32-O

s

cp
-a

rm
_3

2-
O

2

cat-arm_32-O2

cp-mips_32-Os

cat-m
ips_32-O

2

ca
t-

m
ip

se
b
_
3
2
-O

s
cat-arm_32-Os

cp-mipseb_32-O2

e
ch

o
-a

rm
_
3
2
-O

2

cp-m
ipseb_32-O

s

ca
t-m

ip
se

b
_
3
2
-O

2

e
ch

o
-m

ip
s_

3
2
-O

2

(b) Dendrogram intermediate result

Figure 4. Example usage for cat echo and cp binaries

The Machine Learning technique can’t determine what the groups mean to create the
partitions, so the clusters have no name. This result shows the default clustering settings
bring promising results because, other than ARM binaries being kept separate from MIPS,
the clusters correctly match the programs cat echo and cp.

To evaluate the quality of this clustering and the CFG preprocessing, we compare
the clustering result with the ground truth in Table 1. Each row represents the real group,
each column represents the groups from the tools, and the cells represents the number of
binaries in both groups. It is observed that the clustering result with no preprocessing
groups is mainly based on the processor’s architecture. The adjusted-rand index of
the clustering using the CFG preprocessing is 0.867, and its value is 0.386 when no
preprocessing is applied.

Besides the clustering result, using the intermediary dendrogram for visual
inspection is interesting to understand how the groups are made. A dendrogram is an
unrooted ternary tree whose leaves represent the input binaries, and the other nodes are
what would be ”common ancestors” from an evolutionary tree. Figure 4(b) shows the
view of this intermediary result in FigTree. Visually, three program types form groups,
but ARM versions are slightly apart from MIPS.

Table 1. Comparison of contingency matrixes

(a) CFG preprocessing

real\classified 0 1 2 3
cat 4 2 0 0
cp 0 0 6 0
echo 0 0 0 6

(b) No preprocessing

real\classified 0 1 2 3
cat 2 2 2 0
cp 0 0 0 6
echo 2 2 2 0

4. Results
To evaluate quality clustering, we created some datasets to check if the processing time is
reasonable and if the clustering corresponds to the semantic meaning we seek. The quality
of these clusterings in which the ground truth is known is a starting point to estimate the
clustering quality in a real-world scenario of Firmware analysis in the original source
code and compiler version, and options are unknown.

For IoT binaries, the main challenge is that executables are compiled for different
processor architectures, usually ARM or MIPS, and it’s common to optimize for smaller
binary size when the amount of memory is limited. Thus, our datasets try to mix up
binaries with different compiler options, and the tool aims to group together binaries that
were built from the same or similar source codes.

4.1. Large dataset
Our tool is intended to be used for a large number of binaries, so as a performance test,
we created a dataset of 1728 binaries from Binkit, 864 different versions of the bool
command line tool, and 864 for grep, each one with varying options of compiler and
versions. The run time for this clustering was 1 hour in a 20-core computer with 64 GB
of RAM using the CFG extraction with radare2 and with the betweenness community
detection algorithm. Since the origin of the binaries for this experiment is known, we can
also evaluate quality clustering using the ground truth.

Figure 5(a) shows the contingency matrix of the clustering using two groups, and
Figure 5(b) shows the dendrogram intermediary result. The division of the clustering
ninead only nine wrong classifications, with an accuracy of 0.995 and an adjusted-rand
index of 0.979, and the dendrogram shows that the binaries were separated into roughly
two distinct groups.

real\classified 0 1
bool 863 1
grep 8 855

(a) Contingency matrix

(b) Dendrogram
Figure 5. Results for a large number of binaries for bool and grep

4.2. Heartbleed detection

In the security context, we will now analyze the Heartbleed vulnerability, a critical
flaw revealed in 2014 in the OpenSSL cryptography library. Due to an overlooked
flaw in the protocol’s implementation, adversaries could exploit the server to read its
memory, potentially acquiring sensitive data, including private keys used to encrypt
communications. To check if our tool clusters different versions of the same binary in
other groups, we created a small dataset with varying versions of OpenSSL’s libssl,
each version compiled for the ARM, MIPS, and x86 micro-architectures. The first version
is from 2014, before the patch. The others are progressively older, one year, two years,
and four years after the patch.

The preprocessing method used for this dataset was string extraction, and
Figure 6(a) shows that the clusters discovered by the tool correspond to the accurate
versions for each year. Figure 6(b) is the dendrogram, which shows that binaries from
similar years show up closer in the tree. These results indicate that our technique could
group different versions of binaries in time, which is helpful for vulnerability detection
since older versions should have a higher chance of unpatched vulnerabilities. The
binaries vulnerable to Heartbleed were in the same group in our experiment.

5. Conclusion

In this paper, we present BinclustRE, a versatile tool for binary clustering with
cache and multi-threading. Its architecture is intended for experimentation of different
techniques, being the code written so that new strategies can be easily integrated into
the pipeline. This implementation shows that Damicore’s pipeline fits nicely in the
architecture, and each pipeline stage from the architecture can be easily substituted by
other techniques, like CFG edit distance as a distance metric instead of NCD or using
DBSCAN as a clustering detection technique instead of neighbor join and Fast Newman.

This versatility and these performance features make it a viable tool to explore
different strategies for black-box binary clustering, with the addition of newer techniques
and a more detailed comparison of the current methods interesting future works. Another
interesting future work would be the creation of a dataset that explores variations of
program versions over time. The best dataset we know of is from [Kim et al. 2023],

real\classified 0 1 2 3
2014 0 3 0 0
2015 3 0 0 0
2016 0 0 0 3
2018 0 0 3 0
(a) Contingency matrix

libssl-arm-2014.so.1.1.0

libssl-arm-2018.so.1.1

libssl-x86-2016.so.1.1

lib
ss

l-
a
rm

-2
0
1
5
.s

o
.1

.1

lib
ssl-x8

6
-2

0
1
4
.so

.1
.1

.0

lib
ssl-x8

6
-2

0
1
8
.so

.1
.1

libssl-m
ipsel-2014.so.1.1.0

libssl-x86-2015.so.1.1

lib
ss

l-m
ip
se

l-2
01

6.
so

.1
.1

lib
ss

l-m
ip
se

l-2
01

5.
so

.1
.1

libssl-m
ipsel-2018.so.1.1

lib
ss

l-
a
rm

-2
0
1
6
.s

o
.1

.1

(b) Dendrogram
Figure 6. Results for different OpenSSL versions

which proposed BinKit as a unified dataset for BCSA. It explores many compiler options
and versions but, unfortunately, does not provide different versions of these compiled
binaries, which is the most exciting feature for vulnerability detection.

The results of our initial experiments were promising to be able to process
thousands of binaries in a couple of hours, and a simple dataset that explored versions
over time was perfectly grouped for libssl of different years. In this clustering, all of
the binaries vulnerable to Heartbleed were in the same group, showing that it was effective
in together these vulnerable binaries.

Acknowledgments
This work has financial support from the Graduate Program in Operational
Applications—PPGAO/ITA and from FAPESP process #2020/09850-0.

References
Cilibrasi, R. and Vitanyi, P. (2005). Clustering by compression. IEEE Transactions on

Information Theory, 51(4):1523–1545.

Gibert, D., Mateu, C., and Planes, J. (2020). The rise of machine learning for detection
and classification of malware: Research developments, trends and challenges. Journal
of Network and Computer Applications, 153:102526.

Kim, D., Kim, E., Cha, S. K., Son, S., and Kim, Y. (2023). Revisiting binary code
similarity analysis using interpretable feature engineering and lessons learned. IEEE
Transactions on Software Engineering, 49(4):1661–1682.

Kumari, P. and Jain, A. K. (2023). A comprehensive study of ddos attacks over iot network
and their countermeasures. Computers & Security, 127:103096.

Liu, K., Yang, M., Ling, Z., Yan, H., Zhang, Y., Fu, X., and Zhao, W. (2020). On
manually reverse engineering communication protocols of linux-based iot systems.
IEEE Internet of Things Journal, 8(8):6815–6827.

Sanches, A., Cardoso, J. M., and Delbem, A. C. (2011). Identifying merge-beneficial
software kernels for hardware implementation. In 2011 International Conference on
Reconfigurable Computing and FPGAs, pages 74–79.

Yaacoub, J.-P. A., Noura, H. N., Salman, O., and Chehab, A. (2023). Ethical hacking for
iot: Security issues, challenges, solutions and recommendations. Internet of Things
and Cyber-Physical Systems, 3:280–308.

