
A coercion-resistant online voting protocol based on blind
signatures and fake credentials

Vı́tor Rezende Silva1, Charles F. de Barros2

1Curso de Graduação em Ciência da Computação
Universidade Federal de São João del-Rei

São João del-Rei – MG – Brazil

2Departamento de Ciência da Computação
Universidade Federal de São João del-Rei

São João del-Rei – MG – Brazil

vitorrez2002@aluno.ufsj.edu.br, charlesbarros@ufsj.edu.br

Abstract. In this paper, we present an initial proposal for a practical implemen-
tation of an online voting system based on blind signatures, to provide both bal-
lot secrecy and integrity, together with universal verifiability. Moreover, the pro-
posed system offers coercion-resistance by means of a credential scheme based
on fake passwords, that the voter can use when under coercion. The idea is that
fake passwords seem indistinguishable from valid passwords, and by allowing
the voter to use an arbitrary number of fake passwords, no adversary is capable
of determining if a coerced voter is casting a valid ballot or a fake ballot.

1. Introduction
Despite the convenience it can bring to voters, online voting faces a series of issues re-
garding security and reliability. The main reason for this is the lack of control over the
voting environment, which may be a voter’s personal computer or mobile device. Bal-
lots transmitted over the Internet could be intercepted, tampered or simply lost due to a
communication failure. Infection of the voter’s device by viruses could compromise bal-
lot secrecy and integrity. Moreover, without a proper isolated environment like a voting
booth, the voter is exposed to coercion, although some proposals aim to solve this prob-
lem [Araujo et al. 2018, Clarkson et al. 2008, Juels et al. 2005] by allowing the voters to
use fake credentials whenever they are under coercion. However, as demonstrated by
[Neto et al. 2018], the usability of credentials is limited, and incorrectly managing them
could undermine coercion-resistance. The work of [de Sá et al. 2020] offers a viable so-
lution for this issue.

Verifiability is another important aspect of online voting. Systems like
Helios [Adida 2008] offer this property by means of zero-knowledge proofs
[Chaum and Pedersen 1993], while [Ibrahim et al. 2003] presents a solution based on
blind digital signatures [Chaum 1982]. The idea is that the integrity of each ballot can
be directly and easily verified by checking the validity of a digital signature, issued by a
trusted authority. The use of a blind signature is intended to preserve ballot secrecy.

This paper presents a fusion of these two ideas: offering coercion-resistance by
means of a simple credential system based on passwords (inspired by systems like CIVIS),
and simple verifiability by checking a digital (blindly issued) signature of the ballots. The

core idea consists of giving voters the opportunity to define, during registration, a valid
user password to be used during a normal voting scenario, and allowing them to use any
random password to cast fake ballots, whenever they are under coercion. During the
voting procedure, if the voter is under coercion, she may authenticate using a random
password, which shall be indistinguishable from the valid password to the adversary. The
server, after recognizing the fake password, provides to the voter a fake credential. In
case the voter provides the valid user password, the server returns a valid credential. This
credential (fake or valid) is appended to the ballot and published on a bulletin board. Only
the ballots published with valid credentials are included in the final tally.

1.1. Notations and Theoretical Review

Throughout this paper, an RSA key shall be denoted by a triple (d, e,N), where d is
a secret exponent, e is a public exponent and N is the modulus. The pair (e,N) shall
be referred to as a public RSA key. A cryptographically secure hash function shall be
denoted by H .

The core idea in this paper is that every cast ballot must be digitally signed by
the election authority. However, to preserve ballot secrecy, the signature must be blind.
A blind signature allows a signing entity (in this case, the election authority) to issue a
valid signature for a document whose contents remain unknown. It can be achieved, for
example, with the RSA signature algorithm. Assume that the owner of a document m
wishes to obtain a valid signature of m, but the signing authority cannot view the contents
of m. Also assume that the signing authority has a public RSA key (e,N) and a secret
signature key (d,N). The owner of the document chooses a random blinding factor r and
computes

m′ = reH(m) (mod N)

where GCD(r,N) = 1. The value of m′ is sent to the signing authority, together with
some confirmation about the identity of the document’s owner. The signing authority
issues a blind signature given by

σ′ = (m′)d = rH(m)d (mod N)

The value of σ′ is sent back to the owner of the document, who removes the blinding
factor in order to obtain the signature of m, given by

σ = σ′r−1 = H(m)d (mod N)

Note that, because r is chosen at random, the blinded message m′ also appears to be
random to the signing authority, revealing no information about the contents of m.

2. Main contributions of this paper
This project is inspired by an article published in 2003 [Ibrahim et al. 2003], with some
minor changes in the infrastructure. In the 2003 paper, the application was developed
for a web environment, while this project is thought for a mobile application, although
it could be adapted to a web environment as well. Moreover, in the original article, the
voter receives a key pair, which is stored in a diskette. In this project, the voter has no
need to store any secret information. A prototype of the mobile application is currently

in the initial stages of development, using the Kivy library for Python. With this library
we are able to create an user graphic interface that can be easily deployed on any mobile
platform, as well as in a desktop environment if needed.

The main structure of the project is based upon four server applications, each one
with its main functionalities: registrar, administrator, tallier and validator. The servers are
implemented using the socket library in python. The registrar is the server application re-
sponsible for registering and then validating each voter during the election setting phase.
The administrator is responsible for defining the election parameters and registering can-
didates. The validator is intended to check the eligibility of voters, as well as issuing and
signing the ballots. The tallier receives the ballots, checks their validity and computes the
election result. All the four server applications run simultaneously. We are able to do this
by using the threading library in python.

The novelty of this work, that is not addressed in the 2003 paper, is the inclusion
of a coercion-resistance mechanism, based on fake passwords. During registration, the
voter defines a valid login password, but whenever he is under coercion, he may use a
fake password (which shall seem indistinguishable from the valid password) to generate
a fake ballot (also indistinguishable from a valid ballot).

3. Election Stages
The entire election process can be separated in three main stages: setting, voting and
tallying. At each step, the election authority publishes relevant information to the election
bulletin board, allowing voters and any interested party to audit the whole voting process.

3.1. Election Setting

The first step consists of creating the election and setting its basic parameters, including
the election unique identifier, the public key of the election authority and the list of valid
credentials.

1. The administrator creates the election, defining its unique identifier, date and time,
and generates an RSA key (da, ea, Na). It also generates a set of random valid
credentials V = {v1, v2, · · · , vm}, where m is at least equal to the number of
voters. Each credential consists of an alphanumeric code.

2. The election authority commits to the valid credentials as follows: for each vi, a
random salt ri is chosen and the commitment ci = H(vi||ri) is computed, where
H is a cryptographic hash function.

3. The list of commitments c1, · · · , cm is signed and published in the election bulletin
board. The values of vi and the respective ri are kept secret.

4. Voters and candidates are also registered during this phase. The voter provides his
personal info and chooses a username and a login password pl. Some sort of in
person registering procedure may be necessary, so that the voter is able to define
his login information without interference of an adversary. After registration, the
voters and candidates information is stored in the election database.

After the election is created, voters must download the election app, which is
digitally signed using the election authority secret key. After downloading the app, the
voter follows the steps below:

1. The voter enters his login information defined during registration. We assume that
the voter can perform this step privately.

2. The voter fills a form in order to confirm basic information present in the election
database. This information includes his name, a number of registration, and the
identifier of the election he wishes do participate, together with any other relevant
personal information.

3. The registrar validates the voter’s information (by comparing the data sent through
the app with the data previously stored during the registration phase).

4. When the information is validated, the voter is added to the list of eligible voters.

At the end of the election setting, candidates and voters are registered. The server
stores the following information:

1. Basic voters’ personal information: name, registering number, address, etc. (the
amount of personal information may vary from one election to another);

2. Voter’s Public RSA key (ev, Nv), in the form of a digital certificate;
3. Hash of the valid login password H(pl||sl) of each voter, where sl is a random

salt;

3.2. Voting procedures

After a period of time, predetermined by the election authority, the election setting stage
is closed, and no voter or candidate is able to register anymore. The full list of eligible
voters and candidates is published to the bulletin board. After a period of dispute, voting
is officially opened.

1. In the election app interface, the voter may choose in which election he wants to
participate. He is allowed to mark his options offline.

2. After marking his options for the desired election, the application encodes the
voter’s choices as a byte string b, chooses a random blinding factor r and computes
the blinded ballot b′ = reab (mod Na), using the election authority public key.

3. The voter is asked to authenticate to the validator using his login password. If he
is under coercion, he may use any random fake password. Otherwise, he authen-
ticates using the valid password pl defined during the registration phase.

4. The voter sends his identification, the election identifier and the blinded ballot
5. The validator checks if the voter is eligible for that election and issues a blind sig-

nature σ′ = (b′)da (mod Na) and sends it to the voter, together with an encrypted
credential, which is signed to guarantee its integrity and authenticity.

6. If the voter used the valid login password, he receives the encryption of a valid
credential vi, for some value of i. Otherwise, he receives the encryption of a
random fake credential (simply a random alphanumeric code, not contained in the
list of valid credentials).

7. The voter removes the blinding factor and checks the validity of the signature.
8. The ballot is encrypted using the election authority public key. The encrypted

ballot and the encrypted credential (with the corresponding signature) are sent to
the tallier.

9. After checking the validity of the encrypted credential signature, the tallier com-
putes the hash of the encrypted ballot, concatenated with the corresponding en-
crypted credential, and sends it to the voter. This hash serves as a tracking number.

After the election is closed, the encrypted ballots, together with their respective
encrypted credentials and digital signatures, are published in the bulletin board. The data
can be released in order, for example, the first voter id, the first tracking number and the
first encrypted ballot belong to voter A, next to voter B and so on. This is possible since all
data is encrypted, thus keeping the ballot secrecy. Voters can use their tracking numbers to
verify that their ballots were correctly registered. The list of voters who cast their ballots
is published. We note that voters are allowed to vote multiple times using fake passwords.
However, when a voter casts a ballot using his valid password, any other ballot he tries
to cast using the valid password again will be regarded as an invalid vote. As soon as the
server detects that the voter has already used his valid password, it will keep responding
any ballot signing requests with fake credentials, so that submitted ballots will not be
included in the final tally.

3.3. Tallying

After the end of the voting stage, the tallier opens the commitments ci, revealing the valid
credentials vi and the respective values of salt ri, so that any interested party can check
the validity of the credentials by recomputing H(vi||ri) and comparing the result with ci.
Ballots and the respective credentials are decrypted, and the list of decrypted ballots is
mixed, so that no voter is able to prove how they voted by associating the decrypted ballot
with the encrypted one, whose tracking number could be used as a receipt. Disclosing
the election data is a way to ensure that the election has not been altered by an external
agent. At this stage we can guarantee that no ballot has been altered, and the number of
valid ballots corresponds to the number of voters present in the final list. Next, the tallier
counts the votes for each candidate and publishes the result. Any interested party can
verify the result by recounting the ballots associated to valid credentials. The authenticity
and integrity of these ballots can also be verified by checking the corresponding digital
signatures.

4. Conclusions and final remarks
This paper presented the initial proposal for an online voting system based on blind sig-
natures, intended to provide verifiability and integrity, and fake credentials, which allows
voters to cast fake ballots that seem indistinguishable from valid ballots, whenever they
are under coercion. One of the limitations of the proposed protocol is that voters are
subject to forced-abstention attacks, and we must assume that the voter’s device is trust-
worthy. Another drawback is related to the voter’s ability to memorize passwords. It is
a well known fact that users commonly forget their passwords. Moreover, because the
coercion-resistance mechanism prevents the system from displaying any warning when
an invalid password is entered, accidentally mistyped passwords (when the voter has the
intention to enter a valid password) could be erroneously interpreted as a coercion situa-
tion, leading the system to provide the voter with a fake credential. As a result, the voter
would cast an invalid ballot believing it was a valid one. A possible solution for these
limitations could be to allow the voter to define a set of fake passwords, together with
the valid password, so that any other password (probably mistyped) would be detected by
the system as invalid. To help the voter to remember his passwords, a scheme of colored
passwords could be adopted.

Future works include the conclusion of the implementation and usability tests with

both password mechanisms (the user defines only a valid password, and any other pass-
word is regarded as a fake password, thus yielding a fake credential, or the user defines
a set of fake passwords with the aid of a colored password mechanism). We also intend
to address in more details some security solutions. For instance, in order to avoid timing
attacks, we must guarantee that the time taken by the server to respond to a request is
constant, regardless of the voter having typed a valid password or a fake password. In
addition, DoS attacks must be properly addressed. To avoid them, a mechanism to limit
the number of requests, and the time interval between requests, must be included in the
final implementation.

Acknowledgments
We would like to thank to all reviewers for their valuable suggestions and comments that
contributed to improve the quality of this paper.

References
Adida, B. (2008). Helios: Web-based open-audit voting. In van Oorschot, P. C., editor,

USENIX Security Symposium, pages 335–348. USENIX Association.

Araujo, R., Neto, A., and Traoré, J. (2018). Civis - a coercion-resistant election system.
In Anais do XVIII Simpósio Brasileiro de Segurança da Informação e de Sistemas
Computacionais, pages 29–42, Porto Alegre, RS, Brasil. SBC.

Chaum, D. (1982). Blind signatures for untraceable payments. In Advances in Cryptol-
ogy: Proceedings of CRYPTO ’82, pages 199–203. Plenum.

Chaum, D. and Pedersen, T. P. (1993). Wallet databases with observers. In Brickell, E. F.,
editor, Advances in Cryptology — CRYPTO’ 92, pages 89–105, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Clarkson, M. R., Chong, S., and Myers, A. C. (2008). Civitas: Toward a secure voting
system. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 354–368.

de Sá, M. O. L., Araujo, R., Sobrinho, A. C. L., Neto, A. S., Maximino, G. S., and Traoré,
J. (2020). How colored passwords can improve the usability of coercion-resistant in-
ternet voting systems. In Proceedings of the 19th Brazilian Symposium on Human
Factors in Computing Systems, IHC ’20, New York, NY, USA. Association for Com-
puting Machinery.

Ibrahim, S., Kamat, M., Salleh, M., and Aziz, S. (2003). Secure e-voting with blind
signature. In 4th National Conference of Telecommunication Technology, 2003. NCTT
2003 Proceedings., pages 193–197.

Juels, A., Catalano, D., and Jakobsson, M. (2005). Coercion-resistant electronic elections.
In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, WPES
’05, pages 61–70, New York, NY, USA. Association for Computing Machinery.

Neto, A. S., Leite, M., Araújo, R., Mota, M. P., Neto, N. C. S., and Traoré, J. (2018).
Usability considerations for coercion-resistant election systems. In Proceedings of the
17th Brazilian Symposium on Human Factors in Computing Systems, IHC 2018, New
York, NY, USA. Association for Computing Machinery.

