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Abstract. Cryptography based on elliptic curves is endowed with efficient meth-
ods for public-key cryptography. Recent research has shown the superiority
of the Montgomery and Edwards curves over the Weierstrass curves as they
require fewer arithmetic operations. Using these modern curves has, however,
introduced several challenges to the cryptographic algorithm’s design, opening
up new opportunities for optimization.

Our main objective is to propose algorithmic optimizations and implementation
techniques for cryptographic algorithms based on elliptic curves. In order to
speed up the execution of these algorithms, our approach relies on the use of
extensions to the instruction set architecture. In addition to those specific for
cryptography, we use extensions that follow the Single Instruction, Multiple Data
(SIMD) parallel computing paradigm. In this model, the processor executes the
same operation over a set of data in parallel. We investigated how to apply SIMD
to the implementation of elliptic curve algorithms.

As part of our contributions, we design parallel algorithms for prime field and
elliptic curve arithmetic. We also design a new three-point ladder algorithm for
the scalar multiplication P + kQ), and a faster formula for calculating 3P on
Montgomery curves. These algorithms have found applicability in isogeny-based
cryptography. Using SIMD extensions such as SSE, AVX, and AVX2, we develop
optimized implementations of the following cryptographic algorithms: X25519,
X448, SIDH, ECDH, ECDSA, EdDSA, and gDSA. Performance benchmarks
show that these implementations are faster than existing implementations in the
state of the art.

Our study confirms that using extensions to the instruction set architecture is an
effective tool for optimizing implementations of cryptographic algorithms based
on elliptic curves. May this be an incentive not only for those seeking to speed
up programs in general but also for computer manufacturers to include more
advanced extensions that support the increasing demand for cryptography.

1. Motivation

Extensive research efforts have focused on delivering public-key cryptography securely
and efficiently. Cryptography based on elliptic curves provides efficient methods due
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to the use of keys shorter than the ones used both in the Rivest-Shamir-Adleman (RSA)
cryptosystem [Rivest et al. 1978] and in algorithms based on the Discrete Logarithm
Problem (DLP) [ElGamal 1985]. Despite elliptic curve cryptography has been endorsed
by international standardization agencies [NIST 2000, ANSI 1998, IEEE 2000] for several
years, a recent line of research proposes a shift to new elliptic curves with the aim of
improving efficiency while preserving high-security guarantees.

With the avalanche of novel elliptic curve proposals, such as the Montgomery
curves [Montgomery 1987] and the Edwards curves [Bernstein et al. 2008], new chal-
lenges have appeared. There is still room for improving the algorithms of these alternative
curve models. These new algorithms must likely be adapted, or otherwise reformulated
considering the upsides and downsides of each model. New optimizations could arise by
analyzing the algorithms from the theoretical, computational, and practical standpoints.
Therefore, the pathway for designing cryptographic algorithms, their implementation, and
their put in practice is currently in progress.

From the computational perspective, a compelling approach for improving perfor-
mance is using extensions to the instruction set architecture. There exist extensions that
support the Single Instruction, Multiple Data (SIMD) paradigm characterized in Flynn’s
taxonomy [Flynn 1966] of parallel computing. In this model, a vector instruction encodes
an operation that is executed over several data units simultaneously, as shown in Figure 1.

Ay |+ | By | = | Co
AO BO CO
Al + B1 = Cl Al Bl Cl
+ =
| L
A |+ [ B | = | G ° .
(a) Scalar Processing: Four scalar instructions. (b) Vector Processing: One vector instruction.

Figure 1. SIMD vector instructions.

Historically, SIMD processing has been shown effective in the high-performance
computing area applied to graphics processing, scientific computing, mathematical simu-
lation, among other domains. In the early days, SIMD execution units were exclusive of
large workstations and supercomputers; nowadays, SIMD units are present in commodity
processors [Thakkar and Huff 1999, Intel Corporation 2011]. Figure 2 shows the increas-
ing addition of hundreds of new instructions and their applicability to different domains.
Lately, instructions now target more specific domains, such as the inclusion of extensions
tailored to accelerate cryptography and artificial intelligence algorithms.

2. Research Objectives

Problem Statement. The widespread availability of SIMD execution units in commod-
ity computers, Internet servers, and mobile devices motivates their application to the
implementation of cryptographic algorithms. Nonetheless, a few resources explain how
to use SIMD units efficiently, and even fewer are dedicated to the case of elliptic curve
cryptography, and the secure software development required in this domain. Moreover, it
is unclear to what extent these computational resources can help to improve efficiency.
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Figure 2. Evolution of SIMD Instructions. Each bar represents an instruction
set showing its release date (in the horizontal dimension), the number of
instructions (in the vertical dimension), and its domain of application (in the
chromatic dimension). The marks show the release date of vector registers.

It is interesting to know how to effectively apply SIMD processing to elliptic curve
cryptography. Especially making use of AVX2 and AVX512 [Intel Corporation 2011], the
most advanced vector instructions, as well as other extensions found in contemporary
computer architectures. For this reason, it is imperative to investigate how to design new
algorithms and data structures (or adapt the existing ones) so that implementations of
cryptosystems take full advantage of SIMD vector processing.

Thesis Statement. We claim that the execution of algorithms for elliptic curve cryptogra-
phy can be accelerated through a combination of algorithmic optimizations, implementation
techniques, and the use of SIMD processing and other hardware extensions.

Aims. To support this assumption, we investigate algorithmic optimizations and look for
implementation techniques for elliptic curve algorithms emphasizing the application of
SIMD parallel processing.

An objective of our study is to close the gap between theory and practice. For
instance, in addition to proposing parallel algorithms, we also cover their implementation
in software. Note that current computer architectures already support hundreds of SIMD
instructions such as SSE, AVX, AVX?2, and AVX512; and the number of new instructions
is increasing in the upcoming computer architectures (as shown in Figure 2). Our research
aims to enlighten a pathway for applying SIMD efficiently, to identify some of their
limitations, and to show how to apply them to elliptic curve cryptography.

3. Results

Our contributions are the union of several layers of improvements comprising algorithmic
optimizations for elliptic curve cryptography, efficient implementation techniques of math-
ematical field operations using SIMD vector processing, and the immediate applicability
of our findings to current information security standards. Now, we briefly describe them.

3.1. Algorithmic Optimizations

For Montgomery curves, we introduced a new Three-point Ladder Algorithm that calculates
the z-coordinate of P + k@), where P, () are points on the curve and k is an integer. Our
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Figure 3. New Three-point Ladder Algorithm. Calculating 22P + S from P, S, P — S.

algorithm, shown in Figure 3, improves in three aspects. First, it saves a third of the
operations required by previously-known algorithms [Costello et al. 2016, Jao et al. 2014].
Second, when P and () are known in advance, the algorithm runs even faster by means of
precomputation. Third, when precomputation is used, fetching precomputed values from
memory requires non-secret indexes, which prevents against side-channel attacks.

We show the immediate application of our algorithm to the Diffie-Hellman proto-
col [Diffie and Hellman 1976], which is the core operation of the Transport Layer Security
(TLS) protocol. We apply our algorithm to X25519, X448, gDSA with Montgomery curves,
and SIDH/SIKE protocols. The latter is part of Isogeny-based Cryptography, a branch of
cryptography looking for algorithms resistant against adversaries with quantum computing
power. By using our algorithm, all of these protocols exhibit an enhanced performance.
We remark that this improvement is independent of the computer’s architecture.

For Montgomery curves, we showed an optimized formula for tripling points: given
a point P, it calculates 3. This operation is relevant for multi-base scalar multiplication
methods as well as for the SIDH protocol, which evaluates 3" P for n > 0. By applying our
formula, we reduce the number of operations by an observable margin. We acknowledge
some trade-offs against formulas independently proposed by [Costello and Hisil 2017].

3.2. Implementation Techniques

On the availability of SIMD and other extensions to the instruction set architecture, we
speed up implementations of arithmetic operations over prime fields and elliptic curves.

SIMD Implementation of Prime Field Arithmetic. We showed data structures and
representation of numbers suitable for SIMD processing. Our study covers four families of
prime moduli corresponding to the ones used in the new elliptic curves. For each family, we
show how to perform field operations using scalar and vector instructions. Our benchmark
analysis shows that improvements in performance are more significant when operating over
larger numbers. On the other hand, when operating on smaller numbers, the vectorized
implementation suffers a notorious overhead limiting the amount of improvement.

A better approach to remedy this situation is to take the SIMD’s essence to higher
abstraction levels. We introduce the notion of n-way operations: use the n words of a vector
register for calculating n field operations in parallel. We follow this approach because
it reduces the use of expensive permutation instructions; thus, minimizing the overheads
observed in the vectorization for smaller numbers. Armed with n-way operations, we
turned our attention to apply them to elliptic curve arithmetic operations.

4



Anais Estendidos do SBSeg 2024: CTDSeg

SIMD Implementation of Elliptic Curve Arithmetic. We apply two-way operations to
both the execution of F,-complete formulas for point addition in Weierstrass curves, and the
calculation of the Montgomery ladder step for Montgomery curves. Our implementation
strategy consists on using the 256-bit AVX2 unit for simulating two 128-bit units, and each
of them can also be seen as two 64-bit units, which are dedicated to field arithmetic.

For Edwards curves, we focused on parallel algorithms for point addition, point
doubling, and scalar multiplication. Here, we apply four-way operations to point addition
(and doubling), which allows performing the scalar multiplication in parallel. The main
criteria of our algorithmic design is to minimize the use of costly permutation instructions.
We show that all these strategies speed up the execution of scalar multiplications.

3.3. Optimized Implementation of Cryptographic Algorithms

Building on top the prime field and elliptic curve arithmetic, we developed vectorized
implementations of ECDH and ECDSA with the P-384 curve; the X25519, X448, and
SIDH protocols; and the EDDSA and gDSA signature schemes. We observed a boost on
their performance due to vector processing. Table 1 shows timings of our implementations.

Table 1. Timings of the X25519 and X448 Diffie-Hellman protocols, and EADSA
signature schemes. Entries are 10° clock cycles.

Instance ~ Operation Haswell Skylake Tiger Lake
Key Generation 43.7 34.5 18.2
X25519 Shared Secret 121.0 99.4 50.7
X448 Key Generation 129.0 107.7 53.7
Shared Secret 428.1 364.2 168.1
Key Generation 42.8 34.8 18.4
Ed25519  Signing 48.6 39.5 20.1
Verification 156.0 123.3 77.1
Key Generation 126.7 104.9 54.8
Ed448 Signing 132.7 110.1 574
Verification 465.8 409.5 193.6

After profiling EdADSA code, we found its dominant operation is scalar multipli-
cation as shown in Figure 4. So when we speed up this operation, the time of signing
decreases by 19% and verification by 24% compared to a previous implementation.
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Figure 4. Breakdown of Ed25519’s internal operations.
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In February 2023, the National Institute of Standards and Technology [NIST 2023]
has approved the standardization of EDDSA, which in practical terms means that EADSA
is endorsed to be used on Internet communications massively. This is relevant to secure
communication protocols such as TLS, SSH, VPN, and others, which are used globally
everyday. Our contributions on accelerating the performance of this algorithm are pertinent.

4. Scientific Production
4.1. Awards

* Honorable Mention Award: Prémio Tese Destaque UNICAMP 2022 granted to the
best PhD Thesis in Engineering and Technology by the University of Campinas.

* Honorable Mention Award granted to the Best Paper by the SBSeg 2016 committee.

* Finalist at the 36th Thesis and Dissertation Contest organized by the Congress of
the Brazilian Computing Society (CSBC 2023).

4.2. Peer-Reviewed Publications

This section includes publications in academic venues that follow a doubly-blinded peer-
reviewed process for publication. Table 2 shows venue scores and numbers of citations.

Table 2. Citation counts of peer-reviewed publications (as of June 2024).

. Venue score Number of citations
Publication  Venue . ; ; ] . Google
Qualis’ Estrato®| Scopus® WoS* ACM Scholar®
[J1] IEEE Trans. Comp. Al A2 62 49 18 119
[J2] ACM Math. Soft. Al Al 32 20 19 45
[C1] SBSeg - A4 - - - 3
[C2] Latincrypt - B2 22 15 5 36
[C3] SAC - A3 16 12 - 41
[C4] SBSeg - A4 - - - 1
[C5] SPACE - Bl 3 1 - 11
[C6] APKC - B3 5 6 4 5
[CT] SBSeg - A4 - - - -
[D1] SBSeg - A4 - - - 4

! Qualis score corresponds to Period 2017-2020 reported by the Sucupira platform.
https://sucupira.capes.gov.br/sucupira/public/index.jsf

2 Estrato CAPES (Qualis Referéncia) score reported by the PPGCC/PUCRS University.
https://ppgcc.github.io/discentesPPGCC/pt-BR/qualis/

3 SCOpus:https://www.scopus.com/authid/detail.uri?authorId:523636326OO

4\VOSZhttps://www.webofscience.com/wos/author/record/G—1476—2016

51§Ch42https://dl.acm.org/profile/81490690977/publications

6GOOglGSChOlaI‘:https://scholar.google.com/citations?user:XGD6X—EAAAAJ/

Journal Articles

[J1] Faz-Hernandez, A., Lopez, J., Ochoa-Jiménez, E., and Rodriguez-Henriquez, F.
(2018). A Faster Software Implementation of the Supersingular Isogeny Diffie-
Hellman Key Exchange Protocol. IEEE Transactions on Computers. 67(11),
1622-1636. por: 10.1109/TC.2017.2771535

[J2] Faz-Hernandez, A., Lopez, J., and Dahab, R. (2019). High-performance Implemen-
tation of Elliptic Curve Cryptography Using Vector Instructions. ACM Transactions
on Mathematical Software, 45(3), 1-35. poI: 10.1145/3309759
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Publications in Conference Proceedings

[C1]

[C2]

[C3]

[C4]

[C5]

[C6]

[C7]

Faz-Hernandez A. and Lépez J. (2014). On Software Implementation of Arithmetic
Operations on Prime Fields using AVX2. In Anais do XIV Simpdésio Brasileiro em
Seguranca da Informacao e de Sistemas Computacionais (SBSeg 2014). 14, 338-
341. Sociedade Brasileira de Computacdo. boI: 10.5753/sbseg.2014.20148
Faz-Hernandez, A., and Lépez, J. (2015). Fast Implementation of Curve25519
Using AVX2. Lecture notes in computer science. Progress in Cryptology — LAT-
INCRYPT 2015. 329-345. Springer. poT: 10.1007/978-3-319-22174-8_18
Oliveira, T., Lopez, J., Hisil, H., Faz-Herndndez, A., and Rodriguez-Henriquez,
F. (2017). How to (Pre-)Compute a Ladder. Lecture notes in computer science.
Selected Areas in Cryptography — SAC 2017. 172—-191. Springer International
Publishing. poT: 10.1007/978-3-319-72565-9_9

Faz-Hernandez A. and Loépez J. (2016). Speeding up Elliptic Curve Cryptogra-
phy on the P-384 Curve. Anais do XVI Simpédsio Brasileiro em Seguranca da
Informacdo e de Sistemas Computacionais. 170-183. Sociedade Brasileira de
Computagdo. DOI: 10.5753/sbseg.2016.19306

Faz-Hernandez, A., Fujii, H., Aranha, D. F.,, and Loépez, J. (2017). A Secure and
Efficient Implementation of the Quotient Digital Signature Algorithm (qDSA).
Lecture notes in computer science. Security, Privacy, and Applied Cryptography
Engineering. 170-189. Springer. DoI: 10.1007/978-3-319-71501-8_10
Faz-Hernandez, A., Lopez, J., and de Oliveira, A. K. D. S. (2018). SoK: A
Performance Evaluation of Cryptographic Instruction Sets on Modern Architectures.
In APKC ’18: Proceedings of the Sth ACM on ASIA Public-Key Cryptography
Workshop. 9-18. ASIA CCS ’18: ACM Asia Conference on Computer and
Communications Security. DOT: 10.1145/3197507.3197511

Faz-Herndndez A. and Loépez J. (2020). Generation of Elliptic Curve Points
in Tandem. Anais do XX Simpésio Brasileiro em Seguranca da Informacgao e
de Sistemas Computacionais (SBSeg 2020). 97-105. Sociedade Brasileira de
Computagdo. DOI: 10.5753/sbseg.2020.19230

Dissemination of Science

[DI]

[D2]

Faz-Herndndez A. and Lépez J. (2015). Implementacao Eficiente e Segura de
Algoritmos Criptograficos. Minicursos do XV Simpdésio Brasileiro em Seguranca
da Informacdo e de Sistemas Computacionais. 93-140. Sociedade Brasileira de
Computagdo. DOI: 10.5753/sbc.9004.8.3

Faz-Hernandez, A., Lépez, J., Ochoa-Jiménez, E., and Rodriguez-Henriquez, F.
(2018). A Faster Software Implementation of the Supersingular Isogeny Diffie-
Hellman Key Exchange Protocol. Revista Avance y Perspectiva. (4)2, Dec, 2018.
ISSN: 2448-5977. URL: https://avanceyperspectiva.cinvestav.mx

4.3. Software Libraries

We developed a set of software libraries that show implementation techniques and optimiza-
tions of the cryptographic algorithms mentioned above. The code uses SIMD processing,
and performance benchmarks provide evidence of their superiority. To enable reproducibil-
ity, our libraries are released under a permissive software license and are available at an
institutional repository: https://gitlab.ic.unicamp.br/ral42685/phd_libs/
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