
Compact Memory Implementations of the ML-DSA
Post-Quantum Digital Signature Algorithm

Rodrigo Duarte de Meneses, Caio Teixeira, Marco Aurélio Amaral Henriques

1Faculdade de Engenharia Elétrica e de Computação
Universidade Estadual de Campinas (Unicamp) – Campinas, SP – Brasil

r197962@dac.unicamp.br, caio@dca.fee.unicamp.br, maah@unicamp.br

Abstract. This paper explores memory optimization techniques in the imple-
mentation of the Module-Lattice-Based Digital Signature Algorithm (ML-DSA)
in the context of post-quantum cryptography. It shows how to achieve signifi-
cant reductions in memory usage, and evaluates the trade-offs in computational
speed. Moreover, it demonstrates how the secret (private) key can be managed
to reduce significantly its storage requirements, thereby enhancing ML-DSA’s
applicability in some resource-constrained environments.

1. Introduction

With the recent advent of quantum computing, the cryptographic research community
faces significant challenges due to the potential capabilities of quantum computers. One
of the most critical issues is the threat quantum computers pose to current cryptographic
systems, particularly public key algorithms like RSA (Rivest-Shamir-Adleman) and ECC
(Elliptic Curve Cryptography) [Paar and Pelzl 2010]. The primary concern arises from
Shor’s algorithm [Shor 1994], a quantum algorithm that can efficiently solve the integer
factorization and discrete logarithm problems, which are foundational to RSA and ECC,
respectively. This capability threatens the security of vast amounts of data currently pro-
tected by these cryptographic schemes, potentially rendering them obsolete.

In response to these emerging challenges, post-quantum cryptography (PQC) has
gained prominence. PQC aims to develop cryptographic algorithms secure against both
classical and quantum attacks. Recognizing the importance of establishing robust post-
quantum standards, the National Institute of Standards and Technology (NIST) initiated
an international competition in 2016 to evaluate and select quantum-resistant crypto-
graphic standards [NIST 2016]. This competition has identified several promising candi-
dates, including lattice-based, hash-based, code-based, and isogeny-based cryptosystems.
Each category has unique strengths and weaknesses but all share the common goal of
resisting quantum computational attacks.

Among the various candidates, the Module-Lattice-Based Digital Signature Al-
gorithm (ML-DSA) was defined as one of the standards for post-quantum digital signa-
tures [NIST 2024]. ML-DSA is based on the CRYSTALS-Dilithium algorithm, a leading
lattice-based digital signature scheme that has shown good performance in terms of se-
curity and efficiency [Lyubashevsky et al. 2021]. CRYSTALS-Dilithium leverages the
hardness of lattice problems, specifically structured lattices, which are believed to be
secure against both classical and quantum attacks. Lattice-based cryptography, in gen-
eral, offers several advantages, including worst-case hardness guarantees and versatility
in constructing various cryptographic primitives [Regev 2005].

Anais Estendidos do SBSeg 2024: WTICG

1

Despite its potential, ML-DSA, like many post-quantum algorithms, encounters
challenges related to efficiency and resource consumption, particularly in terms of mem-
ory usage. The large key sizes and complex mathematical operations inherent to lattice-
based schemes can lead to significant memory demands, making their practical deploy-
ment difficult. Therefore, an efficient implementation of ML-DSA requires careful opti-
mization to balance security and performance while minimizing resource consumption.

Related work. Previous work on ML-DSA has primarily focused on its ear-
lier version, CRYSTALS-Dilithium [Lyubashevsky et al. 2021], with an emphasis on re-
ducing latency by targeting specific processor architectures [Ji et al. 2024]. The work
by [Bos et al. 2022] proposes some architecture-independent memory optimizations, us-
ing the PQClean implementations [Kannwischer et al. 2022] as a foundation. However,
benchmarking data for the recently standardized version ML-DSA [NIST 2024] has not
yet been provided.

Paper contribution. This paper investigates memory optimization techniques for
ML-DSA to enhance its practical applicability while preserving its robust security prop-
erties. One of the key optimizations explored is the reduction of the memory footprint
through in-place matrix-vector multiplications. By performing these operations in-place,
the algorithm can significantly reduce the amount of memory required, making it more
feasible to deploy ML-DSA in environments with constrained resources, such as embed-
ded systems, IoT devices, and mobile platforms. Another important optimization is the
reduction of the secret key size, which was obtained by delaying the calculation of sev-
eral parameters that form the secret key until the moment they are needed for a signature.
Thus, the key memory consumption of ML-DSA could be decreased, enhancing its suit-
ability for various practical use cases where the storage of large secret keys is a problem.

The paper is organized as follows: Section 2 provides an overview of lattice-
based cryptography, outlining the mathematical problems that ensure the security of ML-
DSA. Section 3 delves into the operational details of the core functions of ML-DSA. The
subsequent sections explore various strategies to optimize ML-DSA’s memory usage and
analyze the associated trade-offs in processing time and code size.

2. Lattice-Based Cryptography

Lattice-based cryptography is a promising area of cryptographic research that leverages
the mathematical structure of lattices to develop secure cryptographic primitives. Lattice-
based cryptography relies on hard mathematical problems over algebraic structures called
lattices. These problems are believed to be difficult to solve even for quantum computers,
making lattice-based schemes resistant to quantum attacks [Regev 2005]. This resilience
against quantum computing threats positions lattice-based cryptography as a crucial ele-
ment in the development of post-quantum cryptographic standards.

A lattice is a discrete subset of point in a n-dimensional vector space, denoted
by S. Each point in S can be represented as an integer linear combination of n linearly
independent vectors, which form a basis for the lattice. Formally, if (b1,b2, . . . ,bn) are
basis vectors, any point p in the lattice can be written as p = λ1b1 + λ2b2 + · · ·+ λnbn,
where λi ∈ Z. Different choices of basis vectors can describe the same lattice, and the
quality of a basis can be characterized based on how straightforwardly points in S can be
expressed as linear combinations of the basis vectors (Figure 1).

Anais Estendidos do SBSeg 2024: WTICG

2

Figure 1. Two possible basis for a given lattice.

From these properties, various algebraic problems of particular interest to
cryptography can be defined, such as the Learning With Errors (LWE) problem
[Rivest et al. 1978]. In this problem, the goal is to distinguish a random vector from a
vector that is perturbed by the addition of a small noise. Formally, given a ring Zq of
integers modulo q, the challenge is to discriminate a random vector t ∈ Zn

q from a vector
t = As1 + s2. Here, the A is a matrix with entries in Zq, and the secret vectors s1 ∈ Zℓ

q

and s2 ∈ Zk
q have small coefficients within the range [−η, η], introducing “noise” to the

equation. Therefore, the difficulty lies in distinguishing t from a uniformly random vector
in Zn

q based only on the knowledge of t, A and q.

The Module Learning With Errors (MLWE) is a generalization of LWE in which
we use a polynomial Rq = Zq[X]/(Xn + 1) instead of Zq [Lyubashevsky et al. 2010].
The security of ML-DSA is based on the MLWE problem, where the parameters of the
polynomial ring Rq are fixed for all security levels, with q = 223 − 213 − 1 and n =
256. This structure allows for more compact key sizes while retaining the strong security
properties of standard LWE.

3. ML-DSA
In August 2024, NIST released the official version for the FIPS 204 standard, after re-
view from the scientific community [NIST 2024]. The standard defines ML-DSA, a dig-
ital signature scheme based on CRYSTALS-Dilithium, and believed to be secure against
an adversary using a large-scale quantum computer. The algorithm has its architec-
ture based on the Fiat-Shamir with aborts applied to algebraic lattices, as proposed by
[Lyubashevsky 2009].

The Algorithm 1 describes the generation of keys for ML-DSA. The function is
responsible for generating a pair of secret and public keys (sk, pk). KeyGen uses an
extendable-output hash function (XOF) such as SHAKE-256 to expand a random seed
ξ to produce the seeds ρ, ρ′ and K that will later be used for the expansion of random
parameters. The basic operation consists on the “noisy” linear system t = A · s1 + s2,
where (A, t) can be understood as an expanded public key. In practice, the public key is
composed by a compressed version t1 (obtained by dropping the d least significant bits
from each coeficcient of t), and the seed ρ used for expanding the public matrix A. The
secret key consists in a byte encoding of the secret vectors s1 and s2, a vector t0 which
encodes the dropped bits from t, and the seeds ρ, K and tr.

The Algorithm 3 outlines the signing procedure for ML-DSA, which takes a secret

Anais Estendidos do SBSeg 2024: WTICG

3

key sk and a message M as inputs, and outputs a signature σ. The most fundamental
mechanism of Sign is a rejection sampling loop. In each iteration of the loop, either a
valid or an invalid signature is produced, which could potentially reveal information about
the secret key. During the process, the signer generates a commitment w1 and derives a
challenge c from the the concatenation of w1 and the message representative µ. Some
variables are used to store intermediate products to avoid recomputation and are denoted
by double brackets (e.g., ⟨⟨ct0⟩⟩).

The response z is then generated by using a pseudorandomly generated polyno-
mial masking vector y with coefficients in the range [1− γ1, γ1] and the product ⟨⟨cs1⟩⟩.
The response z is subjected to various tests that attests the signature validity, and iterates
the rejection sampling loop until a valid response is produced. After sucessfully passing
the validity tests, the signer computes a hint h that allows the verifiers to obtain w1 using
pk. The final output signature is generated as a byte enconding of the hint h, the valid
response z and the commitment hash c̃.

The Algorithm 2 describes the verification process for ML-DSA, in which the
verifier takes as inputs the public key pk, the message M and the signature σ and outputs
0 or -1 depending if the signature is valid or invalid, respectively. If the hint h is not
properly encoded (denoted by “⊥”), the verifier will consider the signature invalid. The
verifier attempts to reconstruct w1 from pk and σ by producing w′

1 = Az − ct1 · 2d.
Assuming that the secret vector s2 and the challenge c have small coefficients:

w = Ay = Az− ct+ cs2 ≈ Az− ct1 · 2d = w′
1

And the verifier can reconstruct w1 from w′
1 and the hint h. Lastly, the signer’s

response z and hint h are subjected to a series of validity checks. If the checks are suc-
cessful, the signature is considered valid.

4. Reducing Memory Footprint
The optimization of memory usage is a critical aspect in the development of efficient cryp-
tographic algorithms, particularly in the context of post-quantum digital signatures like
ML-DSA. This section explores the impact of memory optimizations on the performance
of ML-DSA, focusing on enhancing space efficiency without compromising security. By
reducing memory requirements, these optimizations aim to broaden the applicability of
ML-DSA across resource-constrained platforms, thereby facilitating its adoption in vari-
ous real-world scenarios.

4.1. In-Place Matrix Multiplication

The two main operations performed by ML-DSA are the expansion of random parameters
from a seed and multiplications within the polynomial ring Rq in the domain of the Num-
ber Theoretic Transform (NTT). Thus, varying the security level of ML-DSA involves
changing the number of operations performed on the polynomial ring and the number of
expansions, providing the algorithm with significant flexibility.

The most memory-intensive operations are those associated with the multiplica-
tions between the public matrix A and a polynomial vector in Rℓ

q (e.g., Figure 2). Nor-
mally, to perform these operations, it is necessary to have both operands fully available

Anais Estendidos do SBSeg 2024: WTICG

4

in memory. However, since the matrix A is generated pseudo-randomly and used ex-
clusively for multiplications, it is possible to generate its elements sequentially without
storing the entire matrix in memory.

ML-DSA uses three types of structures to perform these operations: poly,
polyvecl, and polyveck, which store values in Rq, Rℓ

q and Rk
q , respectively. By taking

the first row of matrix A and the input vector, the product will be the first entry or the
output vector. By performing this operation for each of the k rows of matrix A, we can
completely construct the output vector. Thus, the multiplication can be done in-place by
sequentially generating each row of A within the same polyvecl structure and operating
with the input vector. This method is referred as vector-by-vector generation.

To further optimize memory usage, we can generate each entry of matrix A within
the same poly structure and multiply it by the corresponding entry of the input vector.
The results are accumulated in the output vector. After generating and multiplying each
of the k × ℓ entries of matrix A, we fully construct the output vector. This approach is
referred as polynomial-by-polynomial generation.

Figure 2. Multiplication of the matrix A and vector y in ML-DSA.

Each poly structure is stored in a buffer of 256 (u)int32 ts, corresponding to
1 KiB per polynomial. Therefore, the public matrix A requires up to {16, 30, 56} KiB for
ML-DSA-{44, 65, 87}. Using vector-by-vector generation, we can reduce the memory
usage to a single polyvecl, which comprises ℓ poly structures, totaling {4, 5, 7} KiB for
ML-DSA-{44, 65, 87}. Furthermore, for polynomial-by-polynomial generation, we use
a single poly structure to generate matrix A, thereby needing only 1 KiB, regardless of
the chosen security level.

4.2. Secret Key Compression
In many use cases as, for example, in those based on TPM (Trusted Platform Module), it
is desirable to minimize the size of the secret key as much as possible. To achieve this,
the authors of CRYSTALS-Dilithium suggest storing the seed ξ and generating all private
parameters as needed. Note that the secret key sk is composed by (ρ,K, tr, s1, s2, t0),
where ρ, K and tr are SHAKE-256 digests. However, storing polynomial vectors s1, s2
and t0 requires significant space. Using the bit-packing techniques outlined in ML-DSA
official documentation [NIST 2024], we achieve secret key sizes of {2528, 4000, 4864}
bytes for ML-DSA-{44, 65, 87}, respectively.

Following this idea of minimizing sk involves delaying the generation of private
parameters until the moment of signing, so that the KeyGen routine only needs to generate

Anais Estendidos do SBSeg 2024: WTICG

5

parameters related to the public key. This modification can significantly reduce the size
of the secret key but can also result in a notable increase in execution time, especially for
the Sign routine. Moreover, restructuring the Sign routine to incorporate the generation
of secret key parameters also leads to an increase in code size. All these factors must be
considered to evaluate the feasibility of the proposed optimization.

5. Materials & Methods
The CRYSTALS-Dilithium PQClean implementation [Kannwischer et al. 2022] was
used as the basis for the optimizations discussed in Section 4.1 and 4.2. This imple-
mentation does not rely on any architecture-specific instructions, and can therefore be
implemented on any platform with sufficient resources.

We conducted measurements of CPU cycles and RAM usage peaks for the three
primary functions of the ML-DSA: KeyGen, Sign, and Verify. We refer to the optimized
versions, which implement vector-by-vector and polynomial-by-polynomial generation
of the public matrix A, as ML-DSA-v and ML-DSA-p, respectively. Additionally, we
performed simulations using the KAT (Known Answer Test) vectors provided by NIST,
comparing the outputs and intermediate values of our implementation with the reference
PQClean version, thereby confirming the correctness and integrity of our approach.

For the CPU usage tests, the cicle counts were averaged over 15.000 iterations
of KeyGen, Sign, and Verify for a randomly selected 59-byte message in each iteration.
For the RAM usage evaluation, the analyses were performed for a single execution of
the algorithm. ML-DSA is available in three versions: ML-DSA-{44, 65, 87}, which
correspond to the NIST security levels {2, 3, 5}. These versions consist of distinct sets
of parameters defined in the official documentation [NIST 2024], arranged in increasing
order of security. We conducted analyses for all available security levels, assessing the
impact of the optimizations for each case.

For the measurements, we used a laptop equipped with an Intel Core i7-1185G7
processor, 3.00 GHz CPU, OS Ubuntu 22.04.4 LTS, and 16 GiB RAM. We utilized the
massif tool, available within the Valgrind 3.18.1 1 suite, to measure and monitor RAM
usage during each execution. For CPU cycle measurements, we employed the callgrind
tool to generate the program’s call tree, indicating how each function contributes to overall
CPU usage. Additionally, we used the kcachegrind tool to visualize the obtained data.

6. Results & Discussion
The results regarding the techniques discussed in Section 4.1 are presented in Tables 1 and
2. Table 1 shows the peak RAM values for each ML-DSA function (KeyGen, Sign and
Verify) across the different algorithm implementations, alongside the relative variation
compared to the reference implementation ML-DSA. Table 2 presents the average number
of CPU cycles and the percentual variation compared to the reference implementation.

As highlighted in the tables, ML-DSA-p brings the most significant reduction in
RAM usage, as expected. However, there is a cost in the form of an increase in the number
of CPU cycles, which is negligible in key generation and signature verification, but is very
expressive in signature generation.

1https://valgrind.org/

Anais Estendidos do SBSeg 2024: WTICG

6

Table 1. RAM usage for ML-DSA implementations: reference (ML-DSA), vector-
optimized (ML-DSA-v) and polynomial-optimized (ML-DSA-p).

NIST Security Level
2 3 5

KiB ∆ KiB ∆ KiB ∆

KeyGen 43.9 - 68.9 - 107.6 -
ML-DSA Sign 57.3 - 87.2 - 132.0 -

Verify 41.9 - 65.8 - 102.8 -
KeyGen 32.0 -27.1% 43.9 -36.3% 58.6 -45.5%

ML-DSA-v Sign 45.3 -20.9% 62.2 -28.7% 83.0 -37.1%
Verify 29.9 -28.6% 40.9 -37.8% 53.9 -47.6%

KeyGen 30.0 -31.7% 40.9 -40.6% 53.7 -50.1%
ML-DSA-p Sign 43.4 -24.3% 59.3 -32.0% 78.0 -41.0%

Verify 28.0 -33.2% 36.7 -44.2% 48.9 -52.4%

As shown in Table 1, there is a clear and significant impact on RAM usage. No-
tably, there is a substantial reduction in memory consumption during the KeyGen and
Verify routines. This outcome is expected because multiplications with the public matrix
A accounts for the majority of memory usage in these functions. Additionally, the reduc-
tion in memory usage is more pronounced for higher security levels, as the dimensions of
the public matrix A are larger in these cases. The changes in code size that occupies the
system ROM were negligible in these implementations.

In Table 2, it is observed that the increase in CPU cycles is primarily noticeable
in the Sign routine, whereas KeyGen and Verify show a much less significant impact.
This phenomenon arises because the public matrix A is generated multiple times during
signing due to the rejection sampling mechanism. Since the entire matrix is never stored
in memory, it must be recalculated when needed, increasing processing time.

Table 2. Number of CPU cycles for ML-DSA implementations: reference (ML-
DSA), vector-optimized (ML-DSA-v) and polynomial-optimized (ML-DSA-p).

NIST Security Level
2 3 5

kcc ∆ kcc ∆ kcc ∆

KeyGen 190 - 350 - 533 -
ML-DSA Sign 838 - 1416 - 1717 -

Verify 209 - 334 - 551 -
KeyGen 191 +0.5% 352 +0.6% 537 +0.8%

ML-DSA-v Sign 1141 +36.2% 2057 +45.3% 2538 +47.8%
Verify 211 +1.0% 335 +0.3% 554 +0.5%

KeyGen 191 +0.5% 352 +0.6% 537 +0.8%
ML-DSA-p Sign 1155 +37.8% 2081 +47.0% 2549 +48.5%

Verify 211 +1.0% 335 +0.3% 554 +0.5%

The data indicates a trade-off between memory reduction and increased processing
for the algorithm. The most significant trade-off is observed in the Sign routine, while the
increase in processing for KeyGen and Verify is practically negligible. Furthermore, it can
be seen that the increase in processing is approximately the same for KeyGen and Verify

Anais Estendidos do SBSeg 2024: WTICG

7

in both ML-DSA-v and ML-DSA-p implementations. This suggests that generating the
public matrix A polynomial-by-polynomial does not significantly affect the algorithm’s
execution speed compared to vector-by-vector generation.

With respect to the secret key compression (Section 4.2), we compared the average
number of CPU cycles in the reference implementation and the version with secret key
compression, as shown in Table 3. It is worth noting that the secret key compression has
no impact on the Verify function, and therefore we opted to only present the results for
KeyGen and Sign. Since the seed ξ is only 256-bit, we achieve a reduction of {316, 500,
608}-fold in the size of the secret key for ML-DSA-{44, 65, 87}, respectively. It should
be mentioned that there was no impact on memory usage since the RAM peak values are
primarily associated with the matrix-vector polynomial multiplications, and they remain
the same for all security levels.

Table 3. Comparison of the average number of CPU cycles for ML-DSA with se-
cret key compression (ssk) and reference implementation.

NIST Security Level
2 3 5

kcc ∆ kcc ∆ kcc ∆

ML-DSA
KeyGen 190 - 350 - 533 -

Sign 838 - 1416 - 1717 -
ML-DSA

(ssk)
KeyGen 180 -5.3% 329 -6.0% 500 -6.6%

Sign 1350 +61.1% 2459 +73.7% 4138 +141.0%

However, there was a change in the code size after this compression. The com-
piled code that will be stored in the system ROM has changed from 7.3 KiB to 9.6 KiB,
a variation of 24%. This change in code size is another parameter that must be consid-
ered when deciding which kind of optimization is the best for a given application. The
optimized versions of the ML-DSA code are available in the stable GitHub repository:
https://github.com/regras/ml-dsa_in_place.

7. Conclusion

The memory optimizations implemented for the post-quantum digital signature algorithm
ML-DSA have yielded significant reduction in memory usage while maintaining its se-
curity and integrity. This achievement is crucial as it facilitates the algorithm’s imple-
mentation on computationally constrained platforms, thereby enabling its adoption across
diverse use cases. There is a price to pay for such reduction: an increase in processing
time, which has to be evaluated as a trade-off with respect to the memory usage.

Future research could be done on optimizing the resource-intensive computation
of the Number Theoretic Transform (NTT), exploring various transform architectures
that explore trade-offs between memory usage and processing efficiency. Additionally,
further research could involve incorporating threat modeling to identify potential vulner-
abilities, as well as conducting statistical analysis to assess the robustness of ML-DSA
under various attack scenarios. By refining computational techniques and exploring new
architectural optimizations, researchers can enhance the efficiency and applicability of
post-quantum cryptographic algorithms in diverse computing environments.

Anais Estendidos do SBSeg 2024: WTICG

8

https://github.com/regras/ml-dsa_in_place

References

Bos, J., Renes, J., and Sprenkels, A. (2022). Dilithium for memory constrained de-
vices. Cryptology ePrint Archive, Paper 2022/323. https://eprint.iacr.
org/2022/323.

Ji, X., Dong, J., Huang, J., Yuan, Z., Dai, W., Xiao, F., and Lin, J. (2024). ECO-
CRYSTALS: Efficient cryptography CRYSTALS on standard RISC-v ISA. Cryptology
ePrint Archive, Paper 2024/1198. https://eprint.iacr.org/2024/1198.

Kannwischer, M. J., Schwabe, P., Stebila, D., and Wiggers, T. (2022). Improving software
quality in cryptography standardization projects. In IEEE European Symposium on
Security and Privacy, EuroS&P 2022, pages 19–30, Los Alamitos, CA, USA. IEEE
Computer Society. https://eprint.iacr.org/2022/337.

Lyubashevsky, V. (2009). Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In International Conference on the Theory and Application of
Cryptology and Information Security. https://api.semanticscholar.org/
CorpusID:11853511.

Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., and Stehlé,
D. (2021). Crystals-dilithium: Algorithm specification and supporting documentation.
https://pq-crystals.org/dilithium/.

Lyubashevsky, V., Peikert, C., and Regev, O. (2010). On ideal lattices and learning with
errors over rings. Lecture Notes in Computer Science, vol 6110. https://doi.
org/10.1007/978-3-642-13190-5_1.

NIST (2016). Request for comments on post-quantum cryptography require-
ments and evaluation criteria. https://csrc.nist.gov/projects/
post-quantum-cryptography.

NIST (2024). Fips 204: Module-lattice-based digital signature standard. https://
doi.org/10.6028/NIST.FIPS.204.

Paar, C. and Pelzl, J. (2010). Understanding Cryptography. Springer. https://doi.
org/10.1007/978-3-642-04101-3.

Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryp-
tography. In Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting,, Baltimore, MD, USA. https://dx.doi.org/10.1145/1568318.
1568324.

Rivest, R., Shamir, A., and Adleman, L. (1978). A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing
Machinery. https://doi.org/10.1145/359340.359342.

Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithm and factor-
ing. In Proceedings of the 35th Annual Symposium on Foundations of Computer Sci-
ence, pages 124 – 134. https://api.semanticscholar.org/CorpusID:
15291489.

Anais Estendidos do SBSeg 2024: WTICG

9

https://eprint.iacr.org/2022/323
https://eprint.iacr.org/2022/323
https://eprint.iacr.org/2024/1198
https://eprint.iacr.org/2022/337
https://api.semanticscholar.org/CorpusID:11853511
https://api.semanticscholar.org/CorpusID:11853511
https://pq-crystals.org/dilithium/
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.1007/978-3-642-04101-3
https://doi.org/10.1007/978-3-642-04101-3
https://dx.doi.org/10.1145/1568318.1568324
https://dx.doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/359340.359342
https://api.semanticscholar.org/CorpusID:15291489
https://api.semanticscholar.org/CorpusID:15291489

Appendixes

Algorithm 1 ML-DSA.KeyGen internal(ξ) Source: [NIST 2024]

Input: Seed ξ ∈ B32

Output: Public key pk ∈ B32+32k(bitlen(q−1)−d)

and private key sk ∈ B32+32+64+32·((ℓ+k)·bitlen(2η)+dk)

1: (ρ, ρ′,K) ∈ B32 × B64 × B32 ← H(ξ ∥ IntegerToBytes(k, 1) ∥ IntegerToBytes(ℓ, 1), 128)
2: ▷ expand seed
3: Â← ExpandA(ρ) ▷A is generated and stored in NTT representation as Â
4: (s1, s2)← ExpandS(ρ′)
5: t← NTT−1(Â ◦ NTT(s1)) + s2 ▷ compute t = As1 + s2
6: (t1, t0)← Power2Round(t) ▷ compress t
7: ▷ PowerTwoRound is applied componentwise
8: pk ← pkEncode(ρ, t1)
9: tr ← H(pk, 64)

10: sk ← skEncode(ρ,K, tr, s1, s2, t0) ▷ K and tr are for use in signing
11: return (pk, sk)

Algorithm 2 ML-DSA.Verify internal(pk,M ′, σ) Source: [NIST 2024]

Input: Public key pk ∈ B32+32k(bitlen(q−1)−d) and message M ′ ∈ {0, 1}∗
Input: Signature σ ∈ Bλ/4+ℓ·32·(1+bitlen(γ1−1))+ω+k

Output: Boolean
1: (ρ, t1)← pkDecode(pk)
2: (c̃, z,h)← sigDecode(σ) ▷ signer’s commitment hash c̃, response z, and hint h
3: if h =⊥ then return false ▷ hint was not properly encoded
4: end if
5: Â← ExpandA(ρ) ▷A is generated and stored in NTT representation as Â
6: tr ← H(pk, 64)
7: µ← H(BytesToBits(tr) ∥M ′, 64) ▷ message representative that may optionally be

computed in a different cryptographic module
8: c ∈ Rq ← SampleInBall(c̃) ▷ compute verifier’s challenge from c̃
9: w′

Approx ← NTT−1(Â ◦ NTT(z)− NTT(c) ◦ NTT(t1 · 2d)) ▷ w′
Approx = Az− ct1 · 2d

10: w′
1 ← UseHint(h,w′

Approx) ▷ reconstruction of signer’s commitment
11: ▷ UseHint is applied componentwise
12: c̃′ ← H(µ ∥ w1Encode(w′

1), λ/4) ▷ hash it; this should match c̃
13: return [[||z||∞ < γ1 − β]] and [[c̃ = c̃′]]

Anais Estendidos do SBSeg 2024: WTICG

10

Algorithm 3 ML-DSA.Sign internal(sk,M ′, rnd) Source: [NIST 2024]

Input: Private key sk ∈ B32+32+64+32·((ℓ+k)·bitlen(2η)+dk), formatted message M ′ ∈ {0, 1}∗,
and per message randomness or dummy variable rnd ∈ B32

Output: Signature σ ∈ Bλ/4+ℓ·32·(1+bitlen(γ1−1))+ω+k

1: (ρ,K, tr, s1, s2, t0)← skDecode(sk)
2: ŝ1 ← NTT(s1)
3: ŝ2 ← NTT(s2)
4: t̂0 ← NTT(t0)
5: Â← ExpandA(ρ) ▷ Â is generated and stored in NTT representation as A
6: µ← H(BytesToBits(tr) ∥M ′, 64) ▷ message representative that may optionally be

computed in a different cryptographic module
7: ρ′′ ← H(K ∥ rnd ∥ µ, 64) ▷ compute private random seed
8: κ← 0 ▷ initialize counter κ
9: (z,h)←⊥

10: while (z,h) =⊥ do ▷ rejection sampling loop
11: y ∈ Rℓ

q ← ExpandMask(ρ′′, κ)
12: w← NTT−1 (Â ◦ NTT(y))
13: w1 ← HighBits(w) ▷ signer’s commitment
14: ▷ HighBits is applied componentwise
15: c̃← H(µ ∥ w1Encode(w1), λ/4) ▷ commitment hash
16: c ∈ Rq ← SampleInBall(c̃) ▷ verifier’s challenge
17: ĉ← NTT(c)
18: ⟨⟨cs1⟩⟩ ← NTT−1(ĉ ◦ ŝ1)
19: ⟨⟨cs2⟩⟩ ← NTT−1(ĉ ◦ ŝ2)
20: z← y + ⟨⟨cs1⟩⟩ ▷ signer’s response
21: r0 ← LowBits(w − ⟨⟨cs2⟩⟩)
22: ▷ LowBits is applied componentwise
23: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then (z,h)←⊥ ▷ validity checks
24: else
25: ⟨⟨ct0⟩⟩ ← NTT−1(ĉ ◦ t̂0)
26: h← MakeHint(−⟨⟨ct0⟩⟩,w − ⟨⟨cs2⟩⟩+ ⟨⟨ct0⟩⟩) ▷ Signer’s hint
27: ▷ MakeHint is applied componentwise
28: if ||⟨⟨ct0⟩⟩||∞ ≥ γ2 or the number of 1’s in h is greater than ω then (z,h)←⊥
29: end if
30: end if
31: κ← κ+ ℓ ▷ increment counter
32: end while
33: σ ← sigEncode(c̃, z mod±q,h)
34: return σ

Anais Estendidos do SBSeg 2024: WTICG

11

