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Abstract. In recent years, surveys on wvulnerability detection tools for
Solidity-based smart contracts have shown that many of them display poor
capabilities. One of the causes for such deficiencies is the absence of qua-
lity benchmarking datasets, where bugs typically found in smart contracts
are present in quantity and accurately labeled. VulLab’s main aim is to
help tackle this issue as a framework that incorporates both, state-of-the-art
vulnerability insertion and vulnerability detection tools. Such capabilities
empower users to seamlessly generate benchmark capable datasets from col-
lected contracts and employ them to validate novel analysis tool and obtain
an accurate comparison with current state-of-the-art solutions. The fra-
mework was able to, from 50 smart contracts collected from the Ethereum
mainnet, generate an annotated dataset more than 300 entries which in-
cluded 20 unique vulnerabilities, and use them to compare 14 analysis to-
ols in approximately 24 hours. VulLab is open-source and is available at
https: // github. com/ 1sRyan/vullab.

1. Introduction and Motivation

Starting in 2008 with Bitcoin, digital currencies, a decentralized blockchain-powered
technology, have become a reality for many businesses and individuals globally. One
key aspect in this domain are the so-called “smart contracts” [Lin 2022], pieces of
code designed to implement complex financial functionalities beyond simple trans-
fers of digital assets among users. Although various programming languages can
be used to develop such applications, Solidity, an object-oriented language crea-
ted by the Ethereum Foundation, is among the most prevalent. However, as the
number of everyday users and the volume of transactions through smart contracts
increase, concerns about their security have grown among users, companies, and
the community as a whole. In fact, past incidents have shown that smart contract
vulnerabilities, malicious code, or development bugs can cause significant financial
losses for the parties involved.

Security issues in smart contracts have drawn the attention of the
scientific and developers communities, especially after the widely publicized
"DAO attack”against an Ethereum contract in 2016 [Kushwaha et al. 2022a,
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Chu et al. 2023, Chen et al. 2020, Chaliasos et al. 2024].  Since then, one of
the preferred strategies to help create a safer environment for smart contract
users and developers has been the development of vulnerability detection tools
[Chaliasos et al. 2024, Ren et al. 2021, Kushwaha et al. 2022b, Zhou et al. 2022].
Even though this is a promising strategy, evaluating and comparing the actual ef-
fectiveness of existing tools is hindered by the absence of a robust and verifiable
framework, powered by an accurately labeled dataset. Indeed, most detection tools
proposed in the literature are validated using distinct datasets, collected and labe-
led either manually or with automated mechanisms (e.g., existing detection tools)
[Chu et al. 2023].

2. Objectives

VulLab’s primary objective is to enable security developers to swiftly generate an-
notated smart contract datasets for evaluating their newly developed vulnerability
detection tools. The framework’s functionalities, besides facilitating the construc-
tion of a benchmark-capable database, also offers a comparison of the application
under test against current state-of-the-art vulnerability detectors. Importantly, it is
designed with modularity and granularity in mind as it enables selective execution
of vulnerability insertion tools and the seamless addition of new ones. Such charac-
teristics provide flexibility to the tool, allowing the developer to execute it on both,
high-performance computing systems and also resource-constrained setups.

Another contribution of VulLab is to streamline the measurement of detec-
tion capabilities, particularly accuracy, across different vulnerability analysis me-
chanisms. This capability will allow users to rapidly obtain high quality benchmark
datasets and use them to identify strengths and limitations in existing solutions.
Such functionality will greatly assist researchers to conduct surveys in regard to
bug detection tools, which contributes to the ability to obtain up-to-date overvi-
ews of current state-of-the-art in security tools’ capabilities, and compare it to new
tools under development. Ultimately, VulLab serves as a versatile tool for both re-
searchers and developers, and will help accelerate the development of reliable new
security applications that, in turn, will contribute to a safer Ethereum’s smart con-
tracts environment.

3. Architecture

To implement the functionalities described in Section 2, VulLab’s architecture is
divided into two main modules. The first is a Vulnerability Insertion Module, de-
dicated to the insertion of bugs into the smart contracts collected by the user.
Simultaneously, it also provides labels for each insertion, ensuring that all issues
are clearly documented and categorized. The second is a Vulnerability Detection
Module, which focuses on the automatic execution of various detection tools. The
reports resulting from the analyses are automatically compiled and graphically dis-
played, providing a comprehensive overview of the information obtained by each
tested application. Figure 1 presents a diagram of the described architecture, which
is further detailed in Sections 3.1 and 3.3.

2



Anais Estendidos do SBSeg 2025: S-

Jo

x
%- ; Sol(i;iiFI -~ Smart&Bugsz -m

HuangGai —9- GPT-analyzer
—= — Results
—X
Collected o &
Dataset vul bility Inserti N _ Graphs
uinerability Insertion Vulnerability Detection
Module Module

Figura 1. VulLab Architecture

3.1. Vulnerability Insertion Module

The wvulnerability insertion module was implemented by combining the execu-
tion of two of two tools, SolidiFI [Ghaleb and Pattabiraman 2020] and HuangGai
[Jiamao 2021]. SolidiFI was introduced in a 2020 research paper as a pioneer in vul-
nerability insertion for Solidity smart contracts. It implements a fast and structured
method for inserting 7 common bug types, namely: timestamp dependency; unhan-
dled exceptions; integer overflow /underflow; tx.origin usage; reentrancy; unchecked
send; and transaction order dependency. HuangGai, in turn, is a more recent vulne-
rability insertion tool that builds upon the Slither analysis tool [Feist et al. 2019].
It is capable of inserting 20 different types of vulnerabilities in smart contracts,
presenting itself as a more comprehensive application than SolidiFI. Although cre-
ated by a developer from the Blockchain community and not formally published
in any scientific venue, it has garnered significant attention and recognition, being
commonly cited in recent research papers [Jin et al. 2023, Naeem and Alalfi 2024].

VulLab insertion module executes both SolidiFI and HuangGai independen-
tly and in parallel, using the containerized implementation offered by both. This
approach offers the ability to speed up the insertion process with multiple instances
of Docker containers running simultaneously. Each of them is configured to use a
specific tool to try to insert a particular vulnerability into a contract, thus guaran-
teeing that the underlying tools try to insert all supported vulnerabilities in the
target source code files. The user can also configure the number of virtual cores
available for execution, which are automatically divided between each instance for a
smooth operation in different hardware environments. In addition, this module also
translates HuangGai reports into SolidiFI’s more structured standard, organizing
them in the system directory. This process consist simply of an automatic rewri-
ting of the information provided by each report, which is a simple text file, into a
CSV format, with the addition of the vulnerability insertion nature. Since all of the
vulnerabilities in SolidiFI are stated to be inserted as ”code sniped injection”, the
same pattern was adopted in the new labels. Besides, HuangGai does not provide
vulnerabilities’ length or end line. Hence, all are considered as being 1 line long.
Figure 2 exemplifies the conversion:

Inspired by SmartBugs2’ seamlessly extensible framework for detection tools,
VulLab’s Insertion Module was implemented with modularity as one of its major
aspects. All data regarding each of the injection applications is read from JSON
files under the configurations directory. Hence, extension consists of simply adding a
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Figura 2. Example of how VulLab’s insertion module converts HuangGai’s .txt labels
into SolidiFI’s .csv standard.

new directory with the configuration files in with the correct format and add another
entry into the framework’s main script: vullab.sh. The last step, despite the added
complexity to the addition process, ensures that each of the supported tools can be
utilized with an individual flag, which enables users to only execute the ones he or
she finds more relevant.

3.2. Vulnerability Detection Module

One core component of this module is SmartBugs2 [Ferreira et al. 2021,
di Angelo et al. 2023], a powerful aggregation and execution framework for vulne-
rability detection. Besides, as many Al-based vulnerability detection technologies,
particularly LLMs, have been published in recent years, at least some usage of such
kind of tool was adopted [Tann et al. 2019, Ashizawa et al. 2021, Sun et al. 2024,
Shen et al. 2023, Wei et al. 2024]. Specifically, VulLab includes a simple GPT-
based vulnerability detection framework. It was implemented as an API call which
uses a specially crafted system prompt instructing the model to act as an analysis
tool. Importantly, in context learning was employed to ensure that the adopted
report standard, Sarif 2.1.0, is followed and that the detected tools are named by
the SCWE standard.

As with vulnerability insertion, the detection module follows the same stra-
tegy of containerized parallel execution for improved performance. It can also easily
integrate new vulnerability detection tools into its execution framework, so users
can seamlessly use the framework to compare their application with the state of the
art. To do that, the users needs to follow the steps presented at SmartBugs2 official
repository, which comprises of simply the modification of some files.

The output of this module consists of: (1) a list of detected issues, structu-
red in the JSON-derived Sarif 2.1.0 format [GitHub 2025], commonly used for bug
detection reports regardless of the area; (2) listings automatically comparing the in-
serted vulnerability labels with the generated detection reports; and (3) a graphical
representation of the results, in the form of a plot showing the number of detection
for each vulnerability and tool under test.
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3.3. Documentation

More information about Vullab can be found at https://github.com/lsRyan/
vullab/blob/main/readme.md. The documentation includes installation options
with steps, together with usage instructions. It also includes a demonstration vi-
deo, which can also be directly accessed using the link https://www.youtube.com/
watch?v=IMw2kVApL3g.

4. Experimental Results

VulLab was tested with a dataset collected from the following sources: DISL
[Morello et al. 2024], Smart Contract Sanctuary [Ortner and Eskandari |, and Hu-
angGai’s unlabeled dataset. This resulted in a database with more than 300.000
unique smart contracts. The complete execution of VulLab on this database is quite
costly, though: even using 20 processing cores, the experiments indicate that one
may need 1 hour on average to fully process about 100 contracts. Therefore, for
easier reproducibility, in this section the results obtained for a subset of 50 smart
contracts, while also limiting the runtime per contract, are presented. This subset
was carefully curated to explore all capabilities of the framework, i.e., it enables the
insertion of at least one among all supported vulnerabilities, as well as the analysis of
all tools. Besides, the selected entries are comprised of contracts that utilize Solidity
versions 0.4.x up to 0.6.x and vary from a few dozens to a fez hundred lines of code.
Besides not containing contracts above Solidity version 0.7.0, such characteristics
are indeed representative of the complete dataset.

VulLab was configured as follows: parallel threading was with 4 cores was
adopted; the insertion phase uses SolidiFI, HuangGai, the latter with a 1 minute
timeout; and the detection phase uses SmartBugs2 and GPT. SmartBugs2 was em-
ployed in its original configuration, without any additional vulnerability detection
tools, with a timeout of 15 minutes per tool per contract. With the “all” flag,
though, any extra analysis application can be executed. Regarding the GPT com-
ponent, GPT-40-mini was choosen as the underlying model; to use other models,
though, one can simply modify the API call script.

The results for the 50 contracts subset is compiled in Figure 3. This figure
graphically shows what was detected in smart contracts where at least three vulne-
rabilities were inserted, aiming to give a general overview of what could be expected
from a quick execution of the proposed tool.

For a more comprehensive analysis of the framework, however, SmartBugs2
was also executed over a larger portion of the larger dataset, that contains 50.000
smart contracts, which took about a month in 20-core server. As a result, Solhint
and Slither can be distinguished as the most capable detection solutions, showing
a 75% or higher detection rate for most vulnerabilities. Smartcheck also displayed
very promising results, although those were limited to a selection of bugs — especially
those easily detected by static analysis, such as the usage of the tx.origin variable
for authentication, or the use of floating pragma version.

Mythril, on the other hand, scored poorly across the board, with detection
rates barely reaching 20%. This result is somewhat surprising, considering the fact
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Figura 3. Vulnerability Detection Tools Results for each Vulnerability following the
OWASP enumeration [OWASP 2025]

that this ConsenSys-provided tool is commonly employed for real-world audits of
smart contracts, and is frequently updated by its open-source community. Similarly,
HoneyBadger, Semgrep, Osiris, sFuzz, Oyente, Manticore, Securify, and Conkas
presented reasonably poor detection capabilities compared with the alternatives.
Some of them, like HoneyBadger, Oyente and sFuzz, have even displayed error
messages during their execution, indicating that they do not support the newer
versions of Solidity compiler used in the dataset. This is due to the fact that, with
the exception of Mythril, Slither and Solhint, most tools do not receive frequent
updates, most likely due to the finalization of the scientific work that proposed
them. While understandable, such observation raises concerns in regard to the
current state-of-the-art detection frameworks.

Another important reason for the poor coverage is that many of the detectors
tend to focus only on a narrow selection of vulnerabilities. While not an issue by
itself, this leads to some bugs being over-represented, such as SCWE-046 (Reen-
trancy), with many tools detecting them, while others, such as SCWE-079 (Insecure
use of Transfer and Send), not included in the graph above but present in the project
repository, do not have appropriate coverage. Importantly, another possible reason
for poor performance capabilities is the insufficient validation of detectors, mainly
due to the absence of high quality labeled datasets. Due to that, validation practices
tend to rely on error-prone manual annotation or on previously published analysis
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tools, with bug injectors receiving little attention from the research and developer
communities [Chu et al. 2023].

Something else that calls our attention is that dynamic analysis tools, such
as fuzzers, provided worse detection results compared to their static counterparts.
This result may be explained by the 15-minute execution timeout for each contract,
though, since those tools usually require long execution times to provide more ro-
bust results. A longer execution time would most likely result in better detection
capabilities for such tools, as they would be able to execute more tests. One possi-
ble next step in regard of this assumption would be the adoption of several different
timeouts in order to obtain a more in-depth analysis of fuzzers and other dynamic
detectors.

With respect to each individual vulnerability, several important gaps in the
current state-of-the-art detection tools were noted. Potentially hazardous bugs such
as unprotected or unexpected self-destruction, insecure hashing with multiple va-
riables, and transaction order dependence scenarios (TOD) have been found to be
insufficiently covered by all analysis tools. Besides, some practices that contribute
to bad code quality were not adequately covered by the tools hereby evaluated.
Examples include unprotected access to private variables, and functions declared
public when they should be external. It is also noteworthy that most vulnerability
analysis tools offered poor detection capabilities for integer underflow and overflow
bugs inserted by HuangGai, which was not the case for contracts where the same
vulnerabilities were inserted by SolidiFI. Fortunately, such discrepancy is not of
outmost importance for modern contracts because such bugs have been resolved by
Solidity itself, starting on version 0.8.0.

5. Demonstration

For the VulLab demonstration during the conference, a small dataset of approxi-
mately 5 smart contracts will be used. The primary reason for selecting a limited
number of contracts is the time-consuming nature of the bug insertion process, even
when multiple processes are executed at once. Given this constraint, a compact yet
representative dataset is necessary to balance feasibility with the need for a mea-
ningful evaluation. The database has been specifically curated to ensure that every
type of vulnerability covered by HuangGai and SolidiFI can be inserted at least
once. This selection process guarantees that the demonstration comprehensively
showcases the capabilities of both tools.

For the vulnerability detection phase, only static analysis tools will be em-
ployed: since dynamic analysis tools typically require a significant execution time
to provide meaningful results, their are unsuitable for quick demonstrations. Du-
ring this step, ChatGPT’s API may also be executed to demonstrate the use of
GPT-40-mini. It is important to note that excluding dynamic tools does not affect
the demonstration, as their execution process in the framework is identical to that
of static tools. Additionally, to prevent potential excessive runtime, Smartbugs2’s
timer function will be used to limit the execution of each tool to a maximum of
one minute per smart contract. Although infinite loops are not expected to occur,
this safeguard ensures that the demonstration remains time-efficient, allowing for a
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smooth and controlled evaluation of the tool’s performance.

The framework will also be configured for a “verbose” execution mode, where
every step of each process is printed on the screen. This approach enhances visuali-
zation, making it easier to follow the procedures in real-time and contributing to a
clearer and more engaging demonstration. Due to the architecture of how VulLab
was implemented, the vulnerability insertion tools do not inherently provide a visi-
ble terminal output. To address this, a visual interface that displays the operation
state was implemented. In contrast, Smartbugs2 already includes a terminal-friendly
interface that presents the execution process step-by-step.

Finally, the results obtained from executing the vulnerability detection tools
on the dataset with inserted bugs will be compiled and presented in an automatically
generated graph. This final step consolidates the findings, providing a clear and
structured overview of VulLab’s execution.

All of the execution process will be undertaken in the researchers laptop,
with no need to any additional hardware. Since the insertion and detection tools
are implemented in Docker containers, internet access will be required in order to
download the container images from the official repository.

6. Conclusions and Future Works

This work shows that VulLab is a promising solution that aims to facilitate the
task of benchmarking and comparing vulnerability detection tools. By leveraging
the most up-to-date bug insertion frameworks, VulLab enhances researchers’ and
developers’ capabilities of quickly building a large reliable smart contract database
with labeled vulnerabilities for analysis. Furthermore, the selected approach does
not rely on error-prone human labeling of smart contracts, ensuring a more rigorous
constructed process. In addition to allowing the evaluation of existing tools, VulLab
should also promote the development and analysis of new vulnerability detection
solutions to address gaps in the literature. Finally, by leveraging Smartbugs2’s
extensibility features, the proposed tool provides a comprehensive and adaptable
testing environment, ensuring that vulnerability detection tools can be continuously
refined and rigorously assessed.

One possible direction for future work is the development of new vulnerabi-
lity insertion techniques, along with implementations of these techniques to further
enhance the quality and diversity of labeled datasets. Although this has not been a
subject of intense development in recent studies, such approaches are acknowledged
as promising methods for generating reliably labeled datasets, as further demons-
trated in this work. Furthermore, it is useful to consider the creation of a framework
similar to Smartbugs2, but designed to aggregate containerized insertion tools and
orchestrate their execution through a unified configuration. Such a framework would
streamline the integration of multiple such applications, providing a more flexible
and scalable solution for future database generation.

Finally, inserting vulnerabilities into smart contracts naturally requires buil-
ding a representative, unlabeled dataset. However, the analysis undertaken of the
literature indicates the absence of a consistently maintained and widely cited da-
taset for Solidity smart contracts. Consequently, this has prompted many works
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to assemble their own datasets for validation, sometimes including databases that,
albeit large, carry many outdated contracts. This encumbers the construction of
solutions intended to promote the secure development of smart contracts, such as
bug insertion and bug detection tools. Therefore, it would be important to create a
framework that promotes the construction of a collaborative, open-access repository
with up-to-date entries, which could then be further updated as new contracts are
published. Those datasets could also include labeled entries for prompt usage by
vulnerability detection tools.
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