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Abstract. High-quality data scarcity hinders malware detection, limiting ML
performance. We introduce MalDataGen, an open-source modular framework
for generating high-fidelity synthetic tabular data using modular deep learning
models (e.g., WGAN-GP, VQ-VAE). Evaluated via dual validation (TR-TS/TS-
TR), seven classifiers, and utility metrics, MalDataGen outperforms benchmarks
like SDV while preserving data utility. Its flexible design enables seamless inte-
gration into detection pipelines, offering a practical solution for cybersecurity
applications.

1. Introduction
Modern machine learning algorithms, particularly deep learning architectures, depend on
large-scale datasets with reliable annotations to achieve optimal performance. However,
current methods for dataset collection and labeling require substantial resources and time
investments [Zha et al. 2025]. The field faces persistent challenges with data availability,
as approximately 80% of AI project failures stem from insufficient data quantity or quality
[AI & Data Today 2023].

These challenges are especially observable in domains with limited or imperfect
data sources. Synthetic data generation offers a potential solution [Figueira and Vaz 2022,
Lee 2025, Hao et al. 2024], creating artificial samples that maintain key charac-
teristics of real-world data. In cybersecurity, this approach has been applied
to improve malware detection systems [Nogueira et al. 2024b, Nogueira et al. 2024a,
Fernandes et al. 2025, Casola et al. 2023, Peppes et al. 2023], identify anomalous net-
work traffic [Kumar and Sinha 2023], and generate polymorphic malware variants
[Dunmore et al. 2023].

We observe the development of several libraries and frameworks that help stream-
line and standardize the process for synthetic data generation. We provide a comparative
overview of libraries for synthetic tabular data generation in Table 1. The table highlights
the models and algorithms they use for generating synthetic data.

1https://gretel.ai/
2https://ydata.ai/
3https://docs.sdv.dev/sdv
4https://github.com/SBSeg25/MalDataGen
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Table 1. Deep Learning-Based Libraries for Synthetic Tabular Data Generation.

Library Algorithms Models

Gretel Synthetics1 GAN DGAN, DPGAN, ACTGAN

YData2 GAN GAN, cGAN, WGAN, WGAN-GP, DRAGAN, CramerGAN, CWGAN-GP,
CTGAN

SDV3

Statistical Copula

GAN CTGAN

AE TVAE

MalDataGen4 GAN GAN, WGAN-GP, cGAN

(This Work)
AE AE, VAE, VQ-VAE

Diffusion LDM

Existing libraries face two main constraints: limited flexibility for custom mod-
ifications and a narrow range of pre-implemented algorithms. We address these is-
sues with a new Python-based modular and extensible framework, named MalData-
Gen4, with broader algorithms support. While Table 1 shows most current tools focus
on GAN-based approaches [Mirza and Osindero 2014], and SDV includes Autoencoders
[Kingma et al. 2013], our solution expands on these foundations. We incorporate addi-
tional implementations of established methods and present what we believe are the first
tabular data applications of VQ-VAEs [Van Den Oord et al. 2017] and Latent Diffusion
Models [Rombach et al. 2022]. Our solution is also designed to be composable, enabling
scientists and practitioners to assemble other models from our basic components.

Our evaluation shows that MalDataGen outperforms SDV, which currently offers
the widest range of algorithms. We assess all generative models from both libraries using
seven classifiers and follow the methodology from [Esteban et al. 2017], implementing
two validation approaches: TR-TS (Train on Real - Test on Synthetic) and TS-TR (Train
on Synthetic - Test on Real).

The paper is organized as follows. Section 2 describes our framework. Section 3
presents and discusses the results, with concluding remarks in Section 4.

2. MalDataGen: Composable Generative Modeling Framework
Figure 1 shows the architecture of MalDataGen. The design includes two core compo-
nents: (1) the Engine with components for developing and managing deep learning-based
generative models, and (2) the Evaluation Resources for validating synthetic data quality.

2.1. Engine
The Engine contains modules for development, training, and orchestration of deep
learning-based generative models. We organize the library into six key modules: DataIO,
Data Visualization, Classifiers, Metrics, Active Monitoring, and Generative Models. Ad-
ditionally, the Engine includes auxiliary modules, such as those for handling arguments
and exceptions. This structure helps manage complexity while allowing customization
and reuse.

We built the DataIO module to handle data acquisition, transformation, and stor-
age. It works with structured formats like .csv and .xls, supporting dataset normaliza-
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Figure 1. Overview of the MalDataGen composable framework.

tion, schema-aware editing, and format-preserving serialization. The pluggable I/O layer
adapts to new file formats and domain-specific representations.

The Data Visualization module offers tools for analyzing both real and synthetic
datasets. Its capabilities include visualization of statistical dependencies through correla-
tion heatmaps, cluster analysis using techniques like K-Means with UMAP, and graphical
representation of performance metrics such as confusion matrices and bar plots. These
components support customization of visual styles and export options.

Our Classifiers module contains 15 supervised learning algorithms, including
SVM, Random Forest, and MLP. The abstract interface design enables efficient com-
parison across different modeling approaches.

In the Metrics module, we implement measures for predictive performance (F1-
score, AUC, MCC) and distribution similarity (Jensen-Shannon Divergence, Wasserstein
Distance, MMD). These help evaluate how well synthetic data matches real data distribu-
tions.

The Active Monitoring module oversees the entire data pipeline. It detects faults
like NaN values and divergence, tracks resources including memory usage, and main-
tains time-stamped logs. The system includes convergence-aware callbacks for runtime
adjustments.

For the Generative Models module, we provide a suite of fully configurable
synthetic-data generators that allow architecture customization, hyperparameter tuning,
and the selection of diverse generation strategies. Out-of-the-box, the module supports
CTGAN, variational autoencoders (VAEs), and Gaussian copula models, each capable of
producing samples that faithfully preserve the statistical properties of the original dataset.

Crucially, we have extended each base implementation to better suit
Android-malware generation. In our GAN and VAE variants, we introduce an embedding
layer for malware class labels (benign vs. malicious) and a projection layer to streamline
feature preprocessing. For the latent diffusion model (LDM), we depart from the original
TabDDPM design [Kotelnikov et al. 2023] by integrating a VAE subnetwork: this en-
sures a continuous, lower-dimensional latent space. Finally, during the reverse-diffusion
(denoising) stage, we employ a bespoke U-Net composed of multi-channel feedforward
layers and residual temporal-encoding blocks, and train it end-to-end with a combined

Anais Estendidos do SBSeg 2025: SF

3



KL-divergence plus MSE loss.

The Generative Models module follows a two-layer architecture shown in Fig-
ure 2. We organize the upper layer with functional building blocks, while the lower layer
handles core computational dependencies including TensorFlow and essential Python li-
braries.

Tensor Ops
(Matmult)

Autodiff
(Gradient tape)

Low-level Layers
(FeedForward Layer)

Tensor Types
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Figure 2. Overview of the Generative Models architecture (with illustrative exam-
ples in parentheses).

For the functional building blocks, we implement reusable components that sup-
port flexible pipeline construction. The optimizers includes gradient-based algorithms like
Adam, Nadam, and SGD, which we can configure for different learning scenarios. We
provide various loss functions such as MSE, Cross-Entropy, and KL Divergence to han-
dle different training objectives. The composite layers incorporates abstractions like Time
Embedding and Sampling Layers that work with architectures such as VQ-VAEs. Addi-
tional auxiliary components includes Gaussian diffusion processes and attention mecha-
nisms. For training supervision, we implement control callbacks that handles early stop-
ping and resource monitoring.

The training architecture separates learning dynamics from model structure. We
implement multiple training algorithms including GANs, VAEs, and Diffusion Models
that work with different model architectures like UNet and Encoder-Decoder pairs. This
separation allows combining architectures with different training objectives without struc-
tural modifications. For example, a UNet backbone can work with either VAE objectives
or DDPM training.

At the foundation, we build on TensorFlow’s computational framework1 for core
operations. The low-level layers provide basic neural network components including con-
volutional and dense layers. We implement essential tensor operations like matrix mul-
tiplication and other algebraic routines. The automatic differentiation system enables
gradient computation through reverse-mode differentiation. For tensor management, we
include shape and data type specifications through tensor typing. The system integrates
with Keras2 for execution management and high-level API access.

1https://www.tensorflow.org
2https://keras.io/api/
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This architecture combines TensorFlow’s computational capabilities with modular
components for generative modeling. The layered approach maintains performance while
supporting flexible configuration and extension of the core functionality. Each compo-
nent interacts through well-defined interfaces, allowing researchers to modify or extend
specific aspects without affecting other system parts.

We augment our discussion with a comprehensive set of visuals. First, five in-
depth figures unpack the internal workings of each generative model, clearly illustrating
their key architectural distinctions. Complementing these, eight Mermaid diagrams chart
the entirety of the MalDataGen framework – depicting everything from the high-level
system layout and object-oriented class relationships to the complete data-processing
pipeline, evaluation routines, training workflows, and metrics architecture. Together,
these graphical resources present a unified, detailed perspective on how MalDataGen’s
modules interlock to produce and rigorously assess high-quality synthetic data for cyber-
security applications. For the full collection of diagrams and detailed explanations, please
visit our GitHub repository3.

2.2. Evaluation Resources
Our evaluation resources provides systematic protocols for assessing synthetic data qual-
ity and usefulness. These resources consist of two core components: the Evaluation
Methods and AI Model Presets modules.

The Evaluation Methods component implements validation approaches including
k-fold cross-validation, where we partition datasets into k subsets for iterative training
and testing. We also employ domain transfer evaluation through two complementary ap-
proaches: Train-on-Real/Test-on-Synthetic (TR-TS) and Train-on-Synthetic/Test-on-Real
(TS-TR). These methods allow us to assess both data transferability and model robustness
using paired classifiers from our classification tools.

For the AI Model Presets, we maintain version-controlled configurations contain-
ing optimized parameters such as learning rates for GAN components and training epoch
counts. The module includes architectural templates for supported network types and ini-
tialization parameters for models from our generative components. These presets help
ensure consistent evaluation across different experimental setups.

The resources incorporate standardized metrics to compare synthetic and original
datasets across multiple dimensions. All components integrate with other library modules
through defined interfaces, supporting reproducible assessment of synthetic data quality.
We designed the system to balance comprehensive evaluation with practical usability,
allowing researchers to focus on their specific validation needs.

3. Results and Discussion
We present and analyze our key findings using the SVM (Support Vector Machine) classi-
fier to demonstrate patterns observed across classifiers. Complete results for all classifiers
and hyperparameter configurations are available in our public repository.

For our experiments, we employed the Androcrawl dataset from the Malware-
DataHunter Project’s public repository4. This dataset comprises 20,340 samples—10,170

3https://github.com/SBSeg25/MalDataGen
4https://github.com/Malware-Hunter/datasets.git
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malware and 10,170 benign—each described by 136 features. Prior to training, we ap-
plied chi-square feature selection to retain the top 200 features, then down-sampled each
class to 10,000 instances (20,000 total) where needed to ensure balance.

We leave a comprehensive examination of synthetic data’s influence on class bal-
ance—and a rigorous investigation into potential data leakage stemming from our feature-
selection process—for subsequent studies.

Figure 3 presents a heatmap of average 5-fold cross-validation scores for SVM
classifiers trained on synthetic samples generated by both our MalDataGen framework
and the SDV library. Darker cells indicate stronger performance (closer to 1.0) and lighter
cells indicate weaker performance (closer to 0.0). We report utility metrics—accuracy,
precision, recall, F1-score, and AUC—with paired rows contrasting the TS-TR and
TR-TS evaluation scenarios.

Figure 3. Utility assessment: Binary classification metrics for SVM classifier
performance using data generated by different models.

Our results reveal notable performance variations across generative models. The
WGAN-GP and WGAN implementations show strong performance across all metrics,
often achieving near-perfect scores in both evaluation scenarios. CGAN and AE follow
closely, with CGAN particularly excelling in TR-TS metrics. VAE and LDM maintain
high performance but show slightly lower TS-TR F1-scores due to reduced recall. Our
VQ-VAE implementation, while the lowest-performing among our models, maintains all
metrics above 0.84.

SDV’s models demonstrate weaker TR-TS performance. The Copula model
shows limited efficacy, with critical TR-TS metrics approaching random classification
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levels. CTGAN shows improved TR-TS capability over Copula but remains behind our
models. SDV’s TVAE performs exceptionally, matching our top-performing WGAN-GP
across both evaluation paradigms.

These results suggest that with proper hyperparameter optimization, our models
can match or surpass existing open-source implementations like SDV. The performance
differences highlight the importance of model selection and tuning for synthetic data gen-
eration tasks.

We present the mean distance metric results from our 5-fold evaluation in Table 2.
The table shows distance measurements between synthetic and real data, where lower
values indicate higher fidelity. Each column represents a different generative model from
our framework and the SDV library.

Table 2. Fidelity assessment: Distance metrics comparing real data to synthetic
outputs across generative models (lower values indicate better alignment).

Metrics
Models

Ours SDV

cGAN AE LDM VQ-VAE VAE WGAN WGAN-GP Copula CTGAN TVAE

Euclidean Distance ↓ 3.59 3.97 3.46 4.62 3.46 3.45 3.89 4.43 4.51 4.29

Hellinger Distance ↓ 166.08 181.03 160.57 210.20 160.88 159.50 179.00 200.90 204.74 195.28

Manhattan Distance ↓ 405.7 483.39 379.17 650.19 380.63 374.16 471.21 593.54 616.59 560.79

Hamming Distance ↓ 2.98 3.55 2.79 4.78 2.80 2.75 3.46 4.36 4.53 4.12

Jaccard Distance ↓ 0.65 0.66 0.60 0.74 0.60 0.61 0.66 0.70 0.71 0.69

The results show a consistent pattern with our utility metric findings. Our WGAN
implementation achieves the lowest distance measures across most metrics, indicating
the closest similarity to real data. The WGAN-GP, cGAN, and AE models follow with
slightly higher but still competitive distance values. Among our implementations, VQ
VAE shows the largest distance from real data distributions.

For SDV’s models, we observe generally higher distance metrics, with Copula
and CTGAN showing the greatest dissimilarity to real data. This aligns with their weaker
performance in utility evaluations. SDV’s TVAE stands as an exception, matching our
WGAN-GP in both fidelity and utility metrics, demonstrating comparable effectiveness
in generating authentic synthetic data.

The fidelity assessment reinforces the utility metric results, showing that models
producing data closer to the real distribution also perform better in downstream tasks. The
consistent performance across both evaluation dimensions suggests that careful model se-
lection and optimization can yield synthetic data that preserves both statistical properties
and practical usefulness.

4. Final Considerations
Demonstration. We will demonstrate how MalDataGen operates through a practical ex-
ample executed on one of our devices. This demonstration will highlight its configuration
parameters, execution pipeline and an analysis of the produced such as heatmaps, confu-
sion matrices, and training curves. Examples of these outputs are presented in Appendix
A.
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Conclusion. We presented MalDataGen, a Composable Generative Modeling Frame-
work designed for the generation of synthetic tabular data, with a specific focus on cy-
bersecurity applications. Our implementation showed comparable or superior results to
SDV in the evaluated scenarios. It also introduced a modular architecture that supports
extensibility, a set of pre-configured generative models, and a methodology based on two
validation strategies (TR-TS and TS-TR), which helped assess the quality of the gener-
ated data. We used visualization methods to support exploratory analysis and to examine
the qualitative characteristics of the synthetic data.

Future directions. We plan to improve the library by adding new generative models,
classifiers, and metrics. We also expect to integrate it with tools for data analysis and
generation to increase interoperability. Our evaluation resources will be expanded to in-
clude other libraries, such as YData and GretelSynthetics, along with additional datasets
and use cases.
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Appendix A: Examples of outputs
Figures 4, 5 and 6 encapsulate our evaluation pipeline’s key results. The aggregated con-
fusion matrices in Figure 4 summarize binary classification performance (TP, FN, TN,
FP) under both TR-TS and TS-TR protocols. Figure 5 compares real versus synthetic fea-
ture means, with an overlaid plot highlighting divergences to assess generation fidelity.
Lastly, Figure 6 traces each model’s training stability: WGAN/WGAN-GP generator and
discriminator losses, VQ-VAE’s total, reconstruction and quantization losses, and a sin-
gle reconstruction curve for the autoencoder. Collectively, these visuals demonstrate the
synthetic data’s quality and the robustness of our training workflows.
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Figure 4. Evaluating of Adversarial model via SVM Confusion Matrices.
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