
Avaliação comparativa do desempenho de inteligências
artificiais generativas e ferramentas tradicionais na análise de

código-fonte JavaScript

Rayane Pimentel1, Claudia Bianchi Progetti 2

1Serviço Nacional de Aprendizagem do Comércio (Senac) – São Carlos, SP, Brasil
2Serviço Nacional de Aprendizagem do Comércio (Senac) – São Paulo, SP, Brasil

rayanepimentel101@gmail.com, claudia.bprogetti@sp.senac.br

Abstract. Comparative study between SAST tools (Semgrep/SonarQube) and
LLM models (DeepSeek/CodeLlama) for detecting JavaScript vulnerabilities
(OWASP Juice Shop). Results reveal complementarity: SASTs achieve 100%
precision for standard vulnerabilities (XSS/SQLi), while LLMs offer higher re-
call (70% in DeepSeek) for contextual threats (NoSQLi/access control). The 22-
45% false positive rate in LLMs calls for filtering strategies. We demonstrate
that hybrid pipelines optimally combine SAST accuracy with LLM coverage.
The study contributes empirical evidence for the adoption of LLMs in security
pipelines, highlighting challenges such as the mitigation of false positives.

Resumo. Estudo comparativo entre ferramentas SAST (Semgrep/SonarQube) e
modelos LLM (DeepSeek/CodeLlama) na detecção de vulnerabilidades em Ja-
vaScript (OWASP Juice Shop). Resultados revelam complementaridade: SASTs
alcançam 100% de precisão para vulnerabilidades padrão (XSS/SQLi), en-
quanto LLMs oferecem maior recall (70% no DeepSeek) para ameaças con-
textuais (NoSQLi/Broken Access Control). A taxa de 22-45% de falsos positivos
em LLMs demanda estratégias de filtragem. Demonstramos que pipelines híbri-
dos combinam de forma ideal a precisão SAST com cobertura LLM. O estudo
contribui com evidências empíricas para a adoção de LLMs em pipelines de
segurança, destacando desafios como a mitigação de falsos positivos.

1. Introdução

A segurança de aplicações web está em constante ameaça, principalmente quando a lin-
guagem mais usada da web, o JavaScript, apresenta desafios únicos à análise automática
de código. JavaScript é a linguagem mais utilizada no desenvolvimento web, presente em
98,3% dos sites para front-end [W3Techs 2024] e amplamente adotado no back-end via
Node.js [Stack Overflow ]. No entanto, a flexibilidade de JavaScript (ex.: tipagem dinâ-
mica, execução assíncrona), essencial para o desenvolvimento moderno, facilita a intro-
dução de riscos de segurança. Por exemplo, vulnerabilidades como Cross-Site Scripting
(XSS) e SQL Injection são comuns em aplicações JavaScript [Snyk 2022], sendo também
classificadas entre as vulnerabilidades incluídas no relatório do Open Web Application
Security Project (OWASP), OWASP Top 10 [OWASP Foundation 2023].

Ferramentas tradicionais de Static Application Security Testing (SAST), análise
estática de segurança em aplicações, como Checkmarx, SonarQube e Semgrep, são am-
plamente utilizadas para detecção automatizada de vulnerabilidades. Essas ferramentas
analisam o código sem executá-lo, utilizando técnicas como análise de sintaxe, fluxo de

Anais Estendidos do SBSeg 2025: WTICG

1



dados e controle de fluxo. No entanto, enfrentam desafios, como dificuldade em detec-
tar vulnerabilidades contextuais, como lógicas de negócios e alta taxa de falsos positivos
[Le et al. 2024] [Wadhams et al. 2024].

Large Language Models (LLMs), como GPT-4, CodeLlama e DeepSeek, surgiram
como uma alternativa promissora, pois interpretam a intenção das pessoas desenvolvedo-
ras e fornecem uma análise mais contextualizada, reduzindo limitações das abordagens
tradicionais. Embora estudos mostrem resultados positivos em linguagens como Java,
C e Python, há uma lacuna de pesquisa em relação a JavaScript, linguagem que impõe
desafios a análise automatizada [Zhou et al. 2024].

Este trabalho visa comparar o desempenho de LLMs e SASTs na identificação de
vulnerabilidades OWASP Top 10 em código JavaScript, utilizando como base o OWASP
Juice Shop. Os objetivos específicos incluem: (1) extrair e estruturar um conjunto de vul-
nerabilidades a partir do OWASP Juice Shop, formando um dataset representativo para
avaliação comparativa das ferramentas; (2) avaliar precisão, recall e F1-score das fer-
ramentas; (3) avaliar o impacto operacional das ferramentas, como o tempo gasto com
falsos positivos [Kiminich 2024].

Este estudo busca investigar se os LLMs superam SASTs apresentando maior efi-
cácia na detecção de vulnerabilidades e contribuam para a redução de falsos positivos em
JavaScript. Além disso, este estudo visa orientar desenvolvedores na escolha de ferra-
mentas adequadas e apoiar pesquisas futuras sobre a aplicação de LLMs em segurança
web. Dessa forma, esta pesquisa se propõe a preencher uma lacuna crítica na segurança
de aplicações web, investigando o papel emergente dos LLMs no cenário JavaScript. Ao
investigar o papel emergente dos LLMs na segurança de aplicações JavaScript, este es-
tudo pode contribuir não apenas para o avanço acadêmico, mas também para a adoção
segura de IA no desenvolvimento web moderno.

2. Referêncial Teórico
Esta seção organiza-se em cinco pilares teóricos que sustentam a análise proposta: (1) se-
gurança em aplicações JavaScript, (2) testes de segurança em aplicações estáticas (SAST),
(3) aplicação de Inteligência Artificial (IA) na análise de código, (4) fundamentação em
métricas de avaliação e (5) síntese conceitual e identificação de lacunas de pesquisa. A
integração desses eixos visa construir a base metodológica do estudo, conforme detalhado
nas subseções seguintes.

2.1. Segurança em Aplicações JavaScript
JavaScript é a linguagem predominante no desenvolvimento web, mas sua flexibilidade
como tipagem dinâmica, execução assíncrona e manipulação dinâmica do DOM, a torna
suscetível a riscos de segurança. Essas características dificultam a análise estática de
qualidade, pois a identificação de vulnerabilidades muitas vezes depende de contexto de
execução ou interações dinâmicas, impactando diretamente atributos de qualidade como
confiabilidade e segurança [International Organization for Standardization 2023].

Essa relação entre segurança e qualidade de software é reforçada por relatórios
como o Snyk Top 10 JavaScript Vulnerabilities e OWASP Top 10, que destacam vulnera-
bilidades críticas em JavaScript [Snyk 2022].

Entre as vulnerabilidades mais comuns, destacam-se:
• Cross-Site Scripting (XSS): Permite a injeção de scripts maliciosos no navegador

da vítima. Pode ocorrer tanto no lado servidor (reflected/stored XSS) quanto no
cliente (DOM-Based XSS).

Anais Estendidos do SBSeg 2025: WTICG

2



• Cross-Site Request Forgery (CSRF): Explora a confiança do site em relação ao
navegador do usuário, permitindo que ações sejam realizadas sem o seu consenti-
mento.

• SQL Injection: Permite a execução de comandos SQL arbitrários através da ma-
nipulação de entradas da aplicação, podendo comprometer dados e integridade do
sistema.

• DOM-Based XSS: Variante do XSS que ocorre exclusivamente no lado cliente,
explorando modificações inseguras no DOM por meio de entradas manipuladas.

• No Rate Limiting: Ausência de limitação de requisições permite ataques de força
bruta, DoS e bloqueio de contas.

Essas vulnerabilidades podem ser subdetectadas por ferramentas SASTs tradici-
onais, que enfrentam desafios como análises contextuais limitadas e dificuldade de com-
preender lógica de execução dinâmica. Por outro lado, LLMs demonstram potencial para
interpretar contextos dinâmicos como manipulação do DOM, com potencial para aumen-
tar a eficiência da garantia da qualidade de software.

2.2. Static Application Security Testing (SAST)
O SAST é uma metodologia amplamente utilizada para análise estática de código-fonte,
identificando vulnerabilidades de segurança antes da execução do software. Ferramen-
tas SASTs como SonarQube, Checkmarx e Semgrep funcionam por meio de regras pré-
definidas que analisam sintaxe, fluxo de dados e padrões de código inseguros, alinhando-
se a frameworks como o OWASP Top 10 e SANS Top 25 [Palo Alto Networks ].

O processo de SAST envolve diversas etapas, iniciando pela análise estrutural do
código-fonte. A ferramenta realiza o parsing do código, gerando uma Árvore Sintática
Abstrata (AST) que representa a estrutura do programa, como funções, laços, condicio-
nais e variáveis. Em seguida, são aplicadas análises de fluxo de controle e fluxo de dados,
permitindo identificar caminhos de execução e rastrear o fluxo de informações entre variá-
veis e componentes da aplicação. Isso possibilita a detecção de falhas como manipulação
insegura de dados. As ferramentas utilizam conjuntos de regras de segurança baseadas
em padrões reconhecidos, como OWASP Top 10 e CWE/SANS Top 25. Essas regras
orientam a identificação de práticas de codificação insegura e possíveis vulnerabilidades.
Além disso, técnicas de correspondência de padrões e análise semântica são utilizadas
para correlacionar construções do código com vulnerabilidades conhecidas, considerando
tanto a estrutura quanto o comportamento do programa [Palo Alto Networks ].

Apesar de sua utilidade, SASTs enfrentam desafios específicos, como a di-
ficuldade em analisar código assíncrono como promises, callbacks, comportamentos
gerando falsos positivos, e a incapacidade de interpretar lógicas de negócio comple-
xas ou interações em tempo real, o que limita a detecção precisa de vulnerabilidades
[Wadhams et al. 2024].

2.3. Inteligência Artificial na Análise de Código
A integração de IA na análise de código-fonte, especialmente por meio de LLMs, está
revolucionando a detecção de vulnerabilidades e a garantia da qualidade de software.
Essa abordagem combina técnicas como Processamento de Linguagem Natural (PLN) e
modelos generativos para superar limitações de métodos tradicionais, como SASTs, em
linguagens dinâmicas como JavaScript [IBM 2024].

Segundo a IBM [IBM 2024], a revisão de código por IA pode ser estruturada em
quatro componentes principais:

Anais Estendidos do SBSeg 2025: WTICG

3



• Análise de Código Estático: examina o código-fonte sem executá-lo, detectando
problemas precoces de segurança e manutenção. Os modelos de IA utilizam os
dados gerados por essa análise para recomendar melhorias.

• Análise de Código Dinâmico: executa o código e testa seu comportamento em
tempo real, encontrando problemas que só se manifestam em execução, como
gargalos de desempenho ou falhas de segurança.

• Sistemas Baseados em Regras: utilizam conjuntos de regras e boas práticas para
verificar a conformidade com padrões de segurança e estilo. São eficazes para
garantir consistência e reduzir erros sintáticos e de estilo.

• PLN e LLMs: modelos como CodeLlama e DeepSeek são exemplos de LLMs
especializados em código, treinados com grandes volumes de dados e capazes de
compreender estrutura, lógica e intenção de trechos complexos de código-fonte.
Isso os torna capazes de detectar falhas contextuais e sugerir correções mais pre-
cisas do que abordagens tradicionais.

A aplicação de IA na análise de código oferece benefícios significativos, como
a contextualização semântica, onde LLMs interpretam comportamentos dinâmicos como
promises e callbacks em Node.js, com isso esperasse que reduza falsos positivos comuns
em SASTs . Entretanto, persistem desafios: LLMs podem gerar falsos positivos/negati-
vos e a sinalização de código seguro como vulnerável como document.write intencional
[Zhou et al. 2024].

2.4. Fundamentação em Métricas de Avaliação
Para avaliar o desempenho de ferramentas de análise de vulnerabilidades, este estudo
adota quatro métricas clássicas da literatura, precisão, recall, F1-score e taxa de falsos
positivos (FP Rate). Essas métricas permitem quantificar a confiabilidade dos alertas,
cobertura da detecção e o impacto operacional dos falsos positivos [Hu et al. 2024].

A precisão mede a confiabilidade dos alertas, indicando a proporção de vulne-
rabilidades reais entre os casos reportados. Alta precisão é essencial para evitar falsos
positivos, que consomem tempo em revisões desnecessárias, um problema recorrente em
SASTs tradicionais [Zhou et al. 2024].

Precisão =
Verdadeiros Positivos (VP)

Verdadeiros Positivos (VP) + Falsos Positivos (FP)
(1)

O recall avalia a cobertura de detecção, representando a capacidade de identificar
todas as vulnerabilidades existentes. Um recall elevado é prioritário em cenários críti-
cos, como aplicações bancárias, onde falhas não detectadas (falsos negativos) podem ter
impactos severos.

Recall =
Verdadeiros Positivos (VP)

Verdadeiros Positivos (VP) + Falsos Negativos (FN)
(2)

O F1-Score equilibra precisão e recall, sendo ideal para comparar ferramentas em
cenários onde ambos os aspectos são igualmente relevantes.

F1-Score =
2× precisão × recall

precisão + recall
(3)

Anais Estendidos do SBSeg 2025: WTICG

4



Por fim, a métrica FP Rate Operacional quantifica o ruído nos alertas, represen-
tando a porcentagem de alertas incorretos em relação ao total gerado. No estudo, será
utilizado para comparar o custo operacional de SASTs e LLMs.

FP Rate Operacional =
Falsos Positivos (FP)

Verdadeiros Positivos (VP) + Falsos Positivos (FP)
(4)

Essas métricas foram selecionadas por abordarem tanto a eficiência técnica (preci-
são, recall) quanto o impacto operacional (FP Rate), alinhando-se aos objetivos do traba-
lho. Por exemplo, a hipótese de que LLMs reduzirão falsos positivos em JavaScript será
validada pela correlação entre alta precisão (proporção de alertas corretos) e baixo FP
Rate (percentual de alertas incorretos). Além disso, o F1-Score permitirá identificar qual
ferramenta oferece o melhor equilíbrio entre detecção abrangente (recall) e confiabilidade
(precisão), critério essencial para adoção em projetos reais, onde a eficiência operacional
(minimização de tempo gasto com falsos positivos) e a segurança (evitar falsos negativos)
são prioritários.

2.5. Síntese Conceitual e Lacuna de Pesquisa
A tríade formada pela dinamicidade do JavaScript, as limitações contextuais das ferra-
mentas SASTs e o potencial analítico dos LLMs evidencia uma lacuna crítica na litera-
tura: a ausência de estudos empíricos que comparem essas abordagens sob métricas téc-
nicas (precisão, recall) e operacionais (FP Rate) em ecossistemas JavaScript. Enquanto
os SASTs apresentam elevadas taxas de falsos positivos, afetando a eficiência dos fluxos
de desenvolvimento, e LLMs demonstram eficácia em linguagens estáticas como Java
e dinâmicas com Python, mas ainda carecem de evidências sobre seu desempenho em
cenários JavaScript complexos, onde a manipulação dinâmica do DOM e Promises de-
safiam modelos tradicionais. Esta pesquisa busca preencher esse vazio por meio de uma
avaliação sistemática baseada no OWASP Juice Shop, simulando condições próximas ao
ambiente de desenvolvimento web real [Wadhams et al. 2024] [Zhou et al. 2024].

3. Método de Pesquisa
Este estudo adota uma abordagem quantitativa para comparar o desempenho de ferra-
mentas SAST e LLMs na detecção de vulnerabilidades em JavaScript. A metodologia
divide-se em quatros etapas principais, (1) construção de um dataset validado, (2) pré-
processamento do código-fonte, (3) configuração das ferramentas, e (4) execução auto-
matizada com métricas precisas.

3.1. Dataset controlado
O dataset utilizado foi baseado na aplicação OWASP Juice Shop (versão v17.3.0), uma
aplicação web intencionalmente vulnerável, amplamente reconhecida como referência
para testes de segurança. Para garantir validade estatística e reprodutibilidade, selecionou-
se um subconjunto de 15 arquivos: 10 contendo vulnerabilidades documentadas (VULN)
e 5 seguros (SAFE). Os arquivos VULN representam falhas críticas do OWASP Top 10
2021, como Cross-Site Scripting (XSS) e NoSQL Injection, mapeadas diretamente aos
desafios oficiais da aplicação. Já os SAFE correspondem a correções validadas pelo
projeto, identificados pelo sufixo correct.ts em seu caminho. Essa bipartição permitiu
calcular métricas de precisão e recall sem ambiguidades, já que o status de cada arquivo
(vulnerável ou seguro) foi pré-validado pela documentação do Juice Shop.

Anais Estendidos do SBSeg 2025: WTICG

5



A Tabela 1 detalha as vulnerabilidades selecionadas e seus respectivos arquivos.

Tabela 1. Vulnerabilidades e Arquivos Seguros

ID Vulnerabilidade Arquivo

VULN-01 XSS search-result/search-result.component.ts
VULN-02 Injection routes/login.ts
VULN-03 Injection routes/search.ts
VULN-04 NoSQL Injection routes/updateProductReviews.ts
VULN-05 Broken Access Control frontend/src/app/app.routing.ts
VULN-06 Sensitive Data Exposure server.ts
VULN-07 SSRF routes/profileImageUrlUpload.ts
VULN-08 CSRF routes/updateUserProfile.ts
VULN-09 Broken Access Control routes/basketItems
VULN-10 Validação Insuficiente routes/deluxe.ts

SAFE-01 Safe unionSqlInjectionChallenge_2_correct.ts
SAFE-02 Safe tokenSaleChallenge_3_correct.ts
SAFE-03 Safe accessLogDisclosureChallenge_1_correct.ts
SAFE-04 Safe adminSectionChallenge_1_correct.ts
SAFE-05 Safe dbSchemaChallenge_2_correct.ts

3.2. Pré-processamento do Código-Fonte
Antes da análise, aplicou-se um pré-processamento para remover ruídos não funcionais,
como comentários de licença, marcadores de desafio (ex: // vuln-code-snippet) e blo-
cos multilinha irrelevantes, preservando apenas a lógica executável. Essa etapa foi crítica
para evitar vazamento de contexto em LLMs, por exemplo, dicas textuais que pudessem
influenciar artificialmente a detecção. As ferramentas SAST, por sua vez, analisaram o
código original, pois não são influenciadas por comentários.

3.3. Ferramentas e Configurações
Foram selecionadas duas abordagens para análise estática de segurança: ferramentas
SAST e modelos de LLM, todas configuradas em ambiente gratuito para garantir reprodu-
tibilidade e aderência a contextos acadêmicos. Para a categoria SAST, foram escolhidas:
SonarQube Community Build (versão 25.5) e Semgrep (versão 1.49). Ambas as ferra-
mentas foram integradas a um pipeline de CI/CD via GitHub Actions, permitindo análise
automatizada. Para avaliação com LLMs, foram utilizados: CodeLlama-7b (via Ollama)
DeepSeek-Coder-1.3b (via Ollama). Os modelos foram utilizados em suas versões base
(sem fine-tuning), com prompts estruturados para análise de vulnerabilidades, como no
código 1.

Código 1. Prompt utilizado para análise

Analise os riscos de segurança no código abaixo , seguindo o
OWASP Top 10. Retorne APENAS se houver vulnerabilidades , no
formato JSON abaixo. Caso contrário , retorne "Código seguro ".

{
"Arquivo ": "Nome do arquivo",
"Trecho Vulnerável": "O snippet de código específico que

contém a vulnerabilidade .",

Anais Estendidos do SBSeg 2025: WTICG

6



"Tipo da Vulnerabilidade ": "A categoria da vulnerabilidade",
"Descrição Breve": "Uma explicação concisa (1-2 frases) de

por que esse trecho é vulnerável"
}

3.4. Execução e Coleta de Resultados
A execução do experimento foi dividida em três etapas principais. Primeiramente, foi
realizada uma varredura inicial, na qual as ferramentas SAST e os modelos LLM analisa-
ram exclusivamente os arquivos do dataset controlado da aplicação OWASP Juice Shop,
buscando identificar possíveis vulnerabilidades. Em seguida, os alertas gerados foram
classificados em três categorias: Verdadeiros Positivos (VP), correspondentes às vulne-
rabilidades corretamente detectadas com base no ground truth oficial da OWASP Juice
Shop; Falsos Positivos (FP), representando alertas incorretos, como casos de código se-
guro sinalizado como vulnerável e Falsos Negativos (FN), que indicam vulnerabilidades
existentes que não foram detectadas. Para a automatização do cálculo das métricas, foi
implementada uma função em Python baseada na biblioteca scikit-learn. A função per-
corre os rótulos verdadeiros (y_true) e as previsões (y_pred) para contar os valores de
VP, FP e FN. Em seguida, são calculadas as métricas clássicas de avaliação: precisão,
recall, F1-Score e taxa de falsos positivos (FP Rate). O código da função é apresentado
no Código 2

Código 2. Código de implementação das métricas de avaliação

1

2 from sklearn.metrics import precision_score , recall_score ,
f1_score

3

4

5 def calcular_metricas(y_true , y_pred):
6 # Contadores de desempenho
7 vp = sum(1 for yt, yp in zip(y_true , y_pred) if yt == 1 and

yp == 1)
8 fp = sum(1 for yt, yp in zip(y_true , y_pred) if yt == 0 and

yp == 1)
9 fn = sum(1 for yt, yp in zip(y_true , y_pred) if yt == 1 and

yp == 0)
10

11 # Cálculo das métricas
12 precisao = precision_score(y_true , y_pred , zero_division =0)
13 recall = recall_score(y_true , y_pred , zero_division =0)
14 f1 = f1_score(y_true , y_pred , zero_division =0)
15 fp_rate = fp / (vp + fp) if (vp + fp) > 0 else 0
16

17 return {
18 'Precisao ': precisao ,
19 'Recall ': recall ,
20 'F1-Score': f1,
21 'FP Rate': fp_rate ,
22 'VP': vp,
23 'FP': fp,
24 'FN': fn
25 }

Anais Estendidos do SBSeg 2025: WTICG

7



4. Resultados
Os resultados apresentados nesta seção foram obtidos a partir da análise comparativa
entre ferramentas SAST (SonarQube, Semgrep) e modelos LLM (DeepSeek, CodeLlama)
na detecção de vulnerabilidades no OWASP Juice Shop. As métricas foram calculadas
utilizando VP, FP, FN, conforme descrito na metodologia. De modo geral, observou-se
que cada abordagem apresentou pontos fortes e limitações específicas, tanto em termos
de cobertura quanto de precisão, conforme resumido na Tabela 2.

Tabela 2. Comparação de Métricas entre Ferramentas de Análise de Segurança

Ferramenta Precisão Recall F1-Score FP Rate VP FP FN

Semgrep 100% 50% 67% 0% 5 0 5
SonarQube 100% 10% 18% 0% 1 0 9
DeepSeek 78% 70% 74% 22% 7 2 3
CodeLlama 55% 60% 57% 45% 6 5 4

Nota: VP = Verdadeiros Positivos, FP = Falsos Positivos, FN = Falsos Negativos.
Dados obtidos da análise do OWASP Juice Shop v17.3.0.

No que se refere ao desempenho geral, a ferramenta Semgrep (SAST) obteve
100% de precisão e 50% de recall, resultando em um F1-Score de 67%. Isso indica que,
embora seja altamente precisa nas detecções que realiza, sua cobertura ainda é limitada.
Por outro lado, o SonarQube, amplamente utilizado para análise de qualidade de código,
demonstrou baixa capacidade de identificar vulnerabilidades reais, com apenas 10% de
recall e um F1-Score de 18%, ainda que mantendo precisão de 100%. Em ambos os casos,
a taxa de falsos positivos (FP Rate) foi de 0%, indicando baixo ruído, mas também um
risco elevado de vulnerabilidades não detectadas (falsos negativos).

Entre os modelos de linguagem, o DeepSeek se destacou com o melhor equilíbrio
entre precisão (78%) e recall (70%), atingindo um F1-Score de 74% e uma FP Rate de
22%. Já o CodeLlama apresentou desempenho inferior, com 55% de precisão, 60% de
recall e uma FP Rate de 45%, o que resultou em um F1-Score de 57%. Essa alta taxa de
falsos positivos no CodeLlama indica que quase metade dos alertas exigem verificação
manual, um custo operacional elevado em ambientes produtivos.

Além das métricas quantitativas, a Tabela 3 apresenta um resumo das principais
vulnerabilidades detectadas por cada ferramenta, destacando as diferentes áreas de cober-
tura. Observa-se que os modelos de linguagem (LLMs) foram capazes de identificar vul-
nerabilidades que passaram despercebidas pelos SASTs, como NoSQL Injection, CSRF
e controles de acesso quebrados. Por outro lado, o Semgrep se mostrou mais eficaz em
vulnerabilidades clássicas como XSS e injeções em pontos previsíveis.

Tabela 3. Resumo das vulnerabilidades principais detectadas por cada ferra-
menta

Ferramenta Principais Vulnerabilidades Detectadas

Semgrep XSS, Injection, Sensitive Data Exposure, SSRF
SonarQube Injection (limitada)
DeepSeek NoSQL Injection, CSRF, Broken Access Control, Validação insuficiente
CodeLlama NoSQL Injection, CSRF, Broken Access Control, Validação insuficiente

Complementando os resultados quantitativos, a Tabela 4 apresenta uma análise

Anais Estendidos do SBSeg 2025: WTICG

8



qualitativa das ferramentas, considerando aspectos como equilíbrio entre precisão e re-
call, taxa de falsos positivos e aplicabilidade prática em diferentes contextos. Essa ava-
liação tem como objetivo oferecer uma visão mais interpretativa sobre os pontos fortes e
limitações de cada abordagem.

Tabela 4. Comparação qualitativa das ferramentas

Ferramenta Avaliação

Semgrep Alta precisão, baixa cobertura (50% recall), FP Rate de 0%. Ideal para análises
rápidas com foco em confiabilidade e baixo ruído.

SonarQube Alta precisão, porém praticamente sem cobertura (10% de recall). Mais útil
para análise de qualidade de código do que para segurança.

DeepSeek Bom equilíbrio entre precisão e recall, FP Rate moderada (22%). Indicado
para uso prático em pipelines automatizados.

CodeLlama Detecta vulnerabilidades relevantes, mas com alto ruído (FP Rate de 45%).
Requer validação manual cuidadosa.

Esses achados destacam o potencial complementar entre abordagens tradicionais
e generativas na análise de segurança em JavaScript.

5. Considerações Finais
Os resultados deste estudo exploratório sugerem que a detecção de vulnerabilidades em
aplicações JavaScript pode se beneficiar de uma abordagem combinada. Ferramentas
SAST como o Semgrep são altamente precisas, mas oferecem cobertura limitada. Já mo-
delos LLM, como o DeepSeek, aumentam significativamente a cobertura, especialmente
em vulnerabilidades mais contextuais, embora ainda sofram com taxas consideráveis de
falsos positivos.

Observou-se também que soluções amplamente adotadas como o SonarQube, em-
bora úteis para qualidade de código, têm pouca eficácia na identificação de vulnerabilida-
des reais, reforçando seu papel complementar no pipeline de segurança.

É crucial reconhecer três limitações fundamentais que condicionam a generaliza-
ção destes resultados: (1) A análise baseou-se em apenas 15 arquivos; (2) Os LLMs foram
utilizados sem fine-tuning, explicando parcialmente os altos FP Rates (22-45%) e limi-
tando seu potencial analítico para segurança; (3) A ausência de validação dinâmica das
correções impossibilita afirmar que as soluções geradas mitigam riscos sem criar novas
cadeias de vulnerabilidades.

Com base nessas restrições, recomenda-se uma arquitetura de segurança que inte-
gre: (1) SASTs tradicionais para detecção de padrões conhecidos; (2) LLMs para cobrir
casos mais complexos; e (3) filtros automatizados que reduzam o impacto dos falsos po-
sitivos.

Como próximas etapas, sugerem-se estudos que explorem o desenvolvimento de
técnicas que reduzam o FP Rate dos LLMs sem comprometer sua cobertura, possivel-
mente através de fine-tuning com datasets especializados ou métodos híbridos que inte-
grem análise estática e dinâmica. Igualmente importante será a criação de métricas que
quantifiquem não apenas a eficácia técnica das ferramentas, mas também seu impacto
operacional em ambientes reais de desenvolvimento e também uma análise qualitativa

Anais Estendidos do SBSeg 2025: WTICG

9



das sugestões de correção geradas pelos LLMs, avaliando sua precisão, aplicabilidade
e alinhamento com boas práticas de segurança (ex: se as correções propostas para XSS
de fato mitigam o risco sem introduzir novos vulnerability chains). Esta evolução será
fundamental para que as promessas dos modelos de linguagem se traduzam em ganhos
práticos para a segurança de aplicações JavaScript sem sobrecarregar as equipes com fal-
sos positivos.

Referências
Hu, T. et al. (2024). Unveiling llm evaluation focused on metrics: Challenges and solu-

tions. arXiv. Disponível em: <http://arxiv.org/abs/2404.09135>. Acesso em: 05 abr.
2025.

IBM (2024). Análise de código de ia. Disponível em: <https://www.ibm.com/br-
pt/topics/ai-code-review>. Acesso em: 05 abr. 2025.

International Organization for Standardization (2023). ISO/IEC 25010:2023 – Systems
and software engineering — Systems and software Quality Requirements and Evalua-
tion (SQuaRE) — System and software quality models. ISO, Genebra.

Kiminich, B. (2024). Owasp juice shop: An intentionally insecure javascript web ap-
plication. Versão 17.3.0. Disponível em: <https://github.com/juice-shop/juice-shop>.
Acesso em: 20 fev. 2024.

Le, T. K. et al. (2024). A study of vulnerability repair in javascript programs with large
language models. In Companion Proceedings of the ACM Web Conference 2024. Dis-
ponível em: <http://arxiv.org/abs/2403.13193>. Acesso em: 19 mar. 2025.

OWASP Foundation (2023). Owasp top 10:2023 – the ten most critical web application
security risks. Disponível em: <https://owasp.org/www-project-top-ten/>. Acesso em:
20 fev. 2024.

Palo Alto Networks. What is static application security testing (sast)? Dispo-
nível em: <https://www.paloaltonetworks.com/cyberpedia/what-is-static-application-
security-testing-sast>. Acesso em: 05 abr. 2025.

Snyk (2022). Snyk top 10 – inteligência de vulnerabilidades de segurança. Disponível
em: <https://snyk.io/pt-BR/snyk-top-10/>. Acesso em: 20 fev. 2024.

Stack Overflow. Developer survey 2023. Disponível em:
<https://survey.stackoverflow.co/2023>. Acesso em: 20 fev. 2025.

W3Techs (2024). Usage statistics of javascript as client-side programming language on
websites. Disponível em: <https://w3techs.com/technologies/details/cp-javascript>.
Acesso em: 20 fev. 2024.

Wadhams, N. et al. (2024). Barriers to using static application security testing (sast)
tools: A literature review. In Proceedings of the 39th IEEE/ACM Internatio-
nal Conference on Automated Software Engineering Workshops, pages 161–166,
Sacramento, CA, USA. Association for Computing Machinery. Disponível em:
<https://dl.acm.org/doi/10.1145/3691621.3694947>. Acesso em: 19 mar. 2025.

Zhou, X. et al. (2024). Comparison of static application security testing tools and
large language models for repo-level vulnerability detection. arXiv. Disponível em:
<http://arxiv.org/abs/2407.16235>. Acesso em: 15 nov. 2024.

Anais Estendidos do SBSeg 2025: WTICG

10


