Anais Estendidos do SBSeg 2025: WTICG

Avaliacao comparativa do desempenho de inteligéncias
artificiais generativas e ferramentas tradicionais na analise de
codigo-fonte JavaScript

Rayane Pimentel!, Claudia Bianchi Progetti >

Servigo Nacional de Aprendizagem do Comércio (Senac) — Sdo Carlos, SP, Brasil
2Servico Nacional de Aprendizagem do Comércio (Senac) — Sdo Paulo, SP, Brasil

rayanepimentel101@gmail.com, claudia.bprogetti@sp.senac.br

Abstract. Comparative study between SAST tools (Semgrep/SonarQube) and
LLM models (DeepSeek/CodeLlama) for detecting JavaScript vulnerabilities
(OWASP Juice Shop). Results reveal complementarity: SASTs achieve 100%
precision for standard vulnerabilities (XSS/SQLi), while LLMs offer higher re-
call (70% in DeepSeek) for contextual threats (NoSQLi/access control). The 22-
45% false positive rate in LLMs calls for filtering strategies. We demonstrate
that hybrid pipelines optimally combine SAST accuracy with LLM coverage.
The study contributes empirical evidence for the adoption of LLMs in security
pipelines, highlighting challenges such as the mitigation of false positives.

Resumo. Estudo comparativo entre ferramentas SAST (Semgrep/SonarQube) e
modelos LLM (DeepSeek/CodeLlama) na detec¢do de vulnerabilidades em Ja-
vaScript (OWASP Juice Shop). Resultados revelam complementaridade: SASTs
alcangcam 100% de precisdo para vulnerabilidades padrdo (XSS/SQLi), en-
quanto LLMs oferecem maior recall (70% no DeepSeek) para ameagas con-
textuais (NoSQLi/Broken Access Control). A taxa de 22-45% de falsos positivos
em LLMs demanda estratégias de filtragem. Demonstramos que pipelines hibri-
dos combinam de forma ideal a precisdo SAST com cobertura LLM. O estudo
contribui com evidéncias empiricas para a adog¢do de LLMs em pipelines de
seguranca, destacando desafios como a mitigacdo de falsos positivos.

1. Introducao

A seguranca de aplicacdes web estd em constante ameaca, principalmente quando a lin-
guagem mais usada da web, o JavaScript, apresenta desafios unicos a analise automatica
de codigo. JavaScript € a linguagem mais utilizada no desenvolvimento web, presente em
98,3% dos sites para front-end [W3Techs 2024] e amplamente adotado no back-end via
Node.js [Stack Overflow]. No entanto, a flexibilidade de JavaScript (ex.: tipagem dina-
mica, execugdo assincrona), essencial para o desenvolvimento moderno, facilita a intro-
ducdo de riscos de seguranca. Por exemplo, vulnerabilidades como Cross-Site Scripting
(XSS) e SQL Injection sao comuns em aplicacdes JavaScript [Snyk 2022], sendo também
classificadas entre as vulnerabilidades incluidas no relatério do Open Web Application
Security Project (OWASP), OWASP Top 10 [OWASP Foundation 2023].

Ferramentas tradicionais de Static Application Security Testing (SAST), analise
estdtica de seguranca em aplicagdes, como Checkmarx, SonarQube e Semgrep, sdo am-
plamente utilizadas para detec¢do automatizada de vulnerabilidades. Essas ferramentas
analisam o cédigo sem executa-lo, utilizando técnicas como andlise de sintaxe, fluxo de

1

Anais Estendidos do SBSeg 2025: WTICG

dados e controle de fluxo. No entanto, enfrentam desafios, como dificuldade em detec-
tar vulnerabilidades contextuais, como logicas de negdcios e alta taxa de falsos positivos
[Le et al. 2024] [Wadhams et al. 2024].

Large Language Models (LLMs), como GPT-4, CodeLlama e DeepSeek, surgiram
como uma alternativa promissora, pois interpretam a inten¢ao das pessoas desenvolvedo-
ras e fornecem uma andlise mais contextualizada, reduzindo limita¢des das abordagens
tradicionais. Embora estudos mostrem resultados positivos em linguagens como Java,
C e Python, hd uma lacuna de pesquisa em relacdo a JavaScript, linguagem que impde
desafios a andlise automatizada [Zhou et al. 2024].

Este trabalho visa comparar o desempenho de LLMs e SASTSs na identificacdo de
vulnerabilidades OWASP Top 10 em cddigo JavaScript, utilizando como base 0o OWASP
Juice Shop. Os objetivos especificos incluem: (1) extrair e estruturar um conjunto de vul-
nerabilidades a partir do OWASP Juice Shop, formando um dataset representativo para
avaliagdo comparativa das ferramentas; (2) avaliar precisdo, recall e Fl-score das fer-
ramentas; (3) avaliar o impacto operacional das ferramentas, como o tempo gasto com
falsos positivos [Kiminich 2024].

Este estudo busca investigar se os LLMs superam SASTs apresentando maior efi-
cacia na deteccdo de vulnerabilidades e contribuam para a redugdo de falsos positivos em
JavaScript. Além disso, este estudo visa orientar desenvolvedores na escolha de ferra-
mentas adequadas e apoiar pesquisas futuras sobre a aplicacdo de LLMs em seguranca
web. Dessa forma, esta pesquisa se propde a preencher uma lacuna critica na seguranca
de aplicacdes web, investigando o papel emergente dos LLMs no cendrio JavaScript. Ao
investigar o papel emergente dos LLMs na seguranca de aplicacdes JavaScript, este es-
tudo pode contribuir ndo apenas para o avanco académico, mas também para a adocao
segura de IA no desenvolvimento web moderno.

2. Referéncial Teorico

Esta sec¢do organiza-se em cinco pilares tedricos que sustentam a andlise proposta: (1) se-
guranca em aplicacdes JavaScript, (2) testes de seguranca em aplicacdes estédticas (SAST),
(3) aplicacdo de Inteligéncia Artificial (IA) na andlise de cddigo, (4) fundamentagdo em
métricas de avaliacdo e (5) sintese conceitual e identificacdo de lacunas de pesquisa. A
integracdo desses eixos visa construir a base metodoldgica do estudo, conforme detalhado
nas subsecoes seguintes.

2.1. Seguranca em Aplicacoes JavaScript

JavaScript € a linguagem predominante no desenvolvimento web, mas sua flexibilidade
como tipagem dindmica, execucao assincrona e manipulagcao dindmica do DOM, a torna
suscetivel a riscos de seguranca. Essas caracteristicas dificultam a andlise estdtica de
qualidade, pois a identificacdo de vulnerabilidades muitas vezes depende de contexto de
execugdo ou interagdes dindmicas, impactando diretamente atributos de qualidade como
confiabilidade e seguranca [International Organization for Standardization 2023].

Essa relacdo entre seguranca e qualidade de software é reforcada por relatérios
como o Snyk Top 10 JavaScript Vulnerabilities e OWASP Top 10, que destacam vulnera-
bilidades criticas em JavaScript [Snyk 2022].

Entre as vulnerabilidades mais comuns, destacam-se:

* Cross-Site Scripting (XSS): Permite a injec@o de scripts maliciosos no navegador
da vitima. Pode ocorrer tanto no lado servidor (reflected/stored XSS) quanto no
cliente (DOM-Based XSS).

Anais Estendidos do SBSeg 2025: WTICG

* Cross-Site Request Forgery (CSRF): Explora a confianca do site em relagdo ao
navegador do usudrio, permitindo que a¢des sejam realizadas sem o seu consenti-
mento.

* SQL Injection: Permite a execucdo de comandos SQL arbitrarios através da ma-
nipulagdo de entradas da aplicac¢do, podendo comprometer dados e integridade do
sistema.

 DOM-Based XSS: Variante do XSS que ocorre exclusivamente no lado cliente,
explorando modifica¢des inseguras no DOM por meio de entradas manipuladas.

* No Rate Limiting: Auséncia de limitagcdo de requisicdes permite ataques de forca
bruta, DoS e bloqueio de contas.

Essas vulnerabilidades podem ser subdetectadas por ferramentas SASTs tradici-
onais, que enfrentam desafios como andlises contextuais limitadas e dificuldade de com-
preender l6gica de execu¢@o dinamica. Por outro lado, LLMs demonstram potencial para
interpretar contextos dindmicos como manipulacdo do DOM, com potencial para aumen-
tar a eficiéncia da garantia da qualidade de software.

2.2. Static Application Security Testing (SAST)

O SAST € uma metodologia amplamente utilizada para andlise estdtica de codigo-fonte,
identificando vulnerabilidades de seguranca antes da execucdo do software. Ferramen-
tas SASTs como SonarQube, Checkmarx e Semgrep funcionam por meio de regras pré-
definidas que analisam sintaxe, fluxo de dados e padrdes de cddigo inseguros, alinhando-
se a frameworks como o0 OWASP Top 10 e SANS Top 25 [Palo Alto Networks].

O processo de SAST envolve diversas etapas, iniciando pela andlise estrutural do
cédigo-fonte. A ferramenta realiza o parsing do cédigo, gerando uma Arvore Sintitica
Abstrata (AST) que representa a estrutura do programa, como fungdes, lagos, condicio-
nais e varidveis. Em seguida, sdo aplicadas andlises de fluxo de controle e fluxo de dados,
permitindo identificar caminhos de execugdo e rastrear o fluxo de informacdes entre varid-
veis e componentes da aplicacdo. Isso possibilita a detec¢do de falhas como manipulacio
insegura de dados. As ferramentas utilizam conjuntos de regras de seguranga baseadas
em padrdes reconhecidos, como OWASP Top 10 e CWE/SANS Top 25. Essas regras
orientam a identificacdo de préticas de codificacdo insegura e possiveis vulnerabilidades.
Além disso, técnicas de correspondéncia de padrdes e andlise semantica sdo utilizadas
para correlacionar constru¢des do cédigo com vulnerabilidades conhecidas, considerando
tanto a estrutura quanto o comportamento do programa [Palo Alto Networks].

Apesar de sua utilidade, SASTs enfrentam desafios especificos, como a di-
ficuldade em analisar cddigo assincrono como promises, callbacks, comportamentos
gerando falsos positivos, e a incapacidade de interpretar ldgicas de negdcio comple-
xas ou interacdoes em tempo real, o que limita a detec¢do precisa de vulnerabilidades
[Wadhams et al. 2024].

2.3. Inteligéncia Artificial na Analise de Cédigo

A integracdo de IA na andlise de cédigo-fonte, especialmente por meio de LLMs, estd
revolucionando a detec¢do de vulnerabilidades e a garantia da qualidade de software.
Essa abordagem combina técnicas como Processamento de Linguagem Natural (PLN) e
modelos generativos para superar limitacdes de métodos tradicionais, como SASTs, em
linguagens dindmicas como JavaScript [[BM 2024].

Segundo a IBM [IBM 2024], a revisdo de cddigo por IA pode ser estruturada em
quatro componentes principais:

Anais Estendidos do SBSeg 2025: WTICG

* Analise de Cddigo Estatico: examina o cédigo-fonte sem executd-lo, detectando
problemas precoces de seguranca € manutengdo. Os modelos de IA utilizam os
dados gerados por essa andlise para recomendar melhorias.

* Analise de Cédigo Dinamico: executa o c6digo e testa seu comportamento em
tempo real, encontrando problemas que s6 se manifestam em execucdo, como
gargalos de desempenho ou falhas de seguranca.

 Sistemas Baseados em Regras: utilizam conjuntos de regras e boas praticas para
verificar a conformidade com padrdes de segurancga e estilo. Sdo eficazes para
garantir consisténcia e reduzir erros sintdticos e de estilo.

* PLN e LLMs: modelos como CodelLlama e DeepSeek sao exemplos de LLMs
especializados em codigo, treinados com grandes volumes de dados e capazes de
compreender estrutura, ldgica e intencdo de trechos complexos de cédigo-fonte.
Isso os torna capazes de detectar falhas contextuais e sugerir corre¢cOes mais pre-
cisas do que abordagens tradicionais.

A aplicagdo de IA na andlise de cédigo oferece beneficios significativos, como
a contextualizacdo semantica, onde LLMs interpretam comportamentos dindmicos como
promises e callbacks em Node.js, com isso esperasse que reduza falsos positivos comuns
em SASTs . Entretanto, persistem desafios: LLMs podem gerar falsos positivos/negati-
vos e a sinalizacdo de codigo seguro como vulnerdvel como document.write intencional
[Zhou et al. 2024].

2.4. Fundamentaciao em Métricas de Avaliacao

Para avaliar o desempenho de ferramentas de andlise de vulnerabilidades, este estudo
adota quatro métricas cléssicas da literatura, precisdo, recall, Fl-score e taxa de falsos
positivos (FP Rate). Essas métricas permitem quantificar a confiabilidade dos alertas,
cobertura da deteccdo e o impacto operacional dos falsos positivos [Hu et al. 2024].

A precisao mede a confiabilidade dos alertas, indicando a proporcdo de vulne-
rabilidades reais entre os casos reportados. Alta precisdo € essencial para evitar falsos
positivos, que consomem tempo em revisdes desnecessarias, um problema recorrente em
SASTs tradicionais [Zhou et al. 2024].

. Verdadeiros Positivos (VP)
Precisdo = . — — (D
Verdadeiros Positivos (VP) + Falsos Positivos (FP)

O recall avalia a cobertura de detec¢do, representando a capacidade de identificar
todas as vulnerabilidades existentes. Um recall elevado € prioritdrio em cendrios criti-
cos, como aplicagdes bancdrias, onde falhas nao detectadas (falsos negativos) podem ter
impactos severos.

Verdadeiros Positivos (VP)
Recall = . — . ()
Verdadeiros Positivos (VP) 4 Falsos Negativos (FN)

O F1-Score equilibra precisao e recall, sendo ideal para comparar ferramentas em
cendrios onde ambos os aspectos sdo igualmente relevantes.

2 x precisdo X recall

F1-Score = 3)

precisdo + recall

4

Anais Estendidos do SBSeg 2025: WTICG

Por fim, a métrica FP Rate Operacional quantifica o ruido nos alertas, represen-
tando a porcentagem de alertas incorretos em relagcdo ao total gerado. No estudo, serd
utilizado para comparar o custo operacional de SASTs e LLMs.

Falsos Positi FP
FP Rate Operacional = _ 'a _SOS ositivos (FP) — “4)
Verdadeiros Positivos (VP) + Falsos Positivos (FP)

Essas métricas foram selecionadas por abordarem tanto a eficiéncia técnica (preci-
sdo, recall) quanto o impacto operacional (FP Rate), alinhando-se aos objetivos do traba-
lho. Por exemplo, a hipdtese de que LLMs reduzirdo falsos positivos em JavaScript serd
validada pela correlag@o entre alta precisdo (propor¢cdo de alertas corretos) e baixo FP
Rate (percentual de alertas incorretos). Além disso, o F1-Score permitird identificar qual
ferramenta oferece o melhor equilibrio entre deteccao abrangente (recall) e confiabilidade
(precisdo), critério essencial para ado¢cdo em projetos reais, onde a eficiéncia operacional
(minimizac¢do de tempo gasto com falsos positivos) e a seguranca (evitar falsos negativos)
s@0 prioritarios.

2.5. Sintese Conceitual e Lacuna de Pesquisa

A triade formada pela dinamicidade do JavaScript, as limitacdes contextuais das ferra-
mentas SASTs e o potencial analitico dos LLMs evidencia uma lacuna critica na litera-
tura: a auséncia de estudos empiricos que comparem essas abordagens sob métricas téc-
nicas (precisao, recall) e operacionais (FP Rate) em ecossistemas JavaScript. Enquanto
os SASTs apresentam elevadas taxas de falsos positivos, afetando a eficiéncia dos fluxos
de desenvolvimento, e LLMs demonstram eficicia em linguagens estiticas como Java
e dindmicas com Python, mas ainda carecem de evidéncias sobre seu desempenho em
cendrios JavaScript complexos, onde a manipulagdo dindmica do DOM e Promises de-
safiam modelos tradicionais. Esta pesquisa busca preencher esse vazio por meio de uma
avaliacdo sistemdtica baseada no OWASP Juice Shop, simulando condi¢des proximas ao
ambiente de desenvolvimento web real [Wadhams et al. 2024] [Zhou et al. 2024].

3. Método de Pesquisa

Este estudo adota uma abordagem quantitativa para comparar o desempenho de ferra-
mentas SAST e LLMs na deteccdo de vulnerabilidades em JavaScript. A metodologia
divide-se em quatros etapas principais, (1) construcdo de um dataset validado, (2) pré-
processamento do cédigo-fonte, (3) configuracdo das ferramentas, e (4) execucdo auto-
matizada com métricas precisas.

3.1. Dataset controlado

O dataset utilizado foi baseado na aplicacio OWASP Juice Shop (versdo v17.3.0), uma
aplicacdo web intencionalmente vulnerdvel, amplamente reconhecida como referéncia
para testes de seguranca. Para garantir validade estatistica e reprodutibilidade, selecionou-
se um subconjunto de 15 arquivos: 10 contendo vulnerabilidades documentadas (VULN)
e 5 seguros (SAFE). Os arquivos VULN representam falhas criticas do OWASP Top 10
2021, como Cross-Site Scripting (XSS) e NoSQL Injection, mapeadas diretamente aos
desafios oficiais da aplicacdo. Ja os SAFE correspondem a corre¢des validadas pelo
projeto, identificados pelo sufixo correct.ts em seu caminho. Essa biparticio permitiu
calcular métricas de precisao e recall sem ambiguidades, ja que o status de cada arquivo
(vulneravel ou seguro) foi pré-validado pela documentagdo do Juice Shop.

5

Anais Estendidos do SBSeg 2025: WTICG

A Tabela 1 detalha as vulnerabilidades selecionadas e seus respectivos arquivos.

Tabela 1. Vulnerabilidades e Arquivos Seguros

ID Vulnerabilidade Arquivo

VULN-01 XSS search-result/search-result.component.ts
VULN-02 Injection routes/login.ts

VULN-03 Injection routes/search.ts

VULN-04 NoSQL Injection routes/updateProductReviews.ts

VULN-05 Broken Access Control frontend/src/app/app.routing.ts
VULN-06 Sensitive Data Exposure server.ts

VULN-07 SSRF routes/profilelmageUrlUpload.ts
VULN-08 CSRF routes/updateUserProfile.ts
VULN-09 Broken Access Control routes/basketltems

VULN-10 Validacido Insuficiente routes/deluxe.ts

SAFE-01 Safe unionSqllnjectionChallenge_2_correct.ts
SAFE-02 Safe tokenSaleChallenge_3_correct.ts

SAFE-03 Safe accessLogDisclosureChallenge_1_correct.ts
SAFE-04 Safe adminSectionChallenge_1_correct.ts
SAFE-05 Safe dbSchemaChallenge_2_correct.ts

3.2. Pré-processamento do Cédigo-Fonte

Antes da andlise, aplicou-se um pré-processamento para remover ruidos ndo funcionais,
como comentarios de licenga, marcadores de desafio (ex: // vuln-code-snippet) e blo-
cos multilinha irrelevantes, preservando apenas a ldgica executdvel. Essa etapa foi critica
para evitar vazamento de contexto em LLMs, por exemplo, dicas textuais que pudessem
influenciar artificialmente a detec¢do. As ferramentas SAST, por sua vez, analisaram o
cddigo original, pois ndo sdo influenciadas por comentérios.

3.3. Ferramentas e Configuracoes

Foram selecionadas duas abordagens para andlise estdtica de seguranca: ferramentas
SAST e modelos de LLM, todas configuradas em ambiente gratuito para garantir reprodu-
tibilidade e aderéncia a contextos académicos. Para a categoria SAST, foram escolhidas:
SonarQube Community Build (versdao 25.5) e Semgrep (versdao 1.49). Ambas as ferra-
mentas foram integradas a um pipeline de CI/CD via GitHub Actions, permitindo anélise
automatizada. Para avaliacdo com LLMs, foram utilizados: CodeLLlama-7b (via Ollama)
DeepSeek-Coder-1.3b (via Ollama). Os modelos foram utilizados em suas versdes base
(sem fine-tuning), com prompts estruturados para andlise de vulnerabilidades, como no
codigo 1.

Caodigo 1. Prompt utilizado para analise

Analise os riscos de seguranca no cédigo abaixo, seguindo o
OWASP Top 10. Retorne APENAS se houver vulnerabilidades, no
formato JSON abaixo. Caso contrario, retorne "Cdédigo seguro”.

{
"Arquivo": "Nome do arquivo",

"Trecho Vulneravel”: "0 snippet de codigo especifico que
contém a vulnerabilidade."”,

Anais Estendidos do SBSeg 2025: WTICG

[~

P Y N N

"Tipo da Vulnerabilidade"”: "A categoria da vulnerabilidade"”,
"Descricdo Breve”: "Uma explicacdo concisa (1-2 frases) de
por que esse trecho é vulneravel”

3.4. Execuciao e Coleta de Resultados

A execuc¢do do experimento foi dividida em trés etapas principais. Primeiramente, foi
realizada uma varredura inicial, na qual as ferramentas SAST e os modelos LLLM analisa-
ram exclusivamente os arquivos do dataset controlado da aplicagdo OWASP Juice Shop,
buscando identificar possiveis vulnerabilidades. Em seguida, os alertas gerados foram
classificados em trés categorias: Verdadeiros Positivos (VP), correspondentes as vulne-
rabilidades corretamente detectadas com base no ground truth oficial da OWASP Juice
Shop; Falsos Positivos (FP), representando alertas incorretos, como casos de cédigo se-
guro sinalizado como vulnerdvel e Falsos Negativos (FN), que indicam vulnerabilidades
existentes que nao foram detectadas. Para a automatizacdo do cdlculo das métricas, foi
implementada uma fun¢do em Python baseada na biblioteca scikit-learn. A func¢do per-
corre os rotulos verdadeiros (y_true) e as previsdes (y_pred) para contar os valores de
VP, FP e FN. Em seguida, sdo calculadas as métricas cldssicas de avalia¢do: precisio,
recall, F1-Score e taxa de falsos positivos (FP Rate). O cddigo da func¢do € apresentado
no Codigo 2

Cadigo 2. Cadigo de implementacado das métricas de avaliacao

from sklearn.metrics import precision_score, recall_score,
f1_score

def calcular_metricas(y_true, y_pred):
Contadores de desempenho

vp = sum(1 for yt, yp in zip(y_true, y_pred) if yt == 1 and
yp == 1)

fp = sum(1 for yt, yp in zip(y_true, y_pred) if yt == @ and
yp == 1)

fn = sum(1 for yt, yp in zip(y_true, y_pred) if yt == 1 and
yp == 0)

Calculo das métricas

precisao = precision_score(y_true, y_pred, zero_division=0)
recall = recall_score(y_true, y_pred, zero_division=0)
f1 = fl1_score(y_true, y_pred, zero_division=0)

fp_rate = fp / (vp + fp) if (vp + fp) > 0@ else @

return {
precisao,
recall,
f1,
fp_rate,
vp,
fp,
fn
}

Anais Estendidos do SBSeg 2025: WTICG

4. Resultados

Os resultados apresentados nesta secao foram obtidos a partir da andlise comparativa
entre ferramentas SAST (SonarQube, Semgrep) e modelos LLM (DeepSeek, CodeLlama)
na deteccdo de vulnerabilidades no OWASP Juice Shop. As métricas foram calculadas
utilizando VP, FP, FN, conforme descrito na metodologia. De modo geral, observou-se
que cada abordagem apresentou pontos fortes e limitagdes especificas, tanto em termos
de cobertura quanto de precisdo, conforme resumido na Tabela 2.

Tabela 2. Comparacao de Métricas entre Ferramentas de Analise de Seguranca

Ferramenta Precisao Recall F1-Score FP Rate VP FP FN

Semgrep 100% 50% 67% 0% 5 0 5
SonarQube 100% 10% 18% 0% 1 0 9
DeepSeek 78% 70% 74% 22% 7 2 3
CodeLlama 55% 60% 57% 45% 6 5 4

Nota: VP = Verdadeiros Positivos, FP = Falsos Positivos, FN = Falsos Negativos.
Dados obtidos da anélise do OWASP Juice Shop v17.3.0.

No que se refere ao desempenho geral, a ferramenta Semgrep (SAST) obteve
100% de precisdo e 50% de recall, resultando em um F1-Score de 67%. Isso indica que,
embora seja altamente precisa nas detec¢gdes que realiza, sua cobertura ainda € limitada.
Por outro lado, o SonarQube, amplamente utilizado para andlise de qualidade de cédigo,
demonstrou baixa capacidade de identificar vulnerabilidades reais, com apenas 10% de
recall e um F1-Score de 18%, ainda que mantendo precisdao de 100%. Em ambos os casos,
a taxa de falsos positivos (FP Rate) foi de 0%, indicando baixo ruido, mas também um
risco elevado de vulnerabilidades nao detectadas (falsos negativos).

Entre os modelos de linguagem, o DeepSeek se destacou com o melhor equilibrio
entre precisdo (78%) e recall (70%), atingindo um F1-Score de 74% e uma FP Rate de
22%. Ja o CodeLlama apresentou desempenho inferior, com 55% de precisao, 60% de
recall e uma FP Rate de 45%, o que resultou em um F1-Score de 57%. Essa alta taxa de
falsos positivos no CodeLlama indica que quase metade dos alertas exigem verificacao
manual, um custo operacional elevado em ambientes produtivos.

Além das métricas quantitativas, a Tabela 3 apresenta um resumo das principais
vulnerabilidades detectadas por cada ferramenta, destacando as diferentes dreas de cober-
tura. Observa-se que os modelos de linguagem (LLMs) foram capazes de identificar vul-
nerabilidades que passaram despercebidas pelos SASTs, como NoSQL Injection, CSRF
e controles de acesso quebrados. Por outro lado, o Semgrep se mostrou mais eficaz em
vulnerabilidades classicas como XSS e injecdoes em pontos previsiveis.

Tabela 3. Resumo das vulnerabilidades principais detectadas por cada ferra-
menta

Ferramenta Principais Vulnerabilidades Detectadas

Semgrep XSS, Injection, Sensitive Data Exposure, SSRF

SonarQube Injection (limitada)

DeepSeek NoSQL Injection, CSRF, Broken Access Control, Validacdo insuficiente
CodeLlama NoSQL Injection, CSRF, Broken Access Control, Validagdo insuficiente

Complementando os resultados quantitativos, a Tabela 4 apresenta uma andlise

8

Anais Estendidos do SBSeg 2025: WTICG

qualitativa das ferramentas, considerando aspectos como equilibrio entre precisdo e re-
call, taxa de falsos positivos e aplicabilidade pratica em diferentes contextos. Essa ava-
liacdo tem como objetivo oferecer uma visdo mais interpretativa sobre os pontos fortes e
limitacdes de cada abordagem.

Tabela 4. Comparacao qualitativa das ferramentas

Ferramenta Avaliacao

Semgrep Alta precisdo, baixa cobertura (50% recall), FP Rate de 0%. Ideal para andlises
rdpidas com foco em confiabilidade e baixo ruido.

SonarQube Alta precisdo, porém praticamente sem cobertura (10% de recall). Mais Titil
para andlise de qualidade de cédigo do que para seguranca.

DeepSeek Bom equilibrio entre precisdo e recall, FP Rate moderada (22%). Indicado
para uso pratico em pipelines automatizados.

CodelLlama Detecta vulnerabilidades relevantes, mas com alto ruido (FP Rate de 45%).
Requer validagdo manual cuidadosa.

Esses achados destacam o potencial complementar entre abordagens tradicionais
e generativas na andlise de seguranca em JavaScript.

5. Consideracoes Finais

Os resultados deste estudo exploratdrio sugerem que a detec¢do de vulnerabilidades em
aplicacoes JavaScript pode se beneficiar de uma abordagem combinada. Ferramentas
SAST como o Semgrep sdo altamente precisas, mas oferecem cobertura limitada. J4 mo-
delos LLM, como o DeepSeek, aumentam significativamente a cobertura, especialmente
em vulnerabilidades mais contextuais, embora ainda sofram com taxas consideraveis de
falsos positivos.

Observou-se também que solu¢des amplamente adotadas como o SonarQube, em-
bora tteis para qualidade de c6digo, t€m pouca eficdcia na identificagdo de vulnerabilida-
des reais, refor¢cando seu papel complementar no pipeline de seguranga.

E crucial reconhecer trés limitacdes fundamentais que condicionam a generaliza-
cao destes resultados: (1) A andlise baseou-se em apenas 15 arquivos; (2) Os LLMs foram
utilizados sem fine-tuning, explicando parcialmente os altos FP Rates (22-45%) e limi-
tando seu potencial analitico para seguranca; (3) A auséncia de validacdo dinamica das
correcdes impossibilita afirmar que as solugdes geradas mitigam riscos sem criar novas
cadeias de vulnerabilidades.

Com base nessas restricdes, recomenda-se uma arquitetura de seguranga que inte-
gre: (1) SASTSs tradicionais para detec¢cdo de padrdes conhecidos; (2) LLMs para cobrir
casos mais complexos; e (3) filtros automatizados que reduzam o impacto dos falsos po-
sitivos.

Como préximas etapas, sugerem-se estudos que explorem o desenvolvimento de
técnicas que reduzam o FP Rate dos LLMs sem comprometer sua cobertura, possivel-
mente através de fine-tuning com datasets especializados ou métodos hibridos que inte-
grem andlise estdtica e dinamica. Igualmente importante serd a criacdo de métricas que
quantifiquem ndo apenas a eficdcia técnica das ferramentas, mas também seu impacto
operacional em ambientes reais de desenvolvimento e também uma andlise qualitativa

9

Anais Estendidos do SBSeg 2025: WTICG

das sugestoes de corre¢do geradas pelos LLMs, avaliando sua precisdo, aplicabilidade
e alinhamento com boas praticas de seguranca (ex: se as correcdes propostas para XSS
de fato mitigam o risco sem introduzir novos vulnerability chains). Esta evolucdo sera
fundamental para que as promessas dos modelos de linguagem se traduzam em ganhos
praticos para a seguranca de aplicacdes JavaScript sem sobrecarregar as equipes com fal-
SOS POsitivos.

Referéncias

Hu, T. et al. (2024). Unveiling llm evaluation focused on metrics: Challenges and solu-
tions. arXiv. Disponivel em: <http://arxiv.org/abs/2404.09135>. Acesso em: 05 abr.
2025.

IBM (2024). Andlise de coédigo de ia. Disponivel em: <https://www.ibm.com/br-
pt/topics/ai-code-review>. Acesso em: 05 abr. 2025.

International Organization for Standardization (2023). ISO/IEC 25010:2023 — Systems
and software engineering — Systems and software Quality Requirements and Evalua-
tion (SQuaRE) — System and software quality models. 1SO, Genebra.

Kiminich, B. (2024). Owasp juice shop: An intentionally insecure javascript web ap-
plication. Versao 17.3.0. Disponivel em: <https://github.com/juice-shop/juice-shop>.
Acesso em: 20 fev. 2024.

Le, T. K. et al. (2024). A study of vulnerability repair in javascript programs with large
language models. In Companion Proceedings of the ACM Web Conference 2024. Dis-
ponivel em: <http://arxiv.org/abs/2403.13193>. Acesso em: 19 mar. 2025.

OWASP Foundation (2023). Owasp top 10:2023 — the ten most critical web application
security risks. Disponivel em: <https://owasp.org/www-project-top-ten/>. Acesso em:
20 fev. 2024.

Palo Alto Networks. What is static application security testing (sast)? Dispo-
nivel em: <https://www.paloaltonetworks.com/cyberpedia/what-is-static-application-
security-testing-sast>. Acesso em: 05 abr. 2025.

Snyk (2022). Snyk top 10 — inteligéncia de vulnerabilidades de seguranca. Disponivel
em: <https://snyk.io/pt-BR/snyk-top-10/>. Acesso em: 20 fev. 2024.

Stack Overflow. Developer survey 2023. Disponivel em:
<https://survey.stackoverflow.co/2023>. Acesso em: 20 fev. 2025.

W3Techs (2024). Usage statistics of javascript as client-side programming language on
websites. Disponivel em: <https://w3techs.com/technologies/details/cp-javascript>.
Acesso em: 20 fev. 2024.

Wadhams, N. et al. (2024). Barriers to using static application security testing (sast)
tools: A literature review. In Proceedings of the 39th IEEE/ACM Internatio-
nal Conference on Automated Software Engineering Workshops, pages 161-166,
Sacramento, CA, USA. Association for Computing Machinery. Disponivel em:
<https://dl.acm.org/doi/10.1145/3691621.3694947>. Acesso em: 19 mar. 2025.

Zhou, X. et al. (2024). Comparison of static application security testing tools and
large language models for repo-level vulnerability detection. arXiv. Disponivel em:
<http://arxiv.org/abs/2407.16235>. Acesso em: 15 nov. 2024.

10

