
Otimização do Desempenho de Hashes com ParallelHash para
Aceleração do Hyperledger Fabric

João Pedro Correa Crozariolo1, Alexandre Augusto Giron1

1 Universidade Tecnológica Federal do Paraná (UTFPR)
Toledo – PR – Brazil

jcrozariolo@alunos.utfpr.edu.br, alexandregiron@utfpr.edu.br

Abstract. Hyperledger Fabric’s integrity relies on hash functions, but sequen-
tial standards like SHA-2 create bottlenecks in large-data operations like ledger
snapshot verification. This work investigates replacing SHA-2 with the Paralle-
lHash family by implementing and benchmarking ParallelHash128/256 in Go,
demonstrating significant throughput gains. The practical integration challen-
ges are also analyzed, identifying hardcoded limitations in Fabric’s source code
that hinder crypto agility. The findings offer a roadmap for enhancing Fabric’s
performance using modern cryptographic primitives.

Resumo. A integridade do Hyperledger Fabric depende de funções de hash,
mas padrões sequenciais como o SHA-2 criam gargalos em operações com
grandes volumes de dados, como a verificação de snapshots. Este traba-
lho investiga a substituição do SHA-2 pela famı́lia ParallelHash, por meio da
implementação e teste das funções ParallelHash128/256 em Go, o que demons-
trou ganhos de vazão significativos. Adicionalmente, são analisados os desafios
práticos de integração, com a identificação de limitações no código-fonte do Fa-
bric que dificultam a crypto agility. Os resultados oferecidos criam um roteiro
para otimizar o desempenho do Fabric com primitivas criptográficas modernas.

1. Introdução
Blockchain é usada em aplicações com alta demanda de integridade e rastreabilidade. O
Hyperledger Fabric [Linux Foundation 2023], mantido pela Linux Foundation, destaca-
se entre os frameworks permissionados, com uso em rastreamento de cadeias de supri-
mento, contratos interinstitucionais e gestão de identidades. Nesse contexto, funções
de hash criptográficas garantem a integridade do sistema no encadeamento de blocos,
validação de transações e verificação de estados.

A eficiência dessas funções de hash é um fator crı́tico para a escalabilidade da pla-
taforma. Padrões estabelecidos como o SHA-2, apesar de seguros, possuem uma natureza
inerentemente sequencial. Embora transações individuais sejam tipicamente pequenas,
essa caracterı́stica sequencial resulta em gargalos de desempenho durante operações que
manipulam grandes volumes de dados, como na verificação de snapshots do ledger, no
processamento de dados off-chain ou na sincronização inicial de novos pares na rede.
Diante desse cenário, torna-se fundamental explorar alternativas de hashes paralelizáveis.

Este trabalho foca na análise da famı́lia ParallelHash, especificada na NIST
SP 800-185 [Dang 2016], contextualizando seu desempenho frente a outras alternati-
vas modernas, como o BLAKE3. Contudo, a otimização do desempenho é apenas

Anais Estendidos do SBSeg 2025: WTICG

1



parte da solução. A substituição de um algoritmo criptográfico fundamental em um
sistema distribuı́do é uma tarefa complexa que evidencia a necessidade de crypto agi-
lity [National Institute of Standards and Technology (NIST) 2023], a capacidade de uma
plataforma migrar suas primitivas criptográficas de forma segura e eficiente. A falta dessa
agilidade representa uma barreira prática significativa, que é também investigada neste
artigo.

Assim, as principais contribuições deste trabalho são: (i) a implementação em
Go das funções ParallelHash128 e ParallelHash256, com variantes otimizadas para pa-
ralelismo com goroutines [The Go Authors 2024]; (ii) uma análise de desempenho sis-
temática que valida os ganhos de vazão em cenários de dados volumosos; e (iii) a análise
dos desafios práticos e barreiras à sua integração no Hyperledger Fabric, fornecendo um
diagnóstico sobre a crypto agility da plataforma.

Este artigo está organizado da seguinte forma: a Seção 2 apresenta os fundamentos
técnicos; a Seção 3 descreve a metodologia experimental e propõe a integração do Paral-
lelHash no Hyperledger Fabric; a Seção 4 discute os resultados preliminares obtidos; e a
Seção 5 apresenta as conclusões e trabalhos futuros.

2. Fundamentação Teórica
2.1. Hyperledger Fabric e Funções de Hash
O Hyperledger Fabric [Linux Foundation 2023] é um framework de blockchain permis-
sionado para aplicações corporativas, que garante integridade via consenso, assinaturas
digitais e funções de hash. Sua arquitetura opera com nós endorsers, committers e orde-
rers sob o modelo execute-order-validate, que permite maior paralelismo e desempenho
que modelos tradicionais [Androulaki et al. 2018]. A integridade do sistema é ancorada
em hashes como SHA-2 e SHA-3 [of Standards and Technology 2015], cuja natureza se-
quencial limita o desempenho em operações com grandes volumes de dados. Como al-
ternativa, a especificação NIST SP 800-185 [Dang 2016] propõe a famı́lia ParallelHash,
que processa blocos de dados em paralelo.

2.2. Trabalhos Relacionados
A otimização de primitivas criptográficas no Fabric foi abordada por Holcomb et
al. [Holcomb et al. 2021], que identificaram o gargalo de hashes sequenciais e sugeri-
ram o uso de funções paralelas. Entre as alternativas modernas, destaca-se também a
BLAKE3 [?] por sua alta performance. Nosso trabalho avança essa discussão ao focar no
ParallelHash, por ser um padrão NIST, e ao realizar um benchmark prático no ecossis-
tema Go, preenchendo uma lacuna na literatura.

Adicionalmente, a simples substituição de algoritmos conecta-se ao desafio
prático da crypto agility [National Institute of Standards and Technology (NIST) 2023].
A análise das barreiras para alcançar essa agilidade em uma plataforma como o Fabric é
uma contribuição chave do nosso trabalho, diferenciando-o de estudos que focam apenas
em benchmarks de desempenho.

3. Metodologia Experimental e Análise de Integração
Este trabalho propõe a substituição das funções de hash sequenciais utilizadas no Fa-
bric por algoritmos paralelizáveis da famı́lia ParallelHash, definidos na especificação

Anais Estendidos do SBSeg 2025: WTICG

2



SP 800-185 do NIST [Dang 2016]. As funções ParallelHash128 e Paralle-
lHash256, instanciadas via cSHAKE, preservam as propriedades criptográficas da SHA-
3 [of Standards and Technology 2015] e permitem ganhos de desempenho por meio da
divisão da entrada em blocos processáveis em paralelo.

A implementação foi realizada em Go, com versões sequenciais e paralelas usando
goroutines, conforme descrito pelos autores do Go [The Go Authors 2024], preen-
chendo uma lacuna prática da linguagem. A lógica da versão paralela segue o pseu-
docódigo da Figura 1.

Pseudocódigo
1. Dividir M em blocos Mi de tamanho B
2. Para cada bloco Mi, em paralelo:

2.1 Calcular Zi = cSHAKE128(Mi, 256, , )
3. Concatenar todos os Zi em Z
4. Concatenar Z com right encode(n) e right encode(L)
5. Retornar cSHAKE128(Z,L, ”ParallelHash”, S)

Figura 1. Pseudocódigo simplificado da função ParallelHash128Goroutines.

Para avaliar o desempenho, as implementações propostas foram comparadas com
padrões NIST consolidados. É importante notar que os algoritmos selecionados (SHA3-
256, SHA3-512, SHAKE128, SHAKE256) possuem diferentes nı́veis de segurança e ta-
manhos de saı́da. A intenção não é realizar uma comparação de desempenho estritamente
”justa”entre nı́veis de segurança distintos, mas sim mapear a performance do ParallelHash
em relação a um amplo espectro de funções padrão usadas na prática. A análise de resul-
tados na Seção 4 agrupará as comparações por nı́veis de segurança equivalentes para uma
discussão mais equitativa. As variantes desenvolvidas são: PH128/PH256 (sequenciais) e
PH128-G/PH256-G (paralelas com goroutines).

Os testes consideraram entradas de 1KB a 1GB, geradas via /dev/urandom1

para evitar compressibilidade, e executados em máquina virtual dedicada no Google
Cloud (e2-standard-4, 4 vCPUs, 16GB de RAM) [Platform 2023]. Cada configuração foi
avaliada com 200 repetições, regenerando arquivos a cada 20 execuções. Métricas como
vazão (MB/s), tempo médio (ns/op), desvio padrão, mı́nimo e máximo foram extraı́das
usando pprof e scripts em Python.

3.1. Desafios para Adoção do ParallelHash no Fabric

Embora o Fabric permita certa flexibilidade na escolha de algoritmos de hash em alguns
componentes, como na configuração do Membership Service Provider (MSP) para iden-
tidades digitais [Linux Foundation 2023], uma análise do código-fonte revela limitações
importantes para a adoção plena de algoritmos alternativos.

Em particular, observou-se que:

• Em partes crı́ticas, como em txutils.go, a função SHA256 encontra-
se fixada diretamente no código, sem possibilidade de configuração
dinâmica [Hyperledger Fabric Developers 2024].

1Linux manpage: https://man7.org/linux/man-pages/man4/urandom.4.html

Anais Estendidos do SBSeg 2025: WTICG

3



• O mecanismo de assinatura utilizado no consenso, baseado no paradigma
hash-then-sign, também presume o uso de SHA256 de forma hardco-
ded [Hyperledger Fabric Developers 2024].

• Funções de verificação de assinaturas no cluster de ordering nodes seguem a
mesma limitação [Hyperledger Fabric Developers 2024].

• Outras ferramentas auxiliares, como o cryptogen, empregam SHA256 direta-
mente em suas operações internas [Hyperledger Fabric Developers 2024].

Esses fatores indicam que, apesar do suporte a crypto agility em áreas especı́ficas,
uma substituição completa do algoritmo de hash no Fabric exigiria modificações profun-
das no código-fonte, ou a adoção de mecanismos de transição mais sofisticados, como
recalculação de hashes ou hard-fork controlado, conforme abordado em trabalhos relaci-
onados [Holcomb et al. 2021].

Assim, propõe-se como diretriz para futuras implementações a criação de uma
camada de configuração de algoritmo de hash a nı́vel de protocolo, de forma que a escolha
do algoritmo possa ser governada dinamicamente pela rede sem necessidade de alterações
disruptivas no código.

4. Resultados e Discussão
Esta seção apresenta os resultados dos benchmarks de desempenho, obtidos com 200
execuções por combinação de algoritmo e tamanho de entrada. A Figura 2 exibe a vazão
média (MB/s) para entradas de 1KB e 1GB. Conforme antecipado na Seção 3, a análise
a seguir agrupa os algoritmos por nı́veis de segurança equivalentes para uma comparação
equitativa.

Figura 2. Vazão média (MB/s) com desvio padrão para entradas de 1KB e 1GB.

4.1. Análise por Nı́vel de Segurança

Nı́vel de 128 bits (PH128/PH128-G vs. SHAKE128): Para entradas pequenas (1KB),
o SHAKE128 apresenta a maior vazão, superando as variantes do ParallelHash. Este
resultado é esperado, pois a sobrecarga computacional para inicializar as goroutines e
gerenciar os blocos paralelos do PH128-G não é compensada pelo baixo volume de dados.

Anais Estendidos do SBSeg 2025: WTICG

4



Em contrapartida, no cenário com entradas grandes (1GB), o PH128-G demonstra sua
vantagem, alcançando a maior vazão entre todos os algoritmos testados. Esse ganho é
particularmente relevante para os cenários de uso intensivo de dados no Fabric, como a
verificação de snapshots do ledger.

Nı́vel de 256 bits (PH256/PH256-G vs. SHA3-256/SHAKE256): Um padrão si-
milar é observado neste grupo. Para 1KB, o SHAKE256 lidera, enquanto para 1GB, a
versão paralela PH256-G se destaca, superando as alternativas sequenciais. O algoritmo
SHA3-512, incluı́do como um ponto de referência de maior segurança, apresenta, como
esperado, a menor vazão em ambos os cenários devido ao seu maior estado interno e
complexidade.

4.2. Discussão sobre Limitações de Desempenho

Um resultado notável é que a margem de vantagem do PH128-G sobre o SHAKE128
para entradas de 1GB, embora clara, não foi tão expressiva quanto teoricamente espe-
rado. Acredita-se que a causa seja a otimização de baixo nı́vel no runtime da linguagem
Go. O pacote padrão crypto/sha3 inclui implementações em assembly para arqui-
teturas AMD64, que permitem ao SHAKE128 aproveitar instruções vetoriais avançadas
(AVX2/AVX512). A máquina virtual utilizada nos testes (e2-standard-4) pertence a uma
classe de processadores (Skylake) que suporta tais instruções [Platform 2023].

A nova implementação do ParallelHash, por ser puramente em Go e não possuir
essas otimizações em assembly, não consegue explorar esse recurso de hardware. Essa
diferença justifica o desempenho competitivo do SHAKE128 mesmo em grandes volumes
e reforça um ponto crucial: a escolha de algoritmos criptográficos em cenários de alto
desempenho não deve considerar apenas a complexidade teórica, mas também o nı́vel
de otimização da implementação e a arquitetura de hardware subjacente. Os resultados
gerais, contudo, sugerem a viabilidade da integração do ParallelHash ao Fabric.

5. Conclusões

Este trabalho teve um duplo objetivo: avaliar o desempenho da famı́lia de hashes paralelos
ParallelHash e investigar os desafios práticos para sua adoção no Hyperledger Fabric. Os
resultados experimentais confirmaram que as variantes paralelas (PH128-G e PH256-G)
superam os padrões sequenciais em cenários com grandes volumes de dados,validando
seu potencial para otimizar o Fabric. A análise também revelou que otimizações de baixo
nı́vel (assembly) em bibliotecas padrão podem mitigar essa vantagem, uma consideração
crucial para a escolha de algoritmos na prática.

Tão importante quanto a análise de desempenho, a investigação do código-fonte
do Fabric expôs barreiras significativas à crypto agility. A presença de funções de hash
como a SHA256 fixadas em código (”hardcoded”) em componentes crı́ticos demonstra
que o maior obstáculo para a modernização criptográfica da plataforma não é a escolha
de um novo algoritmo, mas a necessidade de refatorações para permitir flexibilidade.

Como trabalhos futuros, propõe-se o desenvolvimento de um protótipo que imple-
mente a camada de configuração de algoritmos de hash sugerida neste artigo. Tal protótipo
permitiria não apenas a integração efetiva do ParallelHash, mas também de outras funções
como o BLAKE3, possibilitando uma avaliação completa do impacto no desempenho.

Anais Estendidos do SBSeg 2025: WTICG

5



Referências
Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., Caro, A. D., Enyeart,

D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C., Nguyen, B.,
Sethi, M., Singh, G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolic, M., Cocco,
S. W., and Yellick, J. (2018). Hyperledger fabric: A distributed operating system for
permissioned blockchains. Proceedings of the Thirteenth EuroSys Conference, pages
1–15.

Dang, Q. (2016). Sha-3 derived functions: cshake, kmac, tuplehash and parallelhash.
Technical Report NIST SP 800-185, National Institute of Standards and Technology
(NIST).

Holcomb, A., Pereira, G., Das, B., and Mosca, M. (2021). Pqfabric: A permissioned
blockchain secure from both classical and quantum attacks. In 2021 IEEE Internatio-
nal Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE.

Hyperledger Fabric Developers (2024). Hyperledger fabric source code analy-
sis: txutils.go, signer.go, util.go, cryptogen/ca.go. https://github.com/
hyperledger/fabric. Accessed April 2025.

Linux Foundation (2023). Hyperledger fabric documentation. https://
hyperledger-fabric.readthedocs.io/. Accessed April 2025.

National Institute of Standards and Technology (NIST) (2023). Understanding and impro-
ving crypto agility. Technical Report NIST CSWP 39, U.S. Department of Commerce.
Accessed April 2025.

of Standards, N. I. and Technology (2015). Sha-3 standard: Permutation-based hash and
extendable-output functions. Technical Report FIPS PUB 202, U.S. Department of
Commerce.

Platform, G. C. (2023). Machine types - google cloud. GCP Documentation. https:
//cloud.google.com/compute/docs/machine-types.

The Go Authors (2024). The go programming language. https://golang.org/
doc/. Accessed April 2025.

Anais Estendidos do SBSeg 2025: WTICG

6


