Anais Estendidos do SBSeg 2025: WTICG

Scalable Batch Verification for Post-Quantum
Hash-Based Signatures Using STARKS

Rodrigo Duarte de Meneses', Marco Amaral Henriques'

Faculdade de Engenharia Elétrica e de Computagao
Universidade Estadual de Campinas — Campinas, SP — Brazil

r197962@dac.unicamp.br, maah@unicamp.br

Abstract. This paper introduces a STARK-based batch verifier for a Merkle Sig-
nature Scheme (MSS) built from parallel Lamport-style one-time signatures and
implemented in the Winterfell framework. The method compresses the valida-
tion of N signatures under a single Merkle root into a compact proof of 50-75
KiB. Verification then requires only a few dozen hash evaluations and completes
in under 3.1 s for N = 064, outperforming naive per-signature checks for all
N > 8. Requiring no trusted setup, this approach paves the way for scalable,
efficient validation of multiple post-quantum signatures.

1. Introduction

As large-scale quantum computers threaten traditional digital signatures based on RSA
or elliptic curves, hash-based signature schemes have emerged as a compelling post-
quantum alternative. These algorithms rely only on the security of collision-resistant
hash functions, avoiding complex hardness assumptions. Stateful schemes like LMS and
XMSS have been standardized by NIST for limited use [NIST 2020]. These schemes use
Merkle trees to aggregate many one-time signatures (e.g. Lamport or WOTS), providing
strong security guarantees even against quantum attacks. However, each one-time keypair
must be used exactly once, imposing careful state management and limiting practicality
in high-volume or multi-party settings without additional infrastructure.

Hash-based signatures also impose large signature sizes and high verification
costs, making per-signature checks infeasible in high-throughput settings such as Proof-
of-Authority blockchain consensus [Wu et al. 2025]]. To address this, succinct proof sys-
tems have been applied to batch-verify many one-time signatures in one compact proof,
significantly reducing verifier workload [Chakraborty et al. 2025]. Khaburzaniya et al.
introduced a STARK-based aggregator that compresses thousands of one-time signa-
tures into a 100-200 KiB proof [Khaburzaniya et al. 2021]], and Drake et al. extended
STARK aggregation to hash-based multisignatures to replace BLS for Ethereum 2.0
[Drake et al. 2025]. Both rely on foundational STARK techniques for transparent, post-
quantum proofs [Ben-Sasson et al. 2018bl, [Ben-Sasson et al. 2018al].

However, these STARK-based aggregation techniques typically require the veri-
fier to receive every one-time public key, resulting in communication overhead propor-
tional to the number of signatures. To address this issue, we present the first practi-
cal STARK-based batch verifier that efficiently integrates Lamport+ one-time signature
checks with Merkle-tree authentication. In our approach, the verifier receives only a sin-
gle Merkle root (¢) for the entire batch and a concise Merkle proof (), significantly
reducing communication overhead. This technique yields succinct proofs (50-75 KiB)
and maintains linear verification complexity.

1

Anais Estendidos do SBSeg 2025: WTICG

2. Background
2.1. Hash-Based Digital Signatures

Hash-based signature schemes rely solely on the security of a collision-resistant hash
function H: {0,1}* — {0, 1}, and are therefore conjectured to be secure against quan-
tum adversaries [NIST 2020]. Two important constructions for this work are Lamport+
one-time signature [Khaburzaniya et al. 2021]] and its extension via a Merkle tree.

a) Lamport+ One-Time Signature. Lamport+ is an optimized variant of the classic
bitwise Lamport OTS that halves key sizes by deriving each pk; via a single hash of
the corresponding sk; [Khaburzaniya et al. 2021]]. It is designed to be friendly to zero-
knowledge and STARK-based proofs, since all operations reduce to simple hash evalu-
ations and a final set-accumulator check. Public parameters include the message length
m, a hash function H that maps arbitrary inputs to m bit outputs, and an accumulator
interface (typically implemented as a Merkle tree) that compresses a set of n hash outputs
into a single short public key.

LP.KeyGen: Sample n independent m-bit secret values (sko, . . ., sk,_1) uniformly. Each
secret block is hashed to its public counterpart: pk; = H (sk;). The private key is simply
the list of secrets (sk;), and the public key is either the full vector (pk;) or, when key-size
compression is required, the accumulator evaluated on {pk;}.

LP.Sign: An m-bit message M is treated as an array of bits. For each bit i in {0,...,n —
1}, the signature element o; choice is: If M; = 1, set 0; = sk;; if M; = 0, set 0; = pk; =
H (sk;). The full signature is the list (0;), with length n blocks, each m bits long.

LP.Verify: Given the message M, the signature o, and the public key , each element x;
is computed as follows: if M; = 1, set x; = H(o;); if M; = 0, set x; = o;. Finally, the
verifier applies the accumulator to the set {z;}7~; and checks that it matches the public
key. If so, the signature is accepted; otherwise, it is rejected.

This construction requires a total of n hash invocations considering both signing and ver-
ification together (plus one accumulator evaluation). It’s simplicity — limited to hashing
and accumulator checks — makes Lamport+ particularly well-suited for concise algebraic
representation required by STARK-based proof systems.

b) Merkle Signature Scheme. To sign multiple messages, one can use Lamport+ key
pairs as the leaves of a Merkle tree. This yields a single short public key (the Merkle
root), at the cost of appending a Merkle authentication path to each one-time signature:

Fix N = 2% Let (sk),pk")), j = {0,1,..., N — 1}, be N independent Lamport+ key
pairs, and define the leaf labels L; = H(pk?) € {0,1}", j =0,...,N — 1. Build
a binary Merkle tree of depth d by Tz(k) = H(Tﬁ? I Tﬁ]fl)) A =d—1,...,0;k =
0,...,2°~1, with leaves Tcgj) = L;. The master public key is the root { = TO(O). To signa
message m with the jth key pair, one publishes o) = (LP.Sign(sk'¥), m), AuthPath;),
where AuthPath; is the sequence of sibling hashes along the path from L; up to ¢. Verifi-
cation recomputes the one-time signature check, then hashes up the tree and confirms the
computed root equals (. Assuming H is collision-resistant and one-way, MSS is secure
under one-time forking — each OTS key used only once guarantees that no leaf can be
forged, and collision-resistance prevents Merkle path forgeries.

2

Anais Estendidos do SBSeg 2025: WTICG

2.2. STARK Basics

Scalable Transparent ARguments of Knowledge (STARKS) are publicly verifiable proof
systems that enable succinct validation of arbitrary computations without requiring a
trusted setup [Ben-Sasson et al. 2018a]. By combining Interactive Oracle Proofs (IOPs)
with cryptographic hash—-based commitments, a STARK prover demonstrates the correct-
ness of a computation in time roughly proportional to the computation’s length multi-
plied by a polylogarithmic factor, while a verifier’s workload grows only polylogarithmi-
cally in the computation size. The sole security assumption is the collision resistance of
the underlying hash function, which endows STARKSs with both transparency and post-
quantum resilience. In contrast, alternative proof systems such as transparent SNARKSs
yield O(v/N)-size proofs and sublinear verification time, but still incur heavy prover costs
(e.g., O(N) in [Wei et al. 2025] or O(N log® N) in [Chen et al. 2023]]). Empirical results
confirm STARKSs often outperform these systems in proof size and verification speed
[Ernstberger et al. 2023, El-Hajj and Oude Roelink 2024]].

The first essential component of a STARK is arithmetization, which translates a 7-
step computation into algebraic relations over polynomials. The prover first builds an exe-
cution trace — a table listing the program state at each time step — and then formulates poly-
nomial constraints that hold exactly when each transition rule is obeyed. These constraints
are compacted into a single “composition” polynomial defined over an extended domain,
so that proving this polynomial has low degree is equivalent to showing every original
constraint is satisfied across the trace. To verify the low-degree claim, STARKs employ
the Fast Reed—Solomon IOP of Proximity (FRI), an IOP-based sub-protocol that uses
Merkle-tree commitments and O(log V) oracle checks to achieve exponentially small
soundness error [Ben-Sasson et al. 2018b]. Finally, a hash-based Fiat—Shamir transform
collapses the interaction into a non-interactive proof, yielding a self-contained proof string
with scalable verification and compact size.

3. STARK Construction

Our batch verification system is implemented as a STARK that proves the correctness
of verifying N hash-based signatures (specifically, a MSS with Lamport+ OTS). We de-
signed an Algebraic Intermediate Representation (AIR) that captures the entire verifica-
tion procedure for a batch of signatures. In essence, the STARK’s computation simulates
an MSS verification algorithm over all N signatures in the batch, and the STARK proof
attests that all signatures in the batch are valid with respect to a given Merkle root (.

To make the hashing within the signature verification amenable to arithmetization,
we use the Rescue hash function [Sekuli€ et al. 2025] in place of standard cryptographic
hashes. Rescue is a sponge-based hash that is designed to be efficient in arithmetic circuits
(i.e., it is STARK-friendly). Figure |l provides an overview of the architecture of our
construction. The signers generate j Lamport+ OTS on a message M and publish their
public keys as leaves in a Merkle tree whose root (becomes the master public key. The
STARK prover takes as input message M, public keys pk, signature o and root ¢, and
produces a succinct proof 7 that (1) Lamport+ OTS on M is valid and (2) corresponding
Merkle authentication path leads to ¢. The verifier validates the proof through the STARK
verifier, where 7 attests that both the OTS and Merkle-tree constraints are satisfied.

3

Anais Estendidos do SBSeg 2025: WTICG

Message M — STARK proof generation Verification

fl'— ---------------------------- ..\‘ z 'r’_ -------------- s“
T T

; [; :)] :
[]
Lamport+ OTS P | MerkeTree STARK Prover| | ! STARK Verifier !
KeyGen & Signature pk : : Proof 1T : :
Rescuel2s : AIR: Lamport+ : : AuthPath I
@ 1 checks & Merkle I 1 H
: L;=H(pk) path constraints : : compie s+ :
1 1 1]
1 1]
" ; o | :
1 (M, pk,O) 1 i Accept/Reject 1
AN J % 7

" S o o o

Figure 1. System overview of STARK-based batch verification of MSS signatures.

The use of an internal Merkle tree in the STARK proof generator offers several ad-
vantages compared to directly aggregating the Lamport+ signatures: Without the Merkle
tree, the circuit would verify each of the N Lamport+ signatures individually, but would
have to receive all of the public keys {pk;} as public inputs. By contrast, with the Merkle
tree, the verifier only needs to receive 7 and (to check the entire set of signatures, dra-
matically reducing transmission overhead on the network.

4. Implementation & Experimental Setup

Our MSS batch-verification prototype is built on Winterfel v(0.12.2 by extending its
built-in Lamport+ OTS and Merkle-path examples into a single unified STARK. We con-
catenate the signature-processing segment with the tree authentication segment into one
execution cycle, using a periodic control bit to switch between them, and expanding trace
registers and cycle lengths so that both batch size and tree depth can be adjusted without
rewriting the core logic. During proof generation, the one-time signature and Merkle-
path phases run in a single trace, with the control bit toggling which constraints apply at
each step, leveraging Winterfell’s existing hash-round implementation. The code targets
Winterfell’s public APIs, and employs the Rescue128 hash function for all cryptographic
hashing inside the proof, as noted, to ensure the arithmetic constraints remain efficient.

For benchmarking, we measured the performance of key operations both with and
without the STARK proof. We recorded the time to generate key pairs (KeyGen), the time
to verify all signatures one-by-one without a proof (Verify), and the time to construct the
Merkle tree for each batch size. On the STARK side, we measured the proof generation
time and proof verification time, as well as the proof size in kibibytes. Data is available
in https://github.com/regras/stark-mss. All experiments were conducted on an Intel Core
17-1185G7 CPU @ 3.00 GHz, running Ubuntu 22.04.4 LTS with 16 GB RAM.

5. Results

Table 1| reports the performance of our MSS-aggregate STARK implementation for batch
sizes of N = {2,4, 8,16, 32,64}, omitting the signing costs which were negligible.

Key-generation time, individual signature verification time, and Merkle-tree con-
struction time all increase with complexity O(N). In contrast, proof-generation time

! Available at https://github.com/facebook/winterfell.

4

Anais Estendidos do SBSeg 2025: WTICG

Table 1. Individual signature verification compared to STARK aggregation (ms)

Batch Size | KeyGen Verify | Merkle Proof Gen. Proof Verify | Proof Size (KiB)
2 306.9 207.2 0.2 3.6 x 107 68.0 46.7
4 604.2 405.7 1.1 1.4 x 10° 142.5 51.9
8 1214.2 794.2 2.3 5.8 x 10° 3239 55.9
16 24275 1600.2 6.2 2.3 x 108 662.8 62.6
32 4812.0 31584 12.6 9.2 x 108 1430.7 68.4
64 9711.1 62929 24.8 3.6 x 107 3058.0 75.2

increases superlinearly — approximately O(N?); therefore, doubling the batch size results
in roughly four times more effort. Despite this heavy prover cost, proof sizes remain
compact, growing only with O(log V), with an increase of about 6 KiB for each doubling
of the batch. Notably, for N > 8, our approach provides smaller proofs than naively
concatenating /N Lamport+ signatures. Proof verification time also scales linearly with
N, roughly doubling when the batch size doubles, but — even at N = 64 — verifying the
STARK proof remains approximately twice as fast as verifying all signatures individually.

Table 2. Comparison of transparent SNARK and STARK constructions

Prover Time Proof Size Verifier Time Setup
[Wei et al. 2025 (PKC 2025)
Log-space uniform circuits over Galois rings O(N) O(VN) O(VN) transparent
[Chen et al. 2023] (EUROCRYPT 2023)
Arbitrary NP circuits over Galois rings O(N log? N) O(VN) O(VN) transparent
Our STARK for MSS aggregation
MSS with Lamport+ OTS O(N?) O(log N) O(N) transparent, post-quantum

Table [2] provides a comparison of asymptotics of our implementation with trans-
parent SNARKSs, highlighting trade-offs among prover time, verifier time, and proof size.
Our STARK implementation delivers proof sizes of only O(log N) — markedly smaller
than the O(\/N) bound for transparent SNARKSs — and introduces post-quantum security.
These findings confirm that the STARK-based aggregation achieves substantial verifier-
side savings and compact proof transmission at the expense of increased prover workload.

6. Conclusion

We presented a practical STARK-based batch verification scheme for post-quantum hash-
based signatures, focusing on a Merkle-tree-based Lamport+ signature system. By merg-
ing the one-time signatures and Merkle path checks into a single proof, a verifier can
validate NV signatures using only a few dozen hash operations and a single proof check.
The trade-off is a longer proving time, which can be amortized in scenarios where many
signatures must be verified and a single party is willing to incur the proving cost.

Like all Lamport-style constructions, our scheme remains stateful (each key pair
must be tracked as it can only be used once), which requires careful state management
to ensure that OTS keypairs are not reused. Eliminating the stateful requirement and im-
proving prover performance are necessary steps toward a fully general batch-verification
framework. We also plan to evaluate the security and throughput of our batch-verification
proof in a production setting (e.g. multiple signatures in blockchain consensus schemes).

Anais Estendidos do SBSeg 2025: WTICG

References

Ben-Sasson, E., Bentov, 1., Horesh, Y., and Riabzev, M. (2018a). Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In 45th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2018), volume 107, pages 14:1-14:17,
Dagstuhl, Germany. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Ben-Sasson, E., Bentov, 1., Horesh, Y., and Riabzev, M. (2018b). Scalable, transparent,
and post-quantum secure computational integrity. Cryptology ePrint Archive, Paper
2018/046.

Chakraborty, S., Hofheinz, D., Langrehr, R., Nielsen, J. B., Striecks, C., and Venturi,
D. (2025). Malleable snarks and their applications. In Advances in Cryptology —
EUROCRYPT 2025, pages 184-213, Cham. Springer Nature Switzerland.

Chen, B., Biinz, B., Boneh, D., and Zhang, Z. (2023). Hyperplonk: Plonk with linear-
time prover and high-degree custom gates. In Advances in Cryptology — EUROCRYPT
2023, Lecture Notes in Computer Science, pages 499-530. Springer.

Drake, J., Khovratovich, D., Kudinov, M., and Wagner, B. (2025). Hash-based multi-
signatures for post-quantum ethereum. Cryptology ePrint Archive, Paper 2025/055.

El-Hajj, M. and Oude Roelink, B. (2024). Evaluating the efficiency of zk-snark, zk-stark,
and bulletproof in real-world scenarios: A benchmark study. Information (Switzer-
land), 15(8). Publisher Copyright: © 2024 by the authors.

Ernstberger, J., Chaliasos, S., Kadianakis, G., Steinhorst, S., Jovanovic, P., Gervais, A.,
Livshits, B., and Orru, M. (2023). zk-bench: A toolset for comparative evaluation and
performance benchmarking of SNARKSs. Cryptology ePrint Archive, Paper 2023/1503.

Khaburzaniya, I., Chalkias, K., Lewi, K., and Malvai, H. (2021). Aggregating and thresh-
oldizing hash-based signatures using STARKSs. Cryptology ePrint Archive, Paper
2021/1048.

NIST (2020). Recommendation for Stateful Hash-Based Signature Schemes. NIST Spe-
cial Publication 800-208, National Institute of Standards and Technology.

Sekulié, J., éapko, D., Erdeljan, A., Grbi¢, T., and Nenadi¢, K. (2025). A short survey of
zk-friendly hash functions. In 2025 24th International Symposium, pages 1-5.

Wei, Y., Zhang, X., and Deng, Y. (2025). Transparent snarks over galois rings. In Jager,
T. and Pan, J., editors, Public-Key Cryptography — PKC 2025, pages 418—451, Cham.
Springer Nature Switzerland.

Wu, F.,, Zhou, B., Song, J., and Xie, L. (2025). Quantum-resistant blockchain and perfor-
mance analysis. The Journal of Supercomputing, 81(3).

