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Abstract. Generative Artificial Intelligence (GenAI) libraries are increasingly
foundational in modern applications, with special attention to Large Language
Models (LLMs), yet they exhibit evolving security vulnerabilities that necessitate
comprehensive analysis. In this study, we analyze 719 CVEs disclosed for 93
LLM-related libraries (from 2019 to 2024), revealing that more than 37% of
libraries have at least one CVE, and that an alarming 62% of vulnerabilities
are of high or critical severity, demanding immediate action. Our findings aim
to inform actionable recommendations that strengthen security practices and
ensure the safe deployment of GenAI technologies.

1. Introduction
The rapid advancement and widespread adoption of Generative Artificial Intelligence
(GenAI) technologies – especially Large Language Models (LLMs) – have revolu-
tionized areas from natural language processing to complex decision-making systems
[Cui et al. 2024a]. This fast development stems from numerous open-source projects
shared by the community, fostering a culture of code reusability for rapid innovation.
However, the code shared through libraries, composing the supply chain of a system,
underpins critical AI-driven functionality and has become a prime target for adversaries
[NIST 2024a, Cui et al. 2024b]. Moreover, their complexity and dynamic behavior often
conceal flaws that evade conventional static and dynamic analyses [Huang et al. 2024].
As a result, thousands of vulnerabilities are discovered and published each year via the
Common Vulnerabilities and Exposures (CVE) program1.

Understanding the evolution and root causes of security vulnerabilities is
paramount to protect users and companies using LLM systems. To this end, we per-
form an analysis of software supply chain vulnerabilities of LLM systems, evaluating 719
CVEs (created over the period 2019-2024) drawn from 93 libraries that are used across the
LLM life cycle. We present the most vulnerable libraries, taking into consideration their
popularity and complexity metrics, correlate each flaw with its underlying root cause, and
define mitigation and detection strategies to address the most common vulnerabilities in
the field. Our goal is to furnish evidence-based priorities for hardening next-generation
GenAI software while the ecosystem matures.

2. Background
To understand software vulnerabilities in real-world scenarios, one can think about the
CVE program, which provides a standardized identifier for publicly known cybersecurity

1The CVE program. Available at https://cve.mitre.org/
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vulnerabilities, facilitating information sharing and risk assessment. When detecting a
vulnerability in a software, a cybersecurity specialist can disclose their findings via the
CVE program, pursuing a formal process to report problems with a particular software to
the community. The adoption of the CVE standard fosters the secure software culture and
a rich unified database for software vulnerability research.

By analyzing CVEs from the software supply chain of LLM systems, it is possi-
ble to assess which vulnerabilities prevail and detect common threat patterns that organi-
zations should be aware of. Additionally, the Common Weakness Enumeration (CWE)2

system offers a taxonomy of software and hardware weaknesses, enabling a deeper under-
standing of the root causes of vulnerabilities, i.e., underlying developer errors that provoke
vulnerabilities exploitable by adversaries. Since each CVE maps to a CWE when created,
we can understand the most common threats to LLM systems and their root causes.

2.1. LLM Life Cycle
The life cycle of LLMs encompasses several stages [Suresh and Guttag 2021], each pre-
senting distinct security considerations:

Data Collection and Preprocessing: In this initial phase, vast amounts of data are gath-
ered, cleaned, and normalized. Some risks in this phase include data poisoning, where
malicious actors inject harmful data to influence model behavior.

Model Training: Process of creating a model from scratch or fine-tuning an existing one
with data obtained in the previous phase. The process relies on the integrity of both data
and model, with risks of data poisoning or backdoor introduction via supply-chain.

Deployment: Once the model is packaged, it enters production and becomes ready
for users. Threats include tampering and obtaining unauthorized access, via infrastruc-
ture/app compromise (e.g., exploring weak API controls, side-channel attacks, etc).

Inference and Output Handling: At runtime, user queries are converted into prompts,
passed through the model, and the outputs are post-processed. Prompt-injection attacks
can override system instructions, inadequate filtering may let toxic or hallucinated content
through, and naively using user data to retraining models can enable feedback poisoning.

The LLM supply chain plays a vital role, as vulnerabilities can be introduced in
any phase, allowing adversaries to explore the development or deployment environments.
For this reason, a careful analysis of all elements involved in a system is paramount.

2.2. Related Work
Prior research has extensively explored vulnerabilities and defenses specific to LLMs
[Cui et al. 2024a]. Recent studies have proposed comprehensive risk taxonomies and
benchmarks tailored for LLM systems [Cui et al. 2024b, NIST 2024a], associated known
CVE records to MITRE’s CWE classifications [Haddad et al. 2023, Shi et al. 2024], and
examined broader security and privacy challenges – including supply chain risks – within
GenAI pipelines [Yao et al. 2024, Huang et al. 2024].

In contrast to prior studies, this work specifically analyzes software supply chain
vulnerabilities associated with LLM systems through the lens of CVE data. Our contri-
bution lies in identifying the most prevalent root causes of vulnerabilities in the field and

2Common Weakness Enumeration. Available at https://cwe.mitre.org/
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subsequently defining concrete security measures for their detection and mitigation. This
analysis fills a critical gap by directly connecting vulnerabilities to actionable recommen-
dations, thus contributing to ongoing efforts to secure LLM systems.

3. Methodology

The first step in this study was to obtain a list of the most relevant software of LLMs
supply chain to identify known vulnerabilities. The list was derived from the bug bounty
platform Huntr3, a place where security researchers can submit vulnerabilities for AI/ML
apps and libraries. This platform was selected for concentrating the most well-known
open source LLM libraries, with regular updates (inclusion of new libraries that are rep-
resentative to the field). Although this platform also contains information about CVEs for
some libraries, it presents a limited view of all existing vulnerabilities – focusing on those
created via the platform itself – and it does not intend to gather and provide vulnerabili-
ties from other sources. For this reason, we are using Huntr only to obtain library names,
while obtaining all other library information elsewhere.

On October 31, 2024, we extracted all open-source projects available on Huntr.
At that time, we identified 182 distinct libraries. Not all of these libraries are related to
LLMs or are relevant to the field. For this reason, we established specific criteria to filter
out the results. We retained only libraries with ≥ 100 GitHub stars, ≥ 50 forks, active
status (not archived or disabled), and relevant to at least one phase of the LLM life cycle.
The criteria based on stars and forks were inspired by prior studies [Borges et al. 2016,
Hu et al. 2016], which identify these metrics as key indicators of software popularity and
impact. For each selected library, we collected all CVEs published between 2019 and
2024 (on November 27, 2024), but limited our analysis to those having the Analyzed status
to ensure only fully reviewed and vetted vulnerabilities were considered. Those under
Received or Awaiting / Undergoing Analysis at the time we executed the experiments
were discarded.

The time frame of 2019–2024 was deliberately chosen based on significant ad-
vances and widespread adoption of LLMs during this period. Specifically, the launch of
GPT-2 in 2019 marked a shift in the scale and complexity of LLMs, triggering accelerated
research, development, and deployment in both academia and industry. Consequently, this
time frame ensures comprehensive coverage of vulnerabilities associated with contempo-
rary LLMs and captures meaningful trends reflective of current industry practices.

To collect metadata from each library, we utilized the GitHub API4. Since all
software in this study is open source and hosted on GitHub, we were able to extract all
information necessary to our filtering process. Because subject matter relevance could
not be inferred from metadata alone, we asked ChatGPT-4o-mini to rate each library’s
applicability to LLM life cycle tasks on a 0-5 Likert scale (retaining those scored ≥ 3).
Finally, we manually reviewed the results to mitigate issues related to hallucinations or
inaccuracies in this scoring process. After filtering and reviewing the data, we compiled a
final list of 93 software relevant to the LLM ecosystem. We present in Table 1 (Appendix)
the complete list of software chosen for our analysis, along with their GitHub status and

3Huntr: The worlds first bug bounty platform for AI/ML. Available at https://huntr.com
4GitHub API Documentation: https://docs.github.com/en/rest
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Figure 1. CVE occurrences versus GitHub repositories indicators: (a) Forks; (b)
Stars; and (c) Lines of Code. Pearson coefficients: (a) R = 0.85 (p = 0); (b)
R = 0.59 (p = 0); (c) R = 0.29 (p = 0.005).

relevance score. Some edge cases (score < 3) were included due to our understanding
that such software could potentially compromise an LLM application that utilizes it.

4. Results and Discussion

4.1. Software Libraries and Vulnerabilities

From the 93 libraries analyzed, we found 35 libraries (37.63%) having at least one CVE.
By the time of our experiments (October 31, 2024), 98.75% of the analyzed CVEs re-
ceived published fixes, indicating that most LLM-related vulnerabilities are remediated
promptly once disclosed. Table 1 (Appendix) provides the CVEs count for each library
of this study. The vulnerable software spans the LLM life cycle: 3 libraries used for data
collection and preprocessing tasks, 13 for model development (training and testing), 21
for deployment, and 2 for inference and output handling.

Vulnerability Exposure. Analyzing vulnerability exposure requires considering not just
the absolute CVE count, but also factors like complexity and popularity. We analyze the
occurrence of CVEs to each library compared to its GitHub indicators: stars, forks and
lines of code (LoC). The latter is obtained through the tool cloc5. While stars and forks
are related to repository popularity and impact, the LoC is an indicator of complexity.

Figure 1 presents the number of CVEs versus each indicator. A regression line
with 95% of confidence interval indicates the libraries with a disproportionately high
number of CVEs relative to each indicator, while the Pearson coefficient R indicates the
linear correlation of CVEs with each indicator. Among the three metrics, forks are the
strongest indicator for CVE exposure, while stars express moderate linearity to security
risks. Surprisingly, LoC exhibited a weaker correlation to CVEs, suggesting that ac-
tive development and popularity better predict vulnerability exposure than codebase size
alone. To assess an average level of CVE exposure for each library combining multiple
indicators, we calculate the ratio of CVEs occurrences to the normalized indicator val-
ues. Next, we compute a geometric mean of the three ratios. Using this method, the top
10 libraries with most disproportionately high CVEs compared to their complexity and
popularity combined are ChuanhuChatGPT, clearml-server, airflow, tensorflow, zenml,
anything-llm, gradio, clearml, mlflow, and Paddle. Note that using this additional data,
libraries that have only one CVE (clearml-server) appear in the top 10 list, while others
with more vulnerability disclosures remained out (e.g., langchain).

5Count Lines of Code (cloc). Available at https://github.com/AlDanial/cloc.
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Predominant Programming Language. The most frequently used programming lan-
guage in vulnerable libraries (the main one in the repository) is Python (68.1%), followed
by C++ (8%), TypeScript (7%), and Go (6%). Knowing the language used by a software
gives a hint about the types of vulnerabilities to expect. Note that many projects may
contain modules or specific functions written in a different language than the main one.

Temporal Trends. Figure 2 presents the distribution of CVEs across yearly quarters
for all published CVEs and for the LLM software considered in our study. There is an
increase, quarter by quarter, in the number of CVEs being published, but to determine
whether the CVE disclosures is also increasing for the LLM software, we applied the
Mann–Kendall trend test to the quarterly counts (Q1-19 through Q4-24). The test yields S
= 91 (variance = 1625.33), Z = 2.232, Kendall’s τ = 0.33, and two-sided p-value of 0.026.
Since p < 0.05, we conclude there is an upward trend in reported vulnerabilities over this
period. This trend suggests increased research and reporting of vulnerabilities during the
initial adoption phases of LLM-related technologies, which subsequently stabilized as
these technologies matured and security practices improved.
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Figure 2. Quarterly CVE counts for LLM-related software compared to all pub-
lished CVEs records (Q1 2019 – Q4 2024).

Severity Score. For determining the severity level of vulnerabilities, the CVE program
adopts the CVSS (Common Vulnerability Scoring System) methodology. By analyzing
the score of each vulnerability according to the attributed CVSS (version 3.1)6, we found
that 8 (1.11%) CVEs have a Low score and 260 (36.16%) a Medium score. An alarming
number of 355 (49.37%) CVEs present a High score and others 96 (13.35%) a Critical
one, indicating that more than 62% of vulnerabilities demand immediate attention due to
their potential impact on the security and privacy of users and companies.

4.2. Root Causes of Vulnerabilities

To understand the root causes of vulnerabilities in LLM libraries, we analyzed the CWE
attributed to each CVE. The CWEs follow a structured organization using Views, which
is a subset of CWEs grouped based on some criteria. Our analysis is based on MITRE’s
CWE View 1000, containing 10 Pillars that group weaknesses based on how they can
be detected [MITRE 2025]. Of the 97 identified CWEs, two were classified as NVD-
CWE-Other (unsupported types), and 15 as NVD-CWE-noinfo (insufficient information).
The resulting Pillar-level frequencies are summarized in Table 2 (Appendix). It is worth

6Common Vulnerability Scoring System v3.1: Specification Document. Available at https://www.
first.org/cvss/v3-1/specification-document
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noting that some CWEs share similar root causes and are therefore mapped by MITRE to
multiple Pillars. For instance, CWE-476 is included in both Pillar 703 and Pillar 710; in
this case, the frequency of CWE-476 is counted separately for each mapping.

The Pillar with most CVEs is CWE-664, encompassing 119 cases (CWE-119,
120, 122, 125, 415, 416, 787, 824) related to out-of-bound operations on memory or files,
resulting in vulnerabilities like buffer overflow, use-after-free, double free, etc., most fre-
quent in C/C++ software. This group also includes 40 cases (CWE-22, 23, 29, 36) related
to language-agnostic path-traversal flaws occurring during name or reference resolution.

The most frequently occurring CWE is CWE-20 (Improper Input Validation) with
66 instances, belonging to the broader CWE-707 (Improper Neutralization) Pillar, under-
scoring the critical importance of correctly handling user input. The CWE-707 Pillar also
covers flaws in which untrusted input – when used to build commands, data structures,
or records – can alter program execution when the data is parsed or interpreted. This is
the case of CWE-74, and within this class, 84 occurrences were found (CWE-75, 77, 78,
79, 88, 89, 94, 1236, 1336), allowing adversaries to perform different forms of injection
attacks, via command, OS command, argument, template, code, SQL, special element,
and Cross-site Scripting. With a few exceptions (CWE-94 and CWE-1336 for interpreted
languages), all of these weaknesses are language-agnostic.

Other frequent CWEs were CWE-369 (Pillar 682) and CWE-476 (Pillars 703 and
710). The first one is a Divide by Zero weakness, with 59 occurrences of unexpected
values provided to applications without a proper inspection and validation, e.g., providing
a zero as denominator to a division function, crashing the application. This type of failure
may occur in any programming language. On the other hand, CWE-476 is a NULL
Pointer Dereference weakness (58 occurrences), with the application trying to access a
value stored in a memory address referenced by a given pointer that is invalid (NULL),
resulting in crashes or even allowing code execution. This problem is specific to some
programming languages, such as C, C++, Java, C#, and Go, and is part of the CWE-
754 class (11 occurrences), also related to the lack or improper check for unusual or
exceptional conditions, but in this case, this is not specific to any programming language.

5. Recommendations and Best Practices
Drawing on the 10 most frequent CWEs in our analysis and the mitigation guidance pro-
vided by MITRE [MITRE 2025], we organize the recommendations into:

a) Preventive Controls: Enforce strict validation and sanitization of all inputs (e.g.,
JSON Schema, Pydantic), apply consistent encoding/decoding (e.g., HTML-escape,
URL-encode), and separate user data from code (to mitigate CWE-20, 79, 22, 94, 125,
190, 476, 617); rely on vetted, purpose-built libraries for parsing and serialization to re-
duce unsafe deserialization and buffer flaws (CWE-22, 79, 190, 787); adopt memory-safe
languages or frameworks (CWE-125, 190, 476, 787) and do compiler/build hardening –
e.g., ASLR, buffer overflow detection, examining build warnings – (CWE-94, 190, 787);
run risky operations in containers or sandboxes, enforce least-privilege execution, and
harden environments (CWE-22, 79, 94); and ensure error messages only reveal minimal,
non-sensitive information to avoid aiding adversaries (CWE-22).

b) Detective Controls: Integrate automated static analysis tools into CI/CD pipelines to
catch improper validation, null dereferences, and injection patterns (CWE-20, 22, 79, 94,
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125, 190, 369, 476, 617, 787); employ fuzzing and runtime monitoring to uncover logi-
cal errors, memory corruption, and unexpected behavior under malformed inputs (CWE-
20, 22, 125, 190, 369, 476, 787); conduct source-code and architecture reviews, espe-
cially for high-risk components, validating boundary checks, data-flow separation, and
error-handling (CWE-20, 22, 190); and leverage OWASP Cheat Sheets, automated test-
generation, pentests, and threat modeling to identify exploit chains (CWE-79, 190).

These recommendations are aligned with those suggested by NIST [NIST 2022],
OWASP [OWASP 2024], and other entities. Companies and software developers
can adopt these strategies in addition to applying security principles [NIST 2024b,
CISA 2025] and best practices, as well as monitoring their software supply chain for
vulnerabilities. For end users, the main lesson is the importance of keeping software
up-to-date, since a disclosed vulnerability is most likely to be fixed in newer software
versions.

6. Limitations
This study may have bias due to some choices in the experiments, such as:

• Use of Open Source Projects. All LLM-related libraries analyzed are open-
source projects; as a result, they tend to be more scrutinized and have more vul-
nerabilities reported compared to proprietary solutions. We should not consider
the absolute number of vulnerabilities as a bad indicator, but take into considera-
tion other aspects, e.g., number of fixed issues, time to handle issues, number of
vulnerabilities without a fix, etc.

• Data Source for Libraries List. We are not aware of any study presenting reliable
statistics about LLM-related libraries adoption at the time of conducting this study.
We found Huntr to be a good alternative for selecting the libraries to be analyzed,
since it gathers the most relevant ones in the field, which offers the greatest value
to the community. Besides, our interest is not in analyzing all available libraries,
but rather the most representative ones that can significantly impact the field.

• LLM for Classification. Using an LLM to define which libraries are related
to LLMs life cycle phases may introduce inaccuracies due to hallucination. We
performed a manual revision to mitigate any issues.

7. Conclusion
Over the past five years, the number of reported vulnerabilities in GenAI applications has
surged, with disclosures skyrocketing since the beginning of 2021. As presented, most
LLM-related vulnerabilities are situated in the high-to-critical severity range, highlight-
ing the urgency for preemptive mitigation as popular and actively maintained software
accounts for the majority of these reports.

Our findings underscore the critical need to integrate robust security measures
throughout the GenAI software development life cycle. The recurrence of specific CWEs
highlights areas where developers must concentrate their efforts to mitigate threats effec-
tively, prioritizing the recommendations compiled in this work. Future research should
cover how vulnerabilities are evolving in the field and how to promote a culture of secu-
rity awareness among developers and stakeholders. Creating automated methods to assess
risks of GenAI software supply chain, including data from reported vulnerabilities, code
complexity and popularity, among other aspects, is also planned.
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Table 1. LLM Related Software – Repository Information and Stats.

Name Stars Forks LoC (x1000) Score CVEs Name Stars Forks LoC (x1000) Score CVEs

tensorflow 186,223 74,298 4,514 3 430 LLaVA 20,106 2,210 27 5 0
airflow 37,003 14,270 910 1 98 openui 19,185 1,769 380 3 0
Paddle 22,237 5,584 2,291 3 27 gensim 15,652 4,374 136 4 0
mlflow 18,699 4,229 679 3 25 argo-workflows 15,044 3,198 703 3 0
gradio 33,731 2,556 206 4 22 onnxruntime 14,618 2,921 3,833 3 0
langchain 94,455 15,268 512 5 20 DB-GPT 13,681 1,829 216 5 0
anything-llm 26,439 2,634 82 5 17 SWE-agent 13,644 1,383 48 5 0
ChuanhuChatGPT 15,241 2,297 17 5 14 langchainjs 12,636 2,166 281 5 0
litellm 13,600 1,591 337 5 7 tvm 11,761 3,469 1,065 3 0
zenml 4,046 436 207 3 7 dagster 11,638 1,465 1,802 3 0
clearml 5,665 653 155 3 6 TensorRT 10,762 2,130 2,032 3 0
lollms 269 50 25 4 6 danswer 10,576 1,319 186 4 0
LocalAI 24,424 1,868 84 5 4 OpenLLM 9,993 635 2 5 0
nltk 13,596 2,887 88 4 4 kedro 9,944 903 75 3 0
transformers 134,501 26,897 1,158 5 3 modin 9,871 651 99 3 0
ray 33,775 5,746 900 3 3 sonnet 9,771 1,298 16 3 0
pytorch-lightning 28,327 3,381 100 3 3 wandb 9,115 673 1,065 3 0
fastapi 77,267 6,601 203 1 2 tokenizers 9,035 798 49 5 0
open-webui 45,503 5,559 121 5 2 text-gen.-inference 9,005 1,059 176 5 0
llama index 36,534 5,226 1,159 5 2 pycaret 8,916 1,769 572 3 0
LibreChat 18,874 3,145 198 5 2 metaflow 8,223 772 93 3 0
composio 11,400 4,328 159 2 2 catboost 8,077 1,188 12,418 3 0
ollama 96,473 7,664 189 5 1 cortex 8,020 607 103 3 0
pytorch 83,664 22,577 2,446 3 1 autogluon 8,006 926 114 3 0
gpt academic 65,445 8,051 44 5 1 imaginAIry 7,948 441 68 4 0
MetaGPT 44,954 5,347 56 5 1 GPTCache 7,211 502 21 5 0
DeepSpeed 35,348 4,102 195 4 1 BentoML 7,128 792 72 5 0
ragflow 21,995 2,156 767 4 1 bitsandbytes 6,237 626 20 4 0
onnx 17,888 3,669 215 3 1 serving 6,180 2,189 73 3 0
SuperAGI 15,446 1,859 43 5 1 flyte 5,752 655 578 2 0
horovod 14,247 2,239 78 3 1 serge 5,672 407 12 4 0
dask 12,568 1,707 146 3 1 agentscope 5,177 316 58 3 0
server 8,297 1,479 137 4 1 llm-app 4,403 234 3 3 0
modeldb 1,700 285 550 3 1 seldon-core 4,377 831 494 3 0
clearml-server 385 133 32 3 1 serve 4,221 862 103 2 0
flask 68,016 16,214 19 1 0 kserve 3,586 1,060 1,470 4 0
keras 61,973 19,470 149 3 0 polyaxon 3,567 314 32 3 0
private-gpt 54,082 7,268 9 5 0 hummingbird 3,352 279 16 3 0
dify 50,817 7,306 573 5 0 keras-tuner 2,860 396 12 3 0
FastChat 36,886 4,544 39 5 0 agents 2,801 722 96 3 0
AgentGPT 31,720 9,232 49 5 0 promptbench 2,447 182 28 4 0
faiss 31,300 3,631 134 3 0 nvidia-container-toolkit 2,431 261 306 3 0
fairseq 30,457 6,405 179 4 0 neural-compressor 2,218 256 535 3 0
jax 30,405 2,789 333 3 0 sagemaker-python-sdk 2,104 1,137 305 3 0
spaCy 30,124 4,399 224 4 0 gptq 1,922 153 7 5 0
vllm 29,677 4,480 204 5 0 spacy-transformers 1,349 165 3 5 0
fastai 26,267 7,563 36 3 0

Table 2. Vulnerabilities Root Causes found in the CVE analysis within CWE-1000.

CWE Pillar #CWEs #CVEs Three Most Common CWEs for each Pillar

CWE-664 – Improper Control of a Resource
Through its Lifetime

48 282 52× CWE-125 (Out-of-bounds read)
19× CWE-787 (Out-of-bounds write)
21× CWE-22 (Improper Limitation of a Pathname to a Restricted Directory)

CWE-707 – Improper Neutralization 11 150 66× CWE-20 (Improper Input Validation)
26× CWE-79 (Improper Neutralization of Input During Web Page Generation - XSS)
18× CWE-94 (Improper Control of Generation of Code - Code Injection)

CWE-682 – Incorrect Calculation 5 100 59× CWE-369 (Divide by Zero)
27× CWE-190 (Integer Overflow or Wraparound)
12× CWE-131 (Incorrect Calculation of Buffer Size)

CWE-703 – Improper Check or Handling of Ex-
ceptional Conditions

5 78 58× CWE-476 (NULL Pointer Dereference)
11× CWE-754 (Improper Check of Unusual or Exceptional Conditions)
5× CWE-755 (Improper Handling of Exceptional Conditions)

CWE-691 – Insufficient Control Flow Manage-
ment

9 66 57× CWE-617 (Reachable Assertion)
2× CWE-670 (Always-Incorrect Control Flow Implementation)
2× CWE-835 (Loop with Unreachable Exit Condition – Infinite Loop)

CWE-710 – Improper Adherence to Coding Stan-
dards

7 66 58× CWE-476 (NULL Pointer Dereference)
2× CWE-475 (Undefined Behavior of Input to API)
2× CWE-798 (Use of Hard-coded Credentials)

CWE-284 – Improper Access Control 18 33 7× CWE-284 (Improper Access Control)
4× CWE-863 (Incorrect Authorization)
3× CWE-862 (Missing Authorization)

CWE-693 – Protection Mechanism Failure 6 13 6× CWE-352 (Cross-Site Request Forgery – CSRF)
2× CWE-345 (Insufficient Verification of Data Authenticity)
2× CWE-312 (Cleartext Storage of Sensitive Information)

CWE-697 – Incorrect Comparison 1 5 5× CWE-697 (Incorrect Comparison)

CWE-435 – Improper Interaction Between Multi-
ple Correctly-Behaving Entities

0 0 –
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https://github.com/tensorflow/tensorflow
https://github.com/haotian-liu/LLaVA
https://github.com/apache/airflow
https://github.com/wandb/openui
https://github.com/PaddlePaddle/Paddle
https://github.com/piskvorky/gensim
https://github.com/mlflow/mlflow
https://github.com/argoproj/argo-workflows
https://github.com/gradio-app/gradio
https://github.com/microsoft/onnxruntime
https://github.com/langchain-ai/langchain
https://github.com/eosphoros-ai/DB-GPT
https://github.com/Mintplex-Labs/anything-llm
https://github.com/princeton-nlp/SWE-agent
https://github.com/GaiZhenbiao/ChuanhuChatGPT
https://github.com/langchain-ai/langchainjs
https://github.com/BerriAI/litellm
https://github.com/apache/tvm
https://github.com/zenml-io/zenml
https://github.com/dagster-io/dagster
https://github.com/allegroai/clearml
https://github.com/NVIDIA/TensorRT
https://github.com/ParisNeo/lollms
https://github.com/danswer-ai/danswer
https://github.com/mudler/LocalAI
https://github.com/bentoml/OpenLLM
https://github.com/nltk/nltk
https://github.com/kedro-org/kedro
https://github.com/huggingface/transformers
https://github.com/modin-project/modin
https://github.com/ray-project/ray
https://github.com/google-deepmind/sonnet
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/wandb/wandb
https://github.com/fastapi/fastapi
https://github.com/huggingface/tokenizers
https://github.com/open-webui/open-webui
https://github.com/huggingface/text-generation-inference
https://github.com/run-llama/llama_index
https://github.com/pycaret/pycaret
https://github.com/danny-avila/LibreChat
https://github.com/Netflix/metaflow
https://github.com/ComposioHQ/composio
https://github.com/catboost/catboost
https://github.com/ollama/ollama
https://github.com/cortexlabs/cortex
https://github.com/pytorch/pytorch
https://github.com/autogluon/autogluon
https://github.com/binary-husky/gpt_academic
https://github.com/brycedrennan/imaginAIry
https://github.com/geekan/MetaGPT
https://github.com/zilliztech/GPTCache
https://github.com/microsoft/DeepSpeed
https://github.com/bentoml/BentoML
https://github.com/infiniflow/ragflow
https://github.com/bitsandbytes-foundation/bitsandbytes
https://github.com/onnx/onnx
https://github.com/tensorflow/serving
https://github.com/TransformerOptimus/SuperAGI
https://github.com/flyteorg/flyte
https://github.com/horovod/horovod
https://github.com/serge-chat/serge
https://github.com/dask/dask
https://github.com/modelscope/agentscope
https://github.com/triton-inference-server/server
https://github.com/pathwaycom/llm-app
https://github.com/VertaAI/modeldb
https://github.com/SeldonIO/seldon-core
https://github.com/allegroai/clearml-server
https://github.com/pytorch/serve
https://github.com/pallets/flask
https://github.com/kserve/kserve
https://github.com/keras-team/keras
https://github.com/polyaxon/polyaxon
https://github.com/zylon-ai/private-gpt
https://github.com/microsoft/hummingbird
https://github.com/langgenius/dify
https://github.com/keras-team/keras-tuner
https://github.com/lm-sys/FastChat
https://github.com/tensorflow/agents
https://github.com/reworkd/AgentGPT
https://github.com/microsoft/promptbench
https://github.com/facebookresearch/faiss
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/facebookresearch/fairseq
https://github.com/intel/neural-compressor
https://github.com/jax-ml/jax
https://github.com/aws/sagemaker-python-sdk
https://github.com/explosion/spaCy
https://github.com/IST-DASLab/gptq
https://github.com/vllm-project/vllm
https://github.com/explosion/spacy-transformers
https://github.com/fastai/fastai

