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Abstract. Correct use of cryptographic APIs is crucial for data security in en-
terprise systems, yet remains challenging. This paper reports our experience
applying CogniCrypt and CryptoGuard to detect cryptographic API misuses
in 17 Java artifacts from a large agricultural research company. We identi-
fied 67 vulnerabilities—primarily involving insecure modes (e.g., AES/ECB) and
key management issues—with 34 concentrated in a shared architectural compo-
nent. Through a developer focus group and manual remediation, we assessed
the tools’ effectiveness and developers’ perceptions, highlighting challenges in
Static Application Security Testing (SAST) adoption and legacy code mainte-
nance. As a practical contribution, we share our experience fixing the vulnera-
bilities and outline a migration strategy—necessary to ensure continued system
functionality—that supports algorithm coexistence during and API compatibil-

ity.

1. Introduction

The growing landscape of digital threats has elevated software security to a central con-
cern for organizations. Encryption plays a crucial role in safeguarding sensitive data;
however, its effectiveness relies heavily on the correct use of cryptographic Applica-
tion Programming Interfaces (APIs). Improper usage of crypto APIs—often stemming
from the complexity of these APIs and insufficient documentation—can introduce critical
vulnerabilities, even in systems that are otherwise considered secure [Nadi et al. 2016,
Acar et al. 2016]. The importance of the correct usage of cryptographic APIs is also
highlighted by industry standards, such as the OWASP API Security Top 10, which
lists as major risks problems like broken object-level authorization and improper as-

sets management, areas where incorrect use of cryptography is often a contributing fac-
tor [OWASP Foundation 2023].

The significance of this issue extends beyond APIs to general web applications,
as evidenced by the cornerstone OWASP Top 10 for Web Application Security Risks.
In its latest iteration, “Cryptographic Failures” (A02:2021) is ranked as the second most
critical risk, encompassing issues from the failure to encrypt data in transit or at rest
to the use of weak cryptographic algorithms and poor key management. This high-
ranking position underscores that the very types of API misuses analyzed in this paper
are a direct manifestation of one of the most severe threats facing software systems today.
[OWASP Foundation 2021]



Anais Estendidos do SBSeg 2025: Industria e Inovacao

Static Application Security Testing (SAST) tools support the detection of cryp-
tographic API misuses [Hazhirpasand et al. 2020, Trautsch et al. 2023]. Nonetheless,
their adoption is hindered by several challenges, including difficulties in integrat-
ing these tools into existing development workflows, the high incidence of false
positives, and the requirement for specialized skills to accurately interpret the re-
sults [Ami et al. 2022]. Moreover, there is a scarcity of empirical evidence demonstrating
how state-of-the-art static analysis tools—such as CogniCrypt [Kriiger et al. 2017] and
CryptoGuard [Rahaman et al. 2019]—can be effectively integrated into organizations that
develop enterprise systems.

Seeking to fill this gap in the literature, we present a case study on detecting and
fixing cryptographic API misuses in enterprise systems of an agricultural research com-
pany. The scope was intentionally defined to support a comprehensive and detailed anal-
ysis of a critical class of vulnerabilities. While other security issues like injection flaws
are equally important, cryptographic errors can silently undermine the very foundation of
data protection. Our research yielded three contributions. First, we found that a shared
architectural component accounted for 34 of the 67 cryptographic API misuses identified
across 17 enterprise systems in the company where we conducted our case study. Second,
collaboration with the company’s development teams revealed a culture that delegates se-
curity responsibilities to infrastructure, while highlighting the educational role of SAST
tools in raising developer security awareness. Finally, we show that all 67 vulnerabili-
ties can be manually remediated and propose a migration strategy to manage legacy data
encrypted under the previous, insecure standard, ensuring continued API compatibility.

Section 2 provides the necessary background on the complexities of cryptographic
APIs and the static analysis tools used to detect their misuses in our context. Sections 3
and 4 describe our research methodology and present the key findings. Finally, Section 5
concludes the paper.

2. Background

Cryptographic APIs, such as the Java Cryptography Architecture (JCA), are designed
to abstract the complexity of cryptographic algorithms, offering developers interfaces to
implement security [Nadi et al. 2016, Meng et al. 2018]. However, the improper use of
these APIs is a common source of vulnerabilities. Developers frequently face difficulties
due to a lack of documentation, the existence of poor examples, and unclear guidelines
for secure configuration [Nadi et al. 2016, Meng et al. 2018]. Common errors include the
use of obsolete or weak algorithms, including the use of Data Encryption Standard (DES)
or unsafe modes of operation such as Electronic Codebook (ECB), improper key man-
agement (e.g., keys embedded as constants in the source code, weak keys), and incorrect
handling of initialization vectors (IVs). Nadi et al. [Nadi et al. 2016] emphasize that the
difficulty in understanding the correct sequence of method calls and necessary parameters
contributes to insecure implementations.

For instance, Listing 1 shows an example of a misuse of the Java Cryptography
Architecture (JCA) API. The issue resides in how the cipher is instantiated and initialized,
particularly when the Electronic Code Book (ECB) mode is used (see Line 1 of Listing 1).
The ECB mode is insecure because identical clear data blocks result in identical encrypted
blocks, allowing an attack via pattern analysis [Dworkin 2001]. Figure 1 highlights the
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fragility of the ECB operating mode. The original image is visible on the left, and the
center image is encrypted using the ECB mode. One can notice some patterns that might
reveal the outlines of the original image. In contrast, the image on the right shows the
result of encrypting the original image using the Counter (CTR) mode. In the right image,
it is not possible to identify any pattern that could reveal the content and allow an attacker
to obtain the encrypted data.

| Cipher cipher = Cipher.getInstance ("AES/ECB/PKCS5Padding") ;
> final SecretKeySpec secretKey = new SecretKeySpec (key, "AES");
3 cipher.init (Cipher.ENCRYPT_MODE, secretKey);

Listing 1. Improper cryptography APl usage detected.

Figure 1. Image encrypted with ECB mode. (Source:  Adapted
from [Artiles et al. 2019])

To mitigate the risks associated with the improper use of cryptographic APIs,
static code analysis tools have been developed. They inspect the source code or bytecode
without executing the programs, searching for patterns of insecure usage. Two state-
of-the-art crypto API misuse detectors for JCA are CogniCrypt [Kriiger et al. 2017] and
CryptoGuard [Rahaman et al. 2019]. CogniCrypt is a tool designed to assist developers
in the proper use of encryption APIs in Java. It utilizes the Cryptographic Specification
Language (CrySL) [Kriiger et al. 2021] to define formal rules for safe usage. CogniCrypt
can operate as an IDE plugin, providing real-time feedback, or via the command line for
the analysis of existing projects. Its components include CogniCryptSAST for analysis
and CogniCryptGen [Kriiger et al. 2020] for generating secure code. CryptoGuard is an-
other static analysis tool for Java, focused on detecting cryptographic vulnerabilities with
high precision. It employs context-sensitive interprocedural data flow analysis to identify
issues such as the use of weak keys, insecure algorithms, and the reuse of IVs. Accord-
ing to Rahaman et al. [Rahaman et al. 2019], CryptoGuard is designed to analyze large
codebases and provide detailed reports.

Previous research has explored and compared both tools using open-
source Java systems and synthetic benchmarks [Zhang et al. 2022, Ami et al. 2022,
Torres et al. 2023, Firouzi et al. 2024]. However, qualitative assessments of these tools
in industrial settings remain scarce, particularly within the context of Java enterprise sys-
tems. This work presents an experience report on using CogniCrypt and CryptoGuard to
identify cryptographic API misuses in an industrial setting, capture development teams’
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perceptions of the reported warnings, and assess the effort required to manually remediate
the identified vulnerabilities.

3. Research Method

We conducted a case study at a large agricultural research institution using a structured,
multi-stage methodology. This approach was designed to ensure the rigor of our findings
and to offer a replicable framework for similar analyses in other industrial contexts. We
conduct our research in four main stages.

(a) Artifact Selection

The first stage involved identifying the target systems for analysis. In collaboration with
the institution’s development and maintenance teams, we selected a representative set
of 17 Java artifacts. This set comprised eight enterprise systems, seven web services that
provide interfaces to these systems, and two architectural components containing reusable
classes. These artifacts were chosen because they are considered critical for the institu-
tion’s operational continuity, represent diverse levels of implementation complexity, and
because the shared architectural components could be a source for propagating vulnera-
bilities.

(b) SAST Execution and Result Analysis

We used two state-of-the-art static analysis tools, CogniCrypt and CryptoGuard, to ana-
lyze the bytecode of the selected artifacts. The choice of these tools was based on their
documented high precision in detecting cryptographic API misuses in Java. We executed
the tools via their command-line interfaces and collected the generated reports. The re-
sults from both tools were then consolidated and manually cross-verified to eliminate any
potential false positives and to categorize the findings.

(c) Developer Focus Group

After identifying and categorizing the vulnerabilities, we conducted a focus group session
with members of the development teams responsible for the analyzed systems. The goals
of this session were threefold: (i) to present and validate the findings, (ii) to understand
the root causes of the misuses from the developers’ perspective, and (iii) to collaboratively
discuss and prioritize a remediation plan. The discussion was semi-structured, guided by
questions about their awareness of secure coding practices, their previous experiences
with SAST tools, and the perceived challenges in maintaining legacy code.

(d) Remediation and Validation

Based on the priorities defined in the focus group, the final stage involved the manual re-
mediation of the identified vulnerabilities. We implemented the necessary code changes,
focusing first on the most critical and widely propagated issues found in the shared archi-
tectural components. After applying the fixes, we re-ran CogniCrypt and CryptoGuard
to validate that the vulnerabilities were successfully eliminated. Finally, we executed the
projects’ automated test suites to ensure that our changes did not introduce functional re-
gressions. The following section details the findings and outcomes obtained by applying
this methodology.
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4. Results

This section presents the results obtained by applying the research method we described
in the previous section.

4.1. Identification of Cryptographic API Misuses

The outcomes of CogniCrypt and CryptoGuard revealed a total of 67 occurrences of
cryptographic API misuses in the selected Java artifacts. The vulnerabilities were found
mainly in Component 1 (a core architectural library), which accounted for 34 of the iden-
tified misuses. Table 1 summarizes the main types of vulnerabilities (categorized by the
Common Weakness Enumeration - CWE [MITRE Corporation 2024]) detected, the tools
that identified them, and the number of occurrences for each.

Table 1. Vulnerabilities found in the static analyses.

Type of Misuse (Associated CWE) Description Tool(s) Occurrences
Use of insecure algorithm (CWE-327) Ex: AES/ECB, DES/ECB CogniCrypt, CryptoGuard 9
Incorrect key generation (CWE-320) Parameters not generated correctly CogniCrypt 9
Incorrect preparation of key material (CWE-321)  Parameters not generated correctly CogniCrypt 9
Use of outdated SSL protocol (CWE-326) Use of "SSL instead of TLSv1.2+ CogniCrypt 5
Incorrect generation of TrustManagers (CWE-295) Insecure configuration CogniCrypt 3
Use of unreliable PRNG (CWE-338) Ex: java.util.Random for cryptographic purposes CryptoGuard 4
Use of constant key in the code (CWE-547) Hardcoded keys CryptoGuard 16
Use of unreliable HostName Verifier (CWE-295) Accepts all hostnames CryptoGuard 3
Use of unreliable TrustManager (CWE-295) Accepts all certificates CryptoGuard 8
Use of insecure HTTP protocol (CWE-319) HTTP instead of HTTPS CryptoGuard 1

The most recurrent vulnerabilities include the use of an insecure cryptographic
mode (i.e., AES/ECB/PKCS5Padding) (CWE-327), the generation of keys from con-
stants in the code (CWE-547), and the use of insecure transport protocols such as SSL
instead of TLSv1.2 or higher (CWE-326). Component 1, being a shared library, propa-
gated several of these vulnerabilities to the systems that depended on it.

4.2. Developer Perceptions and Discussion

After identifying the cryptographic API misuses, we conducted a focus group session with
the development teams to share the findings and decide on appropriate measures based on
the results.

Regarding the origin of the misuses, the focus group revealed that, although de-
velopers consider security important, it is frequently neglected in favor of delivering func-
tionality. Also, there is an excessive reliance on the IT infrastructure to ensure security,
and a limited knowledge of secure coding practices and the risks associated with legacy
architectural components. One developer stated: “Our goal is to deliver what the client
requested. [...] We believe that security should be delegated to the application server
configuration, the VPN ..., and ensured by the infrastructure only.”. This highlighted a
cultural gap where security was not seen as a shared responsibility that includes software
development.

The team was generally unaware of the specific risks associated with their cryp-
tographic implementations, such as the weakness of the ECB mode. When presented
with the findings, they understood the theoretical risks but had not previously considered
them a priority. The discussion also highlighted practical challenges in addressing vul-
nerabilities, especially in legacy architectural components. The interdependence of these
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elements and the considerable risk of a “snowball effect” were central concerns. For in-
stance, one of the participants stated that “/... ] if you want to update the cryptography
architectural component, you would also need to update other dependencies, including
the Java version we use here. It’s a snowball effect, where one problem leads to another,
and before you realize it, you're dealing with a significantly outdated environment.”

Despite previous experiences with SAST tools not always being positive, the anal-
ysis of concrete vulnerabilities prompted a reassessment of their value. Developers em-
phasized the educational potential of these tools and expressed interest in integrating them
more effectively into the development process.

“These tools can help us become more familiar with security issues, which
are sometimes overlooked. These tools gradually reveal where errors oc-
cur, right? So, I believe it’s good practice to reconsider our development
process and add this security layer.”

The participants acknowledged the critical nature of the vulnerabilities, especially
those in reusable components developed over a decade ago, and agreed to prioritize their
remediation.

4.3. Fixing the Cryptographic Misuses

We carried out manual corrections of the critical vulnerabilities identified. Here we out-
line the process and the impact of the fixes using representative examples of the analyzed
artifacts. Due to space limitations, we report only three patterns of fixes implemented
in a widely used architectural component, where a significant number of failures were
originally detected.

(Fix 1) Correction of CWE-327 (Use of Insecure Algorithm). The use of
AES/ECB/PKCS5Padding (see Listing 1) was identified in encryption and de-
cryption methods. The fix involved replacing the ECB mode with the Counter
(CTR) mode, AES/CTR/NoPadding, and introducing a correct use of Initial-
ization Vectors (IVs) randomly generated for each encryption operation. This
decision aligns with CogniCrypt’s recommendations, which suggest using secure
operating modes such as CTR. Listing 2 shows the modified code snippet, high-
lighting the instantiation of the AES cipher in CTR mode and the explicit use of
an Initialization Vector (IvParameterSpec), in line with recommended secure
practices.

| Cipher cipher = Cipher.getlInstance ("AES/CTR/NoPadding") ;

» IvParameterSpec ivSpec = new IvParameterSpec(iv);

3 final SecretKeySpec secretKey = new SecretKeySpec (key, "AES");
4 cipher.init (Cipher.ENCRYPT_MODE, secretKey, ivSpec);

Listing 2. Corrected usage example with AES/CTR and IV.

(Fix 2) Correction of CWE-320 and CWE-547 (Incorrect Key Generation and Use of
Constant Key). The encryption key was a constant byte [] in the source code,
and the SecretKeySpec class was instantiated insecurely. To correct this, key
derivation was implemented using PBKDF2WithHmacSHA256 (PBEKeySpec),

6



Anais Estendidos do SBSeg 2025: Industria e Inovacao

based on a password (obtained securely and not stored directly) and a random salt
generated with SecureRandom. The java.security.SecureRandom class is the
standard, cryptographically strong pseudo-random number generator (PRNG) in
Java, as it gathers entropy from the underlying operating system, making it suit-
able for cryptographic tasks. The password stored in a char [] was zeroed out
after use to minimize its exposure in memory. The IV was also generated ran-
domly with SecureRandom for each encryption operation. The salt and the IV
were then concatenated (Base64 encoded) to the encrypted text to allow decryp-
tion.

(Fix 3) Correction of CWE-326 (Outdated SSL Protocol). Methods responsible for
configuring secure connections (e.g., ss1Check () ) instantiated SSLContext
with the string * *SSL’ ’, allowing the negotiation of outdated protocols such as
SSLv3. The correction involved the explicit specification of TLSv1.2. The de-
cision to specify TLSv1.2 instead of the more recent TLSv1.3 was dictated by a
critical technical constraint: the institution’s legacy systems are standardized on
Java version 1.7.0_80. This decision to remain on this specific Java version stems
from significant organizational factors, including licensing model changes intro-
duced with later versions and the imperative to maintain compatibility with other
interdependent legacy systems. As the 1.7.0_80 platform supports TLSv1.2 but
not TLSv1.3, adopting the latter would be unfeasible without a major platform
migration, exemplifying the “snowball effect” concern previously raised by the
developers. This fix also included the use of a KeyStore of type “JKS”, and the
configuration of TrustManagerFactory and KeyManagerFactory with
secure algorithms such as “SunX509”, ensuring proper certificate validation and
the use of robust cipher suites. In addition, permissive TrustManagers and Host-
name Verifiers that accepted any certificate or hostname were adjusted to perform
strict validations.

In total, fixes (Fix 1), (Fix 2), and (Fix 3) resolved 43 warnings, modifying 336
lines of code. Addressing the remaining 24 warnings required changes to 688 lines of
code. We verified the effectiveness of these fixes by re-running the SAST tools to confirm
that the modifications successfully eliminated the issues, as no further warnings were gen-
erated. Finally, we successfully executed the system build and functional tests, ensuring
the stability and correctness of the updated code.

While the revised codebase demonstrates stability, essential updates to its crypto-
graphic algorithms introduced incompatibility with pre-existing data structures. Conse-
quently, a transitional strategy was adopted, involving the concurrent operation of both
the legacy and revised code. This approach allows the legacy system to decrypt older data
for subsequent re-encryption under the new cryptographic standard. Concurrently, safe-
guards were instituted to prohibit the legacy system from encrypting new data, thereby
mandating the revised code for all current and future encryption operations. To minimize
disruption to client applications, the method signatures of the cryptographic functions
were maintained, ensuring continued API-level compatibility.

5. Conclusions

This study presented an experience report on the exploration of two state-of-the-art static
cryptographic API misuse detectors—CogniCrypt and CryptoGuard—within the enter-
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prise systems of a large Brazilian research organization.! We found that almost half of the
67 detected vulnerabilities originated from a reusable component that propagated these
vulnerabilities across multiple systems. We also outlined the development teams’ per-
ceptions of the reported vulnerabilities and highlighted their decisions to integrate these
tools into the company’s pipelines and to address the detected vulnerabilities. The main
takeaway messages from this practical experience are:

* The relevance of using static analysis tools goes beyond merely finding vulnera-
bilities, as they foster cultural change and promote knowledge acquisition, helping
to disseminate awareness about vulnerabilities that might not be fully understood
by development teams in organizations that develop internal enterprise systems.

* The feasibility of fixing a significant number of vulnerabilities (67 in our case)
present in legacy systems, even through a manual approach. In our case, we fixed
all 67 warnings detected by CogniCrypt and CryptoGuard by modifying 1024
lines of code in 12 Java classes.

As future work, we aim to reproduce the manual fixes using foundation models
(i.e., small and large language models) to evaluate whether the fixes can be automated. We
also plan to extend this study to other systems within the organization to corroborate our
findings. Depending on the outcomes, we may extend this approach to other enterprise
systems within our organization.
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