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Abstract. Differential privacy (DP) is often used to protect consumer privacy in
controlled data disclosures. This paper applies DP technology in anomaly detection
to safeguard the secrecy of business-sensitive data in Brazilian open energy markets,
where full metering datasets are publicly disclosed. Anomaly detection on actual
metering data can be found wrong when random noise preserves secrecy, but reduces
data utility. This paper contributes to solve this real-world issue by demonstrating
DP’s utility for anomaly detection in energy consumption data. We evaluated this
approach across various values for the privacy parameter (ϵ), analyzing Precision,
Recall, and F1-Score metrics. Our findings facilitate fine-tuning the trade-off between
anomaly detection and business secrecy, minimizing the risk of inaccurate insights
from noisy data while ensuring robust privacy.

1. Introduction
Historically, security concerns at energy sector have been related to availability of infrastructures
for generation and distribution. Security requirements addressing these concerns were imple-
mented by mechanisms for detection, prevention and reaction to disruption events. As energy
sector evolves and incorporates Information and Communication Technologies (ICTs) into
its operations, innovation in business models flourishes, but cyber-threats and privacy violations
became serious issues. An open energy market is a market where consumers can choose
their electricity supplier from a range of different providers. Brazilian open energy market is
relatively new and is looking for transparency and reliability in operations. To promote public
audit and accountability, whole metering datasets have been published1, possibly disclosing
business sensitive information. Meanwhile, there is a growing need for providing business
secrecy to traders regarding how their clients consume energy and change suppliers over time.

A problem may arise because, in this publicly accessible dataset, highly sensitive
information such as client portfolios and market shares can be easily inferred by competitors, as
actual metering data for business clients is disclosed in its entirety, without any anonymization,
to the public. This exposure allows malicious third-parties or competitors to analyze detailed
consumption patterns and track supplier changes, gaining undue insights into rival business
strategies and market positions.

Differential privacy is a privacy preserving technology designed to protect an entity’s
privacy in large datasets [Dwork 2006]. It ensures, with a certain degree of confidence, that
adding or removing a single entity’s data from a dataset has minimal impact on the overall
result of a statistical query or analytical output [Dwork 2006]. In this paper, we use differential
privacy technology in an innovative way to protect trader’s business sensitive information within

1https://dadosabertos.ccee.org.br
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metering data for open energy markets, preserving business secrecy. We use publicly available
data from Brazilian energy retail market. In this dataset, client portfolios and market shares can
be easily inferred by competitors, because actual metering data for business clients is disclosed
in the whole, without anonymization, to the public.

The main contribution of this paper lies in investigate a possible solution to the
real-world issue of apply differential privacy to protect the secrecy of business-sensitive
information in open energy markets while still enabling valuable data analysis. We explore the
application of differential privacy in complex analytical tasks crucial for market operations and
oversight, specifically the actual scenario of anomaly detection in consumption metering. This
work investigates the viability and performance of Differentially Private KMeans (DPKMeans)
for identifying anomalous energy consumption patterns within these sensitive datasets. We
provide a detailed evaluation of its effectiveness across various privacy levels (ϵ) by examining
standard performance metrics (Precision, Recall, and F1-Score) and the behavior of true/false
positives/negatives derived from the confusion matrix. Our findings aim to guide the practical
implementation of such techniques, allowing for useful, privacy-preserving market analytics
that can benefit competing traders, retailers, and third-party analysts by enabling data-driven
insights without compromising confidential business intelligence.

A distinctive aspect of this investigation is its foundation on actual, publicly available
metering data from the Brazilian open energy market. This grounding in a real-world
operational context allows for an assessment of DP-KMeans’ practical utility in detecting
anomalies within authentic energy consumption patterns. The paper is organized as follows.
Section 2 contains related work. Section 3 overviews Brazilian open energy market. Section 4
discusses dataset disclosure in Brazilian open energy market and illustrates the risks of
inaccurate insights with differentially private histograms. Section 5 details our methodology
using differentially private clustering for anomaly detection on metering datasets and presents
its performance evaluation. Section 6 concludes this text.

2. Related Work

Differential privacy was proposed in 2006 in a series of three papers [Dwork 2006,
Dwork et al. 2006b, Dwork et al. 2006a]. First, [Dwork 2006] shows that semantic security
cannot be achieved with absolute privacy and proposes differential privacy to capture the risk of
data leaks for someone present in a database subject to queries. [Dwork et al. 2006b] explains
that privacy is protected when the true response from a database query is perturbed by adding
random noise generated according to a carefully chosen distribution, and this response (with
added noise), is returned to the user. This way, privacy can be preserved by calibrating noise’s
standard deviation according to information’s desired sensitivity. Last, [Dwork et al. 2006a]
explains that privacy can also be achieved by perturbing the true response of query by adding
a small amount of exponentially distributed noise.

Differential privacy has been used in various application scenarios. At energy sector,
proprietary schemes for differential privacy have been used in smart grids targeting resi-
dential consumers [Zhao et al. 2014, Peralta-Peterson and Kotevska 2021, Marks et al. 2021,
Janghyun et al. 2022] and time series [Leukam Lako et al. 2021, Roman et al. 2021,
Roman 2023, McElroy et al. 2023, Shaham et al. 2024] to preserve privacy, and recent
work has also focused on evaluating open-source libraries for these purposes (e.g.,
[Paixão et al. 2025a, Paixão et al. 2025b]). Other application domains include, for instance,
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anomaly detection with a focus on public health surveillance, such as in epidemic outbreak
detection [Fan et al. 2013]. Also, government agencies have proposed guidelines for evaluating
privacy guarantees [Near et al. 2023], as well as risk analysis and hardening guidelines for
forecasting demand on electricity grids [ENISA 2023].

All these works, in way or another, contribute to set the stage where government
agencies are more concerned than ever about the effectiveness of privacy preserving technology,
giving appropriate conditions to evaluated differential privacy guarantees in specific scenarios.

3. Brazilian Open Energy Market in Electrical Smart Grids

The Advanced Metering Infrastructure (AMI) is a subsystem of modern power supply networks
(a.k.a Electrical Smart Grids) that transmits energy consumption metering and other data,
commands, and controls, to network operators. Other participants in this smart grid are
consumers units (residences, buildings, offices, stores and factories where a smart meter is
installed) and service providers (energy generators, transmitters and distributors). Open market
players are relatively new to Brazilian smart grids and can act as aggregators, brokers, traders,
retailers and even data analysts.

In open energy markets, consumers can choose their electricity supplier from a range
of different providers. This allows consumers to compare prices and find the best deal for
their needs. In Brazil, CCEE (Câmara de Comercialização de Energia Elétrica) is a non-profit
organization responsible for facilitating commercialization of electricity within the National
Interconnected Energy System [CCEE 2024] and its open energy market. CCEE grants that
consumption metering data transacted by traders, retailers and distributors are disclosed in the
whole to the public, without anonymization, since march 2024.

In Brazilian open energy market, metering aggregators, traders, retailers and outsourced
analysts may have different access needs, which may not include viewing other player’s data.
For instance, trustful aggregators usually grant traders and retailers access to fined-grained
metering on energy consumption. Despite perfectly justifiable from a business point of view,
open access to detailed metering can potentially jeopardize business secrecy by disclosing not
only clients consumption patterns, but also business sensitive information. In principle, traders
and retailers need access to their own data to perform various analysis in decision making
processes, such as volume analysis, dynamic pricing, energy type aggregations, billing, tax
charging, load forecasting, and usage variance, among other needs. However, a malicious
third-party or competitor may use open access to perform queries on other’s metering data
or tracking of retailer membership transactions and, through union of results and external data,
infer consumption patterns, customer portfolios and market shares for competitors.

4. Differentially Private Histograms and the Risk of Inaccurate Insights

This section uses two examples to highlight the importance of carefully selecting an appropriate
epsilon value that minimizes the risk of inaccurate insights while still providing adequate privacy
protection. The first uses differentially private histograms and the second uses private average.

First, for illustrative purpose only, Figure 1 shows the impact of differential privacy on
energy consumption data for the top 5 free consumers in the Southeast submarket. It compares
actual consumption against data protected using three different privacy levels (three ϵ values:
1, 10, and 100). In Figure 1, x-axis identifies the consumers and their energy suppliers, while

Anais Estendidos do SBSeg 2025: Indústria e Inovação

3



y-axis shows the consumed load in MWh. In legend, with ”Actual Consumption” representing
the baseline and the other three representing progressively weaker privacy levels (and thus,
less noise added to the data), allowing comparison of consumption levels across the different
privacy settings for each consumer. Visually, we can observe how increasing ϵ values (from
1 to 100) results in data points that more closely approximate the actual consumption, thereby
directly illustrating how a strong privacy budget (low epsilon) can lead to significantly distorted
data, posing a substantial risk of inaccurate insights in market analysis.

The chart clearly demonstrates the core challenge of differential privacy: balancing
data utility with individual privacy. While stronger privacy (lower epsilon) adds more noise and
thus protects individual consumer data more effectively, it also distorts the consumption figures,
potentially impacting the accuracy of market analysis and decision-making. Conversely, weaker
privacy (higher epsilon) provides data closer to the actual values but compromises privacy to
a greater degree. The varying impact of noise across different consumers also raises questions
about fairness and the potential for skewed market perceptions. This highlights the critical need
to identify an optimal privacy budget that minimizes the risk of generating misleading insights
while ensuring sufficient protection for sensitive business information.

Figure 1. Top consumers by suppliers in Brazilian southeast submarket. Actual
histogram is compared with anonymised histograms for three different ϵ values.

In a second example, Figure 2 shows a week-long time series of consumption averages:
Actual averages (blue line) and actual averages minus one consumer unit (yellow dotted line).
The gap between these two lines is the energy consumption of a missing consumer unit. Once
consumption patterns are revealed, a customer behavior could be tracked even when she
changes energy supplier. Differential privacy can be used to anonymise single consumers in
general statistics, making then indistinguishable from each other. As an example, Figure 2
also shows randomized versions of actual averages (green line) and actual averages minus
one consumer (red dotted line). The presence or absence of one consumer unit is easily
distinguishable from actual values (green and red lines), but should be indistinguishable in
differentially private averages. The challenge facing differential privacy in energy metering
is to balance secrecy and utility by finding the right amount of random noise to be added to
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a time series that preserves business secrecy, while allowing useful analytics.

Figure 2. Time series of average energy consumption by hour.

5. Differentially Private Anomaly Detection on Metering Datasets

Many practical applications within open energy markets need sophisticated analytical
capabilities. A critical example is anomaly detection, aimed at identifying unusual consumption
patterns or outliers. Such anomalies can point to various important events, including equipment
malfunctions, potential energy theft, significant deviations from contractual energy usage,
data integrity problems, or novel market behaviors of interest to both market participants and
system operators. Addressing the challenge of performing these advanced analyses without
compromising the business-sensitive nature of the data, as highlighted in Section 4, is paramount.

This section investigates the application of Differentially Private KMeans (DP-KMeans)
for anomaly detection in energy metering data. The anomaly detection methodology employs
standard KMeans (from Scikit-learn) and Differentially Private KMeans (DP-KMeans, from
‘diffprivlib‘ [Holohan et al. 2019]). Both algorithms were configured with k=3 clusters and
a random state=42 for reproducibility; standard KMeans also used n init=10. DP-
KMeans utilized data-derived bounds and varying ϵ values to analyze the privacy-utility trade-off.

To illustrate the approach and evaluate its performance, our analysis utilizes a dataset
comprising 31 days of consumption data from August 2024, focusing on a representative
segment of commercial consumers – specifically, selected shopping malls within the Southeast
submarket of the Brazilian open energy market (described in Section 3). While these data are
publicly available, the consumption patterns of commercial entities, including shopping malls,
can still reveal sensitive business insights such as operational schedules, peak activity periods,
and even strategic changes in energy management, which could be exploited by competitors.
We selected shopping malls as our running example and use case because most people have
a good understanding of how shopping malls work.

Figure 3 details the evolution of the raw counts of the confusion matrix components
— True Positives (VP), False Positives (FP), True Negatives (VN), and False Negatives (FN)
— as a function of ϵ. Figure 3 reveals that for very low ϵ values (e.g., ϵ=1), the number of
False Positives (FP) (orange line) is significantly high, starting at approximately 58. This large
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count of FPs decreases sharply as ϵ increases, approaching near-zero values for ϵ>45. This
behavior is the primary explanation for the low Precision observed at low ϵ values in Figure 4.

Figure 3. Variation of confusion matrix components (True Positives, False Positives,
True Negatives, and False Negatives) for anomaly detection using DP-KMeans
across different Epsilon (ϵ) values. Provides insight into the types of
classification errors under varying privacy budgets.

The True Positives (VP) (blue line) begin at a count of approximately 25 for ϵ=1 and
increase steadily with ϵ, reaching a plateau at approximately 60 (presumably the total number of
actual anomalies in the dataset) around ϵ≈45. Concurrently, the False Negatives (FN) (purple
line) start at approximately 35 (Total Anomalies - Initial VP) for ϵ=1 and consistently decrease,
approaching zero as ϵ nears 45. The combined effect of increasing VPs and decreasing FNs
explains the rapid rise and subsequent high stabilization of the Recall metric observed in Figure 4.

The True Negatives (VN) (green line) start at a moderate count (around 40-45) and
exhibit an upward trend as ϵ increases, corresponding to the reduction in False Positives,
eventually stabilizing at a high count (around 95-100) for ϵ>45. This component-wise analysis
effectively illustrates how the balance of correct and incorrect classifications shifts under varying
privacy budgets. This detailed component analysis not only explains the behavior of the
aggregated metrics but also directly highlights the practical implications of different privacy
budgets on the accuracy of anomaly detection, demonstrating how a balanced ϵ value can
mitigate classification errors. The pronounced decrease in False Positives alongside the increase
in True Positives with increasing ϵ are key drivers for the significant improvement in Precision
and, consequently, the overall F1-Score for the DP-KMeans anomaly detection methodology.

Figure 4 illustrates the impact of the privacy parameter ϵ on key anomaly detection
metrics: Precision, Recall, and F1-Score. The x-axis represents the values of ϵ ranging from
0 to 100, where increasing ϵ indicates decreasing privacy protection (less noise). The y-axis
shows the scores for each metric, scaled from 0 to 1.

For very low values of ϵ (e.g., 0<ϵ≤10), corresponding to strong privacy guarantees,
Precision (blue line) initiates at a notably low value of approximately 0.28 when ϵ = 1,
suggesting that a large fraction of instances identified as anomalies are, in fact, false positives.

Anais Estendidos do SBSeg 2025: Indústria e Inovação

6



Figure 4. Impact of the privacy parameter Epsilon (ϵ) on anomaly detection perfor-
mance metrics (Precision, Recall, and F1-Score) using DP-KMeans. Illustrates
the trade-off between the level of privacy and the utility of the detection results.

In contrast, Recall (orange line) starts at a comparatively higher value of approximately 0.42
at ϵ=1 and demonstrates a more rapid initial increase, indicating that a considerable portion
of true anomalies are still captured despite the high noise levels.

As ϵ increases, particularly within the range of 10<ϵ<45, both Precision and Recall
exhibit significant upward trends. Recall reaches near-optimal values, plateauing very close to
1.0, around ϵ≈30. Precision continues its steep ascent throughout this range as the influence of
noise diminishes, leading to fewer false alarms. Consequently, the F1-Score (green line), which
represents the harmonic mean of Precision and Recall, rises sharply, reflecting a substantial
improvement in the overall effectiveness of the anomaly detection mechanism.

For ϵ values greater than approximately 45, all three metrics tend to stabilize at high
performance levels. Recall remains consistently near 1.0, while Precision and F1-Score also
achieve and maintain high values, around 0.97 and 0.98 respectively. This stabilization suggests
that beyond this threshold, further increasing ϵ (i.e., further relaxing privacy) yields only
marginal gains, if any, for these specific performance metrics under the tested experimental
conditions. The graph vividly demonstrates the inherent trade-off: stringent privacy settings
(low ϵ) severely compromise Precision, but as ϵ is relaxed, a robust and effective balance for
anomaly detection can be attained.

6. Conclusion

As the energy sector increasingly incorporates Information and Communication Technologies
into the metering infrastructures of Electrical Smart Grids, innovation in open energy markets
becomes a reality, alongside heightened risks from cyber-threats and privacy violations. Differ-
ential privacy offers a robust framework to protect an individual’s privacy in public datasets. In
this work, we demonstrated an innovative application of differentially private computations to
safeguard the secrecy of business-sensitive data within metering datasets from the Brazilian open
energy market. We argued that publishing only anonymized outputs, rather than disclosing whole
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metering datasets, is crucial for preserving business secrecy for retailers and traders, protecting
consumption patterns, market shares, and client portfolios from malicious competitors.

In this paper we investigate an actual issue in energy smart grids by evaluating the use
of Differentially Private KMeans (DP-KMeans) for anomaly detection in energy consumption
metering. The findings reveal a clear and quantifiable trade-off between the strength of privacy
guarantees, as controlled by the parameter ϵ, and the utility of the anomaly detection, measured
by Precision, Recall, F1-Score, and an analysis of the confusion matrix components. Specifically,
our results (presented in Figure 4 and Figure 3) show that while very strong privacy settings
(low ϵ values, e.g., ϵ<10) significantly impact detection accuracy, primarily by substantially
increasing the number of false positives which drastically reduces Precision, performance
improves markedly as ϵ is relaxed. For instance, Recall achieves near-optimal levels relatively
early (around ϵ≈30), while Precision and F1-Score reach high utility (e.g., >0.95) for ϵ>45.

Our results demonstrate that operational ranges for ϵ can be identified where a
practical and effective balance between anomaly detection capabilities and the stringent secrecy
requirements of the open energy market is achievable. This finding is crucial for guiding the
practical implementation of privacy-preserving analytics in a real-world context, showcasing
the potential for market participants to gain valuable insights while mitigating business risks.

While a semantic interpretation of the identified anomalies was beyond the scope of
this current methodological evaluation, requiring energy sector domain expertise, not utilized
herein, future work will prioritize this qualitative analysis through direct collaboration with
specialists from the energy sector. Such insights, combined with further explorations into
adaptive ϵ selection and the impact of diverse anomaly types on DP-KMeans performance,
are crucial for advancing responsible, data-driven decision-making in the energy sector without
compromising sensitive business information, thereby fostering greater trust and security.

Finally, at this exploratory work we aimed at enhancing data protection awareness within
the energy sector. Given the current open access to consumption data at the open energy market,
it’s possible for energy traders to scrutinize consumption patterns of their competitors’ clients,
possibly inferring portfolios and market shares, which underscores the need for robust data
protection. As the sector matures in its approach to security and privacy, the authors anticipate
a growing commitment among stakeholders to implement and advance the proposed solution.
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