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Resumo. Neste trabalho, avaliamos o uso de LLMs e engenharias de prompt
para automatizar a classificacdo de incidentes de seguranca em SOCs, bus-
cando acelerar a resposta e aprimorar a qualidade das acoes (e.g., selecdo de
playbooks), o que pode reduzir o tempo de resposta das empresas. Testamos trés
estratégias de prompting (PHP, SHP, HTP) em quatro LLMs (Gemini 2, GPT-4,
LLaMA 4 e Grok 3) usando dados reais de CSIRTs e SOCs de empresas brasi-
leiras. Nossos resultados indicam que o GEMINI alcancou 92,27% de acurdcia
em relacdo as classificacoes humanas ao usar PHP, enquanto as outras com-
binagoes de técnicas e LLMs demonstraram alguma variabilidade, o que pode
afetar sua confiabilidade em cendrios sensiveis.

1. Introducao

Segundo dados do CERT.br, em 2024 o Brasil registrou 516.556 incidentes de
seguranca reportados por Security Operations Centers (SOCs) e Computer Security Inci-
dent Response Teams (CSIRTs) de diversas organizacdes, incluindo o setor industrial, o
que representa uma média de 9.933 ocorréncias por semana. No primeiro quadrimestre de
2025, ja foram contabilizados 169.820 incidentes, evidenciando uma tendéncia de cres-
cimento [CERT.br 2025]. Esse cendrio coloca os SOCs das grandes corporacoes frente a
um desafio operacional constante, isto €, o alto volume didrio de alertas exige capacidades
avancadas de monitoramento e processos eficientes de triagem e resposta.

Para mitigar o problema, consideramos que um primeiro passo € usar solugdes
automatizadas para filtrar e analisar dados de eventos adversos. Isso se mostra uma es-
tratégia com potencial para acelerar a categorizacdo de incidentes e aumentar a eficiéncia
operacional dos processos de resposta nos SOCs. Entre essas solucdes, nés podemos
destacar o uso de Large Language Models (LLMs), que demonstram capacidade de adap-
tacdo a tarefas especializadas por meio de engenharia de prompt (Prompt Engineering)
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[Zhou et al. 2022], o que permite sua aplicacdo em dominios especializados, como no
contexto de seguranca cibernética [Ogundairo and Broklyn 2024, Nasution et al. 2025].

A escassez de dados rotulados, a ambiguidade semantica dos relatos de inciden-
tes, a complexidade na definicdo de categorias e a variabilidade nos formatos e padrdes
de ataques representam desafios significativos para a automacgdo da classificacdo de in-
cidentes de segurancga [Ibrishimova 2019]. A eficacia dos LLMs em classificacdes tdo
complexas depende criticamente da qualidade do método de instru¢do (engenharia de
prompt) utilizado. Neste trabalho, damos um passo inicial na resolu¢io desse problema
por meio de uma avaliacdo sistemdtica de trés engenharias de prompt (PHP, HTP, SHP)
aplicadas a quatro arquiteturas de LLMs (Gemini 2, GPT-4, LLaMA 4 e Grok 3), visando
a classificac@o automatizada de incidentes de seguranca.

A engenharia de prompts € uma disciplina emergente focada na formulagdo es-
tratégica de instrugcdes para LLMs, visando guiar a geragdo de respostas mais relevantes,
contextuais e consistentes. Essa técnica é especialmente util em tarefas dependentes do
contexto, como a categorizacdo de incidentes de seguranca, nas quais a ambiguidade dos
relatos e a possibilidade de multiplas interpretacdes tornam o processo propenso a erros.
As diversas técnicas de engenharia de prompting promovem um refinamento iterativo das
respostas do LLM, tornando-o mais sensivel ao contexto e melhor alinhado as necessida-
des operacionais de ambientes como SOCs e CSIRTs.

Este trabalho busca investigar a integracao entre diferentes engenharias de prompt
com taxonomias estruturadas para classificacdo de incidentes de seguranca. Desta forma,
€ possivel avaliar as diferentes estratégias para categoriza¢do automatizada. O restante
deste artigo estd organizado em 4 sec¢Oes: Técnicas de Engenharia de Prompt Secao 2
Pipeline de Classificacdo Automatizada (Se¢ao 3), Resultados e Discussao (Secdo 4) e
Consideracdes Finais e Trabalhos Futuros (Secdo 5).

2. Técnicas de Engenharia de Prompt

Com o avan¢o dos modelos de linguagem de grande porte (LLMs), novas técnicas
de engenharia de prompt t€m sido desenvolvidas com o objetivo de adaptar esses modelos
a tarefas especificas. Este trabalho concentra-se na aplicacdo de trés estratégias distin-
tas: Progressive-Hint Prompting (PHP), Hypothesis Testing Prompting (HTP) e Self-Hint
Prompting (SHP). As trés técnicas foram selecionadas por apresentarem abordagens me-
todoldégicas complementares e independentes, favorecendo a interpretacdo semantica em
contextos marcados por ambiguidade textual e relatos ndo estruturados, como aqueles
fornecidos por CSIRTs e SOCs. A categorizacdo baseada em taxonomias pré-definidas
assegura o alinhamento com padrdes internacionalmente reconhecidos, conferindo con-
sisténcia e robustez as respostas esperadas.

Cada técnica selecionada apresenta caracteristicas especificas: o PHP realiza um
refinamento iterativo por meio de dicas progressivas (hints) geradas a partir das proprias
respostas intermediarias do modelo, favorecendo a convergéncia semantica ao longo das
interacoes. O HTP, por sua vez, estrutura o processo de classificacio como uma testagem
sistematica de hipéteses verdadeiras e falsas para cada categoria da taxonomia, simulando
um raciocinio dedutivo formal. J4 o SHP induz ciclos de autorreflexdo no modelo, nos
quais ele analisa, valida e corrige suas proprias inferéncias, buscando coeréncia interna e
minimizando erros.
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Como complemento ao artigo principal, foi elaborado um documento técnico au-
xiliar contendo detalhes dessas trés abordagens, incluindo pseudocddigos, explicagdes
conceituais, exemplos de prompts e orientagdes para a reproducao dos experimentos. Esse
material estd disponivel no repositério oficial do projeto, no GitHub!.

O repositdrio também disponibiliza um conjunto de cinco incidentes anonimiza-
dos como exemplo, além de instru¢des completas para reproducio experimental. Cabe
ressaltar que os 194 incidentes utilizados no estudo, embora tenham sido anonimizados
para fins de andlise controlada e interacdo com LLMs, ainda ndo estdo aptos para publi-
cacdo aberta. A liberacdo irrestrita desses registros, em sua forma atual, pode representar
riscos de identificacdo ou exposi¢do indireta de padrdes operacionais sensiveis, especi-
almente se explorados por adversdrios com técnicas de inferéncia avancadas. Por essa
razao, a disponibilizacdo completa do conjunto de dados dependerd de etapas adicionais
de revisdo e validacdo ética quanto a privacidade e a seguranca da informacao. Os leitores
interessados nos 194 incidentes podem entrar em contato com os autores.

3. Pipeline de Classificacao Automatizada

Conforme ilustrado na Figura 1, a solugdo foi estruturada em um pipeline de cinco
etapas (Dados de Entrada, Pré-processamento, Processamento, Andlise dos resultados e
Saida de dados) com o objetivo de avaliar de forma automadtica e sistemadtica a acuricia
e o desempenho das estratégias de prompting PHP, SHP e HTP aplicadas a LLMs como
Gemini 2, Grok 3, LLaMA 4 e GPT-4 para a categorizacao automatizada de incidentes de
seguranca.
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Figura 1. Fluxograma das etapas do pipeline da solugao proposta

Dados de Entrada

Os relatos de incidentes utilizados neste estudo foram enviados por CSIRTs e
SOCs por meio de e-mails institucionais, como parte das rotinas de compartilhamento
e coordenacdo. Cada e-mail contém a descricdo de um evento adverso, redigido por
analistas humanos com base em registros coletados em suas respectivas infraestruturas.
Embora o conteudo seja claramente derivado de ferramentas de seguranga (como EDRs,
firewalls ou SIEMs), os e-mails recebidos ndo trazem metadados que identifiquem expli-
citamente a origem técnica de cada log. Nesse sentido, os incidentes analisados refletem a
interpretacdo dos analistas de seguranca, sendo o foco deste trabalho a categorizacio das
informacdes relatadas, e ndo dos artefatos técnicos originais.

"https://github.com/AI-Horizon-Labs/SecLINC
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Ao todo, 327 reports foram inicialmente recebidos por e-mail por um CSIRT de
integracdo. ApOs triagem manual, 194 relatos foram identificados como incidentes de
seguranca e selecionados para andlise. Esses registros passaram por um processo de ano-
nimizagdo utilizando a ferramenta AnonLFI?, garantindo a protec¢do de informagdes sen-
siveis.

Posteriormente, os incidentes foram categorizados com base na taxonomia e re-
comendagdes da NIST SP 800-61r3 [Nelson et al. 2025]. Para a geracdo dos prompts,
além do relato do incidente, foram utilizadas palavras-chave extraidas da tabela da NIST.
Para cada categoria, buscou-se identificar, em diferentes LLMs, termos relevantes para
auxiliar na andlise e categorizacdo. Além disso, a categorizagdo foi realizada previamente
por dois especialistas em ciberseguranga, que analisaram os incidentes de forma indepen-
dente, estabelecendo uma linha de base (ground truth) para comparagao com os resultados
automatizados.

Pré-processamento: compreende duas ac¢des, a primeira os dados selecionados
sdao anonimizados por uma ferramenta especifica, denominada AnonLFI, para garantir a
seguranca da informacgao sobre as informagdes sensiveis. Em seguida, ocorre a formula-
cdo do prompt conforme a técnica selecionada (PHP, SHP ou HTP), estruturando os dados
como entrada inicial a ser processada pela LLM. Para garantir uma avaliagdo compara-
tiva rigorosa, a estrutura bdsica dos prompts contendo os incidentes foi sistematicamente
aplicada a todas as LLLMs avaliadas.

Processamento: implementa as diferentes técnicas de engenharia de prompt
(PHP, SHP ou HTP) em um pipeline unificado. Este pipeline é responsavel por gerar
as entradas na LLM e controlar o fluxo de processamento para andlise e categorizagdo
dos incidentes. O PHP [Zheng et al. 2023] é implementado por dicas (hints) incrementais
usando a resposta anterior obtida do prompt para a obtencao da resposta final. Enquanto o
SHP [Chen et al. 2024] gera planos intermediarios que induzem o modelo a refletir sobre
como resolver o problema de classificacdo, o HTP [Li et al. 2024] realiza uma iteragao
para cada categoria da taxonomia NIST, combinada com suas palavras-chave, formu-
lando hipéteses (verdadeira e falsa) e, ao final, comparando-as em um prompt final que
determina a categoria mais adequada. Cada técnica de engenharia de prompt é entdo apli-
cada as quatro LLLMs (e versdes) avaliadas: Gemini 2 (gemini-2.0-flash), GPT-4 (GPT-40
Mini), LLaMA 4 (llama4-scout) e Grok 3 (grok-3-mini-beta). Os modelos foram acessa-
dos por meio de suas respectivas Application Programming Interfaces (APIs), utilizando
os parametros padrao recomendados pelos provedores. Para aplicagdes relacionadas a
LLMs ou SLMs foram utilizados as dependéncias em python relacionadas ao Hugging-
face e OpenAl.

Analise dos resultados: nesta etapa, os resultados das classificagdes advindas
das LLMs foram comparados com as andlises realizadas por especialistas humanos. E
importante ressaltarmos que o ground truth utilizado na avaliacio foi estabelecido por
dois especialistas humanos, profissionais com experi€ncia pratica em classificacdo de in-
cidentes de seguranca, garantindo um referencial confidvel para comparacao.

Saida de dados: cada incidente recebe uma classificacdo final, determinando o
melhor resultado dentro das categorias estabelecidas pela tabela NIST. Adicionalmente, é

’https://github.com/gt-rnp-1fi/anon
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realizado também um ranqueamento das LLMs e das engenharias de prompt com base no
desempenho observado. Para isso, utilizamos uma abordagem bindria, permitindo medir
o grau de correspondéncia entre as categorias atribuidas pelos modelos e as classificacdes
humanas. Ao final da categorizacdo, o ciclo retorna a origem com o incidente rotulado,
onde a organizagdo, CSIRT ou SOC tem condig¢des de iniciar os protocolos de mitigagao
que estejam definidos.

4. Resultados e Discussao

Nesta se¢do, apresentamos os resultados da avaliagdo experimental das trés es-
tratégias de prompting aplicadas a Modelos de Linguagem (LLMs), com o objetivo de
identificar padroes de desempenho e analisar como as estratégias de prompt e as taxono-
mias estruturadas afetam a qualidade da classificacdo.

A Figura 2 ilustra o mapa de calor com os resultados da classificacdo de 194 in-
cidentes de segurancga, destacando os acertos absolutos e as taxas de acurdcia. Nossos
resultados indicam que as estratégias de prompting estruturadas (PHP e SHP), especial-
mente combinadas com os modelos Gemini 2 e GPT-4, alcangaram as maiores taxas de
acurdcia, o que demonstra sua eficdcia na classificacdo de incidentes.
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Figura 2. Resultados percentuais da classificacao automatizada versus humana

A técnica HTP apresentou acurdcia criticamente baixa (8,76%—-29,38%) e elevada
variabilidade entre modelos, evidenciando sua incompatibilidade com tarefas de classi-
ficacdo de incidentes de seguranca. Originalmente desenvolvida para dominios 16gicos
estruturados, essa abordagem exige que o modelo teste explicitamente hipdteses bindrias
(verdadeira e falsa) para cada categoria. No entanto, os relatos de incidentes de CSIRTSs
sdo predominantemente narrativos, sem premissas logicas claras, o que gera sobrecarga
cognitiva: os modelos desperdicam tokens com inferéncias irrelevantes e acabam trun-
cando partes criticas do contexto. A variacdo de acuricia entre modelos — 29,38% no
GPT-4 vs. 8,76% no LLaMA — reflete disparidades na capacidade de retencdo de con-
texto e raciocinio l6gico, com o GPT-4 relativamente menos impactado por sua arquitetura
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mais avangada.

O SHP manteve desempenho estdvel nos modelos LLaMA 4 e Grok 3 (82% e
86%), em func¢do de sua abordagem iterativa de auto-reflexdo. Ao substituir testes hipo-
téticos formais por ciclos de auto-critica, o0 SHP reduz a complexidade 16gica da tarefa.
Esses modelos, embora limitados em raciocinio abstrato, conseguem identificar contra-
di¢des textuais basicas e corrigir erros grosseiros em poucas iteracoes. Trata-se de um
processo menos dependente da capacidade de estabelecer conexdes complexas ou prever
consequéncias, sendo mais ancorado no contexto imediato da descri¢do do incidente.

O PHP alcancou acurécia excepcional no Gemini 2 (92,27%), mas oscilou signifi-
cativamente em outros modelos como Grok 3 e GPT-4 (72,16%—81,44%). Essa variacao
estd relacionada a prépria natureza da engenharia de prompt, que utiliza hints sequenciais
para refinar progressivamente a resposta, exigindo processamento eficiente de instrugdes
encadeadas. Modelos mais consolidados no mercado tendem a ter uma maior acuricia
em casos incrementais que envolvam incidentes de segurancga, pois t€m maior inteligén-
cia para tratar de embeddings textuais e treinamento.

O Gemini 2, otimizado para tarefas com instru¢gdes aninhadas, lida bem com essa
estrutura. Em contraste, modelos como Grok 3 e LLaMA 4, com menor capacidade
de contexto e atencdo seletiva, tendem a confundir instrucdes adicionais com evidéncias
previamente fornecidas ou a negligenciar comandos essenciais. J4 o GPT-4, embora mais
robusto, enfrenta perda de eficiéncia ao equilibrar multiplas dicas com o contexto original,
o que explica sua acurdcia inferior ao Gemini 2.

Para implementagdes praticas, recomenda-se o SHP como base padrdo para uso
geral, enquanto PHP para sistemas com acesso ao Gemini, e evitar o uso do HTP em
contextos narrativos ou ndo estruturados. A escolha 6tima depende do equilibrio entre
acurdcia maxima (PHP mais Gemini 2) e estabilidade entre modelos (SHP).

4.1. Tempo de Processamento

Para cada combina¢do de modelo e técnica, realizamos 10 testes, totalizando 120
execucoes, todas em um processador Intel Core 17 de sétima geragdo. Como baseline,
utilizamos o tempo de 240 minutos.

Essa estimativa de tempo para a classificagao dos incidentes por analistas humanos
baseia-se na experiéncia declarada pelos proprios profissionais envolvidos. Dois analistas
especializados realizaram a categoriza¢do dos mesmos 194 incidentes de forma indepen-
dente, ou seja, sem troca de informacdes ou discussdo prévia. Embora a atividade ndo
tenha sido cronometrada formalmente, ambos relataram ter despendido entre 3 e 4 horas
para concluir o processo, que consistiu na leitura individual dos relatos e na classificagao
segundo a tabela de categorias da NIST, com base em julgamento técnico e conhecimento
prévio.

Ambos os analistas possuem formagdo na area de Tecnologia da Informacao, com
especializagdes voltadas a estruturacdo e operagdo de CSIRTs e SOCs. Sao profissio-
nais atuantes na drea de seguranga da informacgdo, com experiéncia pritica em andlise,
configuracio e implementagdo de solugdes em ambientes de monitoramento e resposta a
incidentes. Apesar de atuarem no mesmo setor, apresentam niveis distintos de seniori-
dade: um possui cerca de 10 anos de experiéncia direta na fun¢io, enquanto o outro atua
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ha aproximadamente 5 anos. A atividade de categorizagado foi conduzida de forma seme-
lhante aquela realizada em seus ambientes profissionais, nos quais a andlise de incidentes
¢ conduzida individualmente, com base na expertise do analista.

Utilizamos ainda a mediana dos tempos como métrica central de comparacao. Os
resultados mostram que a técnica HTP apresentou o tempo médio mais elevado, especial-
mente com o modelo Grok 3 (cerca de 190 minutos), devido a sua abordagem hierarquica
que exige multiplas requisi¢cdes a API. A técnica PHP, por sua vez, apresentou o menor
tempo médio, com destaque para sua aplicacdo com o Gemini 2, que alcancou um tempo
inferior a 25 minutos devido ao seu método eficiente e iterativo.

250
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—-— Avaliacdo humana
—— HTP
PHP
—%— SHP
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Tempo (minutos)

50 4

GPT GROK Gemini LLAMA
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Figura 3. Mediana e desvio médio padrao de tempo para classificagdo automatizada

As variagOes entre os modelos também sdo significativas. Grok 3, embora robusto,
teve o pior desempenho temporal com HTP, enquanto Gemini 2 demonstrou o melhor de-
sempenho geral com PHP. O SHP, por sua vez, apresentou resultados intermedidrios em
termos de tempo. Podemos concluir que técnicas como PHP e SHP sdo mais indicadas
para cendrios em que o tempo € um fator critico, enquanto a técnica HTP deve ser descon-
siderada em tarefas de classificacdo de SOCs, devido a sua baixa precisdo e ao elevado
tempo de execucdo. A andlise refor¢a a importancia de alinhar corretamente a escolha da
LLM e da técnica de prompting ao objetivo do sistema.

4.2. Tokens Consumidos

Os LLMs apresentam variacOes significativas em suas janelas de contexto, im-
pactando diretamente a capacidade de processar informagdes extensas e a eficiéncia na
formulacdo de prompts, a Tabela 1 especifica a janela de execucdo com a definicdo de
tokens para cada execu¢do da LLM.

Tabela 1. Limites de tokens dos modelos de linguagem

Referéncia Modelo Tokens de Entrada  Tokens de Saida
[XAI 2024] Grok 3 128.000 16.384
[Meta 2024] LLaMA 4 10.000.000 8.192
[Google 2024] Gemini 2 1.048.576 8.192
[OpenAl 2024] GPT-40  128.000 (combinados) 100.000

A Tabela 2 ilustra como a engenharia de prompt e a escolha da LLM influenciam
diretamente o volume médio de tokens por interacdo, afetando custo e eficiencia. LLMs
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utilizando a PHP apresentaram volumes médios de fokens por interacao mais baixos (entre
1.718 e 1.856), enquanto engenharias de prompt como SHP e HTP resultaram em volumes
mais altos, chegando a 2.802 tokens por interacdo no caso do Grok 3 com SHP. Essa
variacdo impacta diretamente no custo, visto que quanto maior for o volume de tokens,
implica em maior processamento e, consequentemente, maior despesa. Por exemplo, o
Gemini com SHP resultou em um custo de US$ 2,17, comparado a US$ 1,08 com PHP.
Observamos que a diferenca de acurécia é considerdvel. O PHP, além do custo menor,
resultou em uma acuricia de 92%, quase 10% superior ao SHP.

Tabela 2. Comparativo de desempenho entre LLM, técnicas, volume de tokens, custo e acuracia

LLM Eng. Prompt  Volume Tokens  Interacdes  Prompts  Custo (USD)  Acuracia
GEMINI PHP 721.900 389 1.856 $1,08 92%
GROK 3 SHP 2.903.037 1.036 2.802 $2,90 86%
GPT-4 SHP 1.425.210 620 2.299 $2,85 84%
GEMINI SHP 1.444.549 720 2.006 $2,17 84%
LLAMA 4  SHP 1.593.586 734 2.171 $0,80 82%
GPT-4 PHP 666.661 388 1.718 $1,33 81%
LLAMA 4  PHP 716.043 389 1.841 $0,36 75%
GROK 3 PHP 671.521 388 1.731 $0,67 72%
GPT-4 HTP 1.157.607 621 1.864 $2,32 29%
GROK 3 HTP 1.456.244 673 2.164 $1,46 19%
GEMINI HTP 3.891.740 1.974 1.971 $5,84 9%
LLAMA 4  HTP 1.147.509 553 2.075 $0,57 9%

5. Consideracoes finais e Trabalhos Futuros

Com base em 194 relatos reais de incidentes e na taxonomia NIST SP 800-61r3,
observamos que LLMs e estratégias de prompting podem acelerar a categorizacdo, au-
mentar a precisao e reduzir ambiguidades. Das abordagens testadas, o PHP mostrou-se
eficaz com modelos bem ajustados, enquanto o SHP demonstrou maior versatilidade. O
HTP, por sua vez, apresentou limitagdes com dados narrativos ndo estruturados, levando
a um desempenhos menos favordveis. Isso indica que a selecdo da técnica de prompting
deve considerar a acurdcia, o tipo de dado, o modelo e os custos operacionais. Nosso
estudo sugere que a engenharia de prompt pode alcancar altos niveis de automacao e acu-
rdcia na categorizacdo de incidentes, o que pode reduzir o esforco manual e aumentar
a resiliéncia cibernética, mesmo considerando desafios como a explicabilidade das deci-
soes.

Como diregdes futuras, destacam-se: o treinamento de um modelo de linguagem
compacto (SLM) com dados reais de incidentes; a integracao de classificadores baseados
em LLMs a frameworks SOAR; e a andlise quantitativa do impacto dessa integragdo na
reduc¢do do tempo médio de resposta e recuperacao (MTTR) em ambientes industriais.
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A. Apéndice: Tabela de Categorias de Incidentes adotada segundo
orientacoes do NIST SP 800-61r3

Tabela 3. Categorizacao de Incidentes de Seguranca (com prioridade)

Codigo  Categoria Descricao Prioridade
CAT1 Comprometimento de Conta Acesso nao autorizado a contas de usudrios ou administradores. 5
CAT2 Malware Infecc@o por cédigo malicioso que compromete dispositivos ou dados. 5
CAT3 Ataque de Negagio de Servico (DoS/DDoS)  Tornar sistemas ou redes indisponiveis. 4
CAT4 Exfiltracdo ou Vazamento de Dados Acesso, copia ou divulgagio ndo autorizada de dados sensiveis. 5
CATS Exploragdo de Vulnerabilidade Uso de falhas conhecidas ou desconhecidas para comprometer ativos. 5
CAT6 Abuso Interno Acdes intencionais ou negligentes de usudrios internos. 5
CAT7 Engenharia Social Engano de pessoas para obter acesso ou informagdes. 3
CATS Incidente Fisico ou de Infraestrutura Violagao fisica que impacta ativos computacionais. 4
CAT9 Alteracdo Ndo Autorizada Modificagdo ndo autorizada em sistemas, dados ou configuracdes. 3
CAT10 Uso Indevido de Recursos Uso nao autorizado de sistemas para outros fins. 2
CAT11 Problema de Fornecedor/Terceiro Incidente originado por falha de seguranca de terceiros. 4
CAT12  Tentativa de Intrusdo Tentativas hostis de invasdo ainda ndo confirmadas como bem-sucedidas. 3

Fonte: NIST (National Institute of Standards and Technology)



