
LLMs e Engenharia de Prompt para Classificação
Automatizada de Incidentes em SOCs

Alex Sandre Pinheiro Severo1, Douglas Paim Lautert1, Gefté Alcantara de Almeida1

Diego Kreutz1, Godinho Rodrigo2, Lourenco A. Pereira Jr3, Leandro M. Bertholdo4

1 Universidade Federal do Pampa (UNIPAMPA)

2VALE

3Instituto Tecnológico de Aeronáutica (ITA)

4 Universidade Federal do Rio Grande do Sul (UFRGS)

{alexsevero,douglaslautert,geftealmeida}.aluno@unipampa.edu.br

diegokreutz@unipampa.edu.br

godinho.rodrigo@vale.com

ljr@ita.br

leandro.bertholdo@ufrgs.br

Resumo. Neste trabalho, avaliamos o uso de LLMs e engenharias de prompt
para automatizar a classificação de incidentes de segurança em SOCs, bus-
cando acelerar a resposta e aprimorar a qualidade das ações (e.g., seleção de
playbooks), o que pode reduzir o tempo de resposta das empresas. Testamos três
estratégias de prompting (PHP, SHP, HTP) em quatro LLMs (Gemini 2, GPT-4,
LLaMA 4 e Grok 3) usando dados reais de CSIRTs e SOCs de empresas brasi-
leiras. Nossos resultados indicam que o GEMINI alcançou 92,27% de acurácia
em relação às classificações humanas ao usar PHP, enquanto as outras com-
binações de técnicas e LLMs demonstraram alguma variabilidade, o que pode
afetar sua confiabilidade em cenários sensíveis.

1. Introdução
Segundo dados do CERT.br, em 2024 o Brasil registrou 516.556 incidentes de

segurança reportados por Security Operations Centers (SOCs) e Computer Security Inci-
dent Response Teams (CSIRTs) de diversas organizações, incluindo o setor industrial, o
que representa uma média de 9.933 ocorrências por semana. No primeiro quadrimestre de
2025, já foram contabilizados 169.820 incidentes, evidenciando uma tendência de cres-
cimento [CERT.br 2025]. Esse cenário coloca os SOCs das grandes corporações frente a
um desafio operacional constante, isto é, o alto volume diário de alertas exige capacidades
avançadas de monitoramento e processos eficientes de triagem e resposta.

Para mitigar o problema, consideramos que um primeiro passo é usar soluções
automatizadas para filtrar e analisar dados de eventos adversos. Isso se mostra uma es-
tratégia com potencial para acelerar a categorização de incidentes e aumentar a eficiência
operacional dos processos de resposta nos SOCs. Entre essas soluções, nós podemos
destacar o uso de Large Language Models (LLMs), que demonstram capacidade de adap-
tação a tarefas especializadas por meio de engenharia de prompt (Prompt Engineering)

Anais Estendidos do SBSeg 2025: Indústria e Inovação

1

[Zhou et al. 2022], o que permite sua aplicação em domínios especializados, como no
contexto de segurança cibernética [Ogundairo and Broklyn 2024, Nasution et al. 2025].

A escassez de dados rotulados, a ambiguidade semântica dos relatos de inciden-
tes, a complexidade na definição de categorias e a variabilidade nos formatos e padrões
de ataques representam desafios significativos para a automação da classificação de in-
cidentes de segurança [Ibrishimova 2019]. A eficácia dos LLMs em classificações tão
complexas depende criticamente da qualidade do método de instrução (engenharia de
prompt) utilizado. Neste trabalho, damos um passo inicial na resolução desse problema
por meio de uma avaliação sistemática de três engenharias de prompt (PHP, HTP, SHP)
aplicadas a quatro arquiteturas de LLMs (Gemini 2, GPT-4, LLaMA 4 e Grok 3), visando
à classificação automatizada de incidentes de segurança.

A engenharia de prompts é uma disciplina emergente focada na formulação es-
tratégica de instruções para LLMs, visando guiar a geração de respostas mais relevantes,
contextuais e consistentes. Essa técnica é especialmente útil em tarefas dependentes do
contexto, como a categorização de incidentes de segurança, nas quais a ambiguidade dos
relatos e a possibilidade de múltiplas interpretações tornam o processo propenso a erros.
As diversas técnicas de engenharia de prompting promovem um refinamento iterativo das
respostas do LLM, tornando-o mais sensível ao contexto e melhor alinhado às necessida-
des operacionais de ambientes como SOCs e CSIRTs.

Este trabalho busca investigar a integração entre diferentes engenharias de prompt
com taxonomias estruturadas para classificação de incidentes de segurança. Desta forma,
é possível avaliar as diferentes estratégias para categorização automatizada. O restante
deste artigo está organizado em 4 seções: Técnicas de Engenharia de Prompt Seção 2
Pipeline de Classificação Automatizada (Seção 3), Resultados e Discussão (Seção 4) e
Considerações Finais e Trabalhos Futuros (Seção 5).

2. Técnicas de Engenharia de Prompt
Com o avanço dos modelos de linguagem de grande porte (LLMs), novas técnicas

de engenharia de prompt têm sido desenvolvidas com o objetivo de adaptar esses modelos
a tarefas específicas. Este trabalho concentra-se na aplicação de três estratégias distin-
tas: Progressive-Hint Prompting (PHP), Hypothesis Testing Prompting (HTP) e Self-Hint
Prompting (SHP). As três técnicas foram selecionadas por apresentarem abordagens me-
todológicas complementares e independentes, favorecendo a interpretação semântica em
contextos marcados por ambiguidade textual e relatos não estruturados, como aqueles
fornecidos por CSIRTs e SOCs. A categorização baseada em taxonomias pré-definidas
assegura o alinhamento com padrões internacionalmente reconhecidos, conferindo con-
sistência e robustez às respostas esperadas.

Cada técnica selecionada apresenta características específicas: o PHP realiza um
refinamento iterativo por meio de dicas progressivas (hints) geradas a partir das próprias
respostas intermediárias do modelo, favorecendo a convergência semântica ao longo das
interações. O HTP, por sua vez, estrutura o processo de classificação como uma testagem
sistemática de hipóteses verdadeiras e falsas para cada categoria da taxonomia, simulando
um raciocínio dedutivo formal. Já o SHP induz ciclos de autorreflexão no modelo, nos
quais ele analisa, valida e corrige suas próprias inferências, buscando coerência interna e
minimizando erros.

Anais Estendidos do SBSeg 2025: Indústria e Inovação

2

Como complemento ao artigo principal, foi elaborado um documento técnico au-
xiliar contendo detalhes dessas três abordagens, incluindo pseudocódigos, explicações
conceituais, exemplos de prompts e orientações para a reprodução dos experimentos. Esse
material está disponível no repositório oficial do projeto, no GitHub1.

O repositório também disponibiliza um conjunto de cinco incidentes anonimiza-
dos como exemplo, além de instruções completas para reprodução experimental. Cabe
ressaltar que os 194 incidentes utilizados no estudo, embora tenham sido anonimizados
para fins de análise controlada e interação com LLMs, ainda não estão aptos para publi-
cação aberta. A liberação irrestrita desses registros, em sua forma atual, pode representar
riscos de identificação ou exposição indireta de padrões operacionais sensíveis, especi-
almente se explorados por adversários com técnicas de inferência avançadas. Por essa
razão, a disponibilização completa do conjunto de dados dependerá de etapas adicionais
de revisão e validação ética quanto à privacidade e à segurança da informação. Os leitores
interessados nos 194 incidentes podem entrar em contato com os autores.

3. Pipeline de Classificação Automatizada

Conforme ilustrado na Figura 1, a solução foi estruturada em um pipeline de cinco
etapas (Dados de Entrada, Pré-processamento, Processamento, Análise dos resultados e
Saída de dados) com o objetivo de avaliar de forma automática e sistemática a acurácia
e o desempenho das estratégias de prompting PHP, SHP e HTP aplicadas a LLMs como
Gemini 2, Grok 3, LLaMA 4 e GPT-4 para a categorização automatizada de incidentes de
segurança.

Figura 1. Fluxograma das etapas do pipeline da solução proposta

Dados de Entrada

Os relatos de incidentes utilizados neste estudo foram enviados por CSIRTs e
SOCs por meio de e-mails institucionais, como parte das rotinas de compartilhamento
e coordenação. Cada e-mail contém a descrição de um evento adverso, redigido por
analistas humanos com base em registros coletados em suas respectivas infraestruturas.
Embora o conteúdo seja claramente derivado de ferramentas de segurança (como EDRs,
firewalls ou SIEMs), os e-mails recebidos não trazem metadados que identifiquem expli-
citamente a origem técnica de cada log. Nesse sentido, os incidentes analisados refletem a
interpretação dos analistas de segurança, sendo o foco deste trabalho a categorização das
informações relatadas, e não dos artefatos técnicos originais.

1https://github.com/AI-Horizon-Labs/SecLINC

Anais Estendidos do SBSeg 2025: Indústria e Inovação

3

https://github.com/AI-Horizon-Labs/SecLINC

Ao todo, 327 reports foram inicialmente recebidos por e-mail por um CSIRT de
integração. Após triagem manual, 194 relatos foram identificados como incidentes de
segurança e selecionados para análise. Esses registros passaram por um processo de ano-
nimização utilizando a ferramenta AnonLFI2, garantindo a proteção de informações sen-
síveis.

Posteriormente, os incidentes foram categorizados com base na taxonomia e re-
comendações da NIST SP 800-61r3 [Nelson et al. 2025]. Para a geração dos prompts,
além do relato do incidente, foram utilizadas palavras-chave extraídas da tabela da NIST.
Para cada categoria, buscou-se identificar, em diferentes LLMs, termos relevantes para
auxiliar na análise e categorização. Além disso, a categorização foi realizada previamente
por dois especialistas em cibersegurança, que analisaram os incidentes de forma indepen-
dente, estabelecendo uma linha de base (ground truth) para comparação com os resultados
automatizados.

Pré-processamento: compreende duas ações, a primeira os dados selecionados
são anonimizados por uma ferramenta específica, denominada AnonLFI, para garantir a
segurança da informação sobre as informações sensíveis. Em seguida, ocorre a formula-
ção do prompt conforme a técnica selecionada (PHP, SHP ou HTP), estruturando os dados
como entrada inicial a ser processada pela LLM. Para garantir uma avaliação compara-
tiva rigorosa, a estrutura básica dos prompts contendo os incidentes foi sistematicamente
aplicada a todas as LLMs avaliadas.

Processamento: implementa as diferentes técnicas de engenharia de prompt
(PHP, SHP ou HTP) em um pipeline unificado. Este pipeline é responsável por gerar
as entradas na LLM e controlar o fluxo de processamento para análise e categorização
dos incidentes. O PHP [Zheng et al. 2023] é implementado por dicas (hints) incrementais
usando a resposta anterior obtida do prompt para a obtenção da resposta final. Enquanto o
SHP [Chen et al. 2024] gera planos intermediários que induzem o modelo a refletir sobre
como resolver o problema de classificação, o HTP [Li et al. 2024] realiza uma iteração
para cada categoria da taxonomia NIST, combinada com suas palavras-chave, formu-
lando hipóteses (verdadeira e falsa) e, ao final, comparando-as em um prompt final que
determina a categoria mais adequada. Cada técnica de engenharia de prompt é então apli-
cada às quatro LLMs (e versões) avaliadas: Gemini 2 (gemini-2.0-flash), GPT-4 (GPT-4o
Mini), LLaMA 4 (llama4-scout) e Grok 3 (grok-3-mini-beta). Os modelos foram acessa-
dos por meio de suas respectivas Application Programming Interfaces (APIs), utilizando
os parâmetros padrão recomendados pelos provedores. Para aplicações relacionadas a
LLMs ou SLMs foram utilizados as dependências em python relacionadas ao Hugging-
face e OpenAI.

Análise dos resultados: nesta etapa, os resultados das classificações advindas
das LLMs foram comparados com as análises realizadas por especialistas humanos. É
importante ressaltarmos que o ground truth utilizado na avaliação foi estabelecido por
dois especialistas humanos, profissionais com experiência prática em classificação de in-
cidentes de segurança, garantindo um referencial confiável para comparação.

Saída de dados: cada incidente recebe uma classificação final, determinando o
melhor resultado dentro das categorias estabelecidas pela tabela NIST. Adicionalmente, é

2https://github.com/gt-rnp-lfi/anon

Anais Estendidos do SBSeg 2025: Indústria e Inovação

4

https://github.com/gt-rnp-lfi/anon

realizado também um ranqueamento das LLMs e das engenharias de prompt com base no
desempenho observado. Para isso, utilizamos uma abordagem binária, permitindo medir
o grau de correspondência entre as categorias atribuídas pelos modelos e as classificações
humanas. Ao final da categorização, o ciclo retorna à origem com o incidente rotulado,
onde a organização, CSIRT ou SOC tem condições de iniciar os protocolos de mitigação
que estejam definidos.

4. Resultados e Discussão
Nesta seção, apresentamos os resultados da avaliação experimental das três es-

tratégias de prompting aplicadas a Modelos de Linguagem (LLMs), com o objetivo de
identificar padrões de desempenho e analisar como as estratégias de prompt e as taxono-
mias estruturadas afetam a qualidade da classificação.

A Figura 2 ilustra o mapa de calor com os resultados da classificação de 194 in-
cidentes de segurança, destacando os acertos absolutos e as taxas de acurácia. Nossos
resultados indicam que as estratégias de prompting estruturadas (PHP e SHP), especial-
mente combinadas com os modelos Gemini 2 e GPT-4, alcançaram as maiores taxas de
acurácia, o que demonstra sua eficácia na classificação de incidentes.

Figura 2. Resultados percentuais da classificação automatizada versus humana

A técnica HTP apresentou acurácia criticamente baixa (8,76%–29,38%) e elevada
variabilidade entre modelos, evidenciando sua incompatibilidade com tarefas de classi-
ficação de incidentes de segurança. Originalmente desenvolvida para domínios lógicos
estruturados, essa abordagem exige que o modelo teste explicitamente hipóteses binárias
(verdadeira e falsa) para cada categoria. No entanto, os relatos de incidentes de CSIRTs
são predominantemente narrativos, sem premissas lógicas claras, o que gera sobrecarga
cognitiva: os modelos desperdiçam tokens com inferências irrelevantes e acabam trun-
cando partes críticas do contexto. A variação de acurácia entre modelos — 29,38% no
GPT-4 vs. 8,76% no LLaMA — reflete disparidades na capacidade de retenção de con-
texto e raciocínio lógico, com o GPT-4 relativamente menos impactado por sua arquitetura

Anais Estendidos do SBSeg 2025: Indústria e Inovação

5

mais avançada.

O SHP manteve desempenho estável nos modelos LLaMA 4 e Grok 3 (82% e
86%), em função de sua abordagem iterativa de auto-reflexão. Ao substituir testes hipo-
téticos formais por ciclos de auto-crítica, o SHP reduz a complexidade lógica da tarefa.
Esses modelos, embora limitados em raciocínio abstrato, conseguem identificar contra-
dições textuais básicas e corrigir erros grosseiros em poucas iterações. Trata-se de um
processo menos dependente da capacidade de estabelecer conexões complexas ou prever
consequências, sendo mais ancorado no contexto imediato da descrição do incidente.

O PHP alcançou acurácia excepcional no Gemini 2 (92,27%), mas oscilou signifi-
cativamente em outros modelos como Grok 3 e GPT-4 (72,16%–81,44%). Essa variação
está relacionada à própria natureza da engenharia de prompt, que utiliza hints sequenciais
para refinar progressivamente a resposta, exigindo processamento eficiente de instruções
encadeadas. Modelos mais consolidados no mercado tendem a ter uma maior acurácia
em casos incrementais que envolvam incidentes de segurança, pois têm maior inteligên-
cia para tratar de embeddings textuais e treinamento.

O Gemini 2, otimizado para tarefas com instruções aninhadas, lida bem com essa
estrutura. Em contraste, modelos como Grok 3 e LLaMA 4, com menor capacidade
de contexto e atenção seletiva, tendem a confundir instruções adicionais com evidências
previamente fornecidas ou a negligenciar comandos essenciais. Já o GPT-4, embora mais
robusto, enfrenta perda de eficiência ao equilibrar múltiplas dicas com o contexto original,
o que explica sua acurácia inferior ao Gemini 2.

Para implementações práticas, recomenda-se o SHP como base padrão para uso
geral, enquanto PHP para sistemas com acesso ao Gemini, e evitar o uso do HTP em
contextos narrativos ou não estruturados. A escolha ótima depende do equilíbrio entre
acurácia máxima (PHP mais Gemini 2) e estabilidade entre modelos (SHP).

4.1. Tempo de Processamento

Para cada combinação de modelo e técnica, realizamos 10 testes, totalizando 120
execuções, todas em um processador Intel Core i7 de sétima geração. Como baseline,
utilizamos o tempo de 240 minutos.

Essa estimativa de tempo para a classificação dos incidentes por analistas humanos
baseia-se na experiência declarada pelos próprios profissionais envolvidos. Dois analistas
especializados realizaram a categorização dos mesmos 194 incidentes de forma indepen-
dente, ou seja, sem troca de informações ou discussão prévia. Embora a atividade não
tenha sido cronometrada formalmente, ambos relataram ter despendido entre 3 e 4 horas
para concluir o processo, que consistiu na leitura individual dos relatos e na classificação
segundo a tabela de categorias da NIST, com base em julgamento técnico e conhecimento
prévio.

Ambos os analistas possuem formação na área de Tecnologia da Informação, com
especializações voltadas à estruturação e operação de CSIRTs e SOCs. São profissio-
nais atuantes na área de segurança da informação, com experiência prática em análise,
configuração e implementação de soluções em ambientes de monitoramento e resposta a
incidentes. Apesar de atuarem no mesmo setor, apresentam níveis distintos de seniori-
dade: um possui cerca de 10 anos de experiência direta na função, enquanto o outro atua

Anais Estendidos do SBSeg 2025: Indústria e Inovação

6

há aproximadamente 5 anos. A atividade de categorização foi conduzida de forma seme-
lhante àquela realizada em seus ambientes profissionais, nos quais a análise de incidentes
é conduzida individualmente, com base na expertise do analista.

Utilizamos ainda a mediana dos tempos como métrica central de comparação. Os
resultados mostram que a técnica HTP apresentou o tempo médio mais elevado, especial-
mente com o modelo Grok 3 (cerca de 190 minutos), devido à sua abordagem hierárquica
que exige múltiplas requisições à API. A técnica PHP, por sua vez, apresentou o menor
tempo médio, com destaque para sua aplicação com o Gemini 2, que alcançou um tempo
inferior a 25 minutos devido ao seu método eficiente e iterativo.

Figura 3. Mediana e desvio médio padrão de tempo para classificação automatizada

As variações entre os modelos também são significativas. Grok 3, embora robusto,
teve o pior desempenho temporal com HTP, enquanto Gemini 2 demonstrou o melhor de-
sempenho geral com PHP. O SHP, por sua vez, apresentou resultados intermediários em
termos de tempo. Podemos concluir que técnicas como PHP e SHP são mais indicadas
para cenários em que o tempo é um fator crítico, enquanto a técnica HTP deve ser descon-
siderada em tarefas de classificação de SOCs, devido à sua baixa precisão e ao elevado
tempo de execução. A análise reforça a importância de alinhar corretamente a escolha da
LLM e da técnica de prompting ao objetivo do sistema.

4.2. Tokens Consumidos
Os LLMs apresentam variações significativas em suas janelas de contexto, im-

pactando diretamente a capacidade de processar informações extensas e a eficiência na
formulação de prompts, a Tabela 1 especifica a janela de execução com a definição de
tokens para cada execução da LLM.

Tabela 1. Limites de tokens dos modelos de linguagem

Referência Modelo Tokens de Entrada Tokens de Saída
[xAI 2024] Grok 3 128.000 16.384
[Meta 2024] LLaMA 4 10.000.000 8.192
[Google 2024] Gemini 2 1.048.576 8.192
[OpenAI 2024] GPT-4o 128.000 (combinados) 100.000

A Tabela 2 ilustra como a engenharia de prompt e a escolha da LLM influenciam
diretamente o volume médio de tokens por interação, afetando custo e eficiência. LLMs

Anais Estendidos do SBSeg 2025: Indústria e Inovação

7

utilizando a PHP apresentaram volumes médios de tokens por interação mais baixos (entre
1.718 e 1.856), enquanto engenharias de prompt como SHP e HTP resultaram em volumes
mais altos, chegando a 2.802 tokens por interação no caso do Grok 3 com SHP. Essa
variação impacta diretamente no custo, visto que quanto maior for o volume de tokens,
implica em maior processamento e, consequentemente, maior despesa. Por exemplo, o
Gemini com SHP resultou em um custo de US$ 2,17, comparado a US$ 1,08 com PHP.
Observamos que a diferença de acurácia é considerável. O PHP, além do custo menor,
resultou em uma acurácia de 92%, quase 10% superior ao SHP.

Tabela 2. Comparativo de desempenho entre LLM, técnicas, volume de tokens, custo e acurácia

LLM Eng. Prompt Volume Tokens Interações Prompts Custo (USD) Acurácia
GEMINI PHP 721.900 389 1.856 $1,08 92%
GROK 3 SHP 2.903.037 1.036 2.802 $2,90 86%
GPT-4 SHP 1.425.210 620 2.299 $2,85 84%
GEMINI SHP 1.444.549 720 2.006 $2,17 84%
LLAMA 4 SHP 1.593.586 734 2.171 $0,80 82%
GPT-4 PHP 666.661 388 1.718 $1,33 81%
LLAMA 4 PHP 716.043 389 1.841 $0,36 75%
GROK 3 PHP 671.521 388 1.731 $0,67 72%
GPT-4 HTP 1.157.607 621 1.864 $2,32 29%
GROK 3 HTP 1.456.244 673 2.164 $1,46 19%
GEMINI HTP 3.891.740 1.974 1.971 $5,84 9%
LLAMA 4 HTP 1.147.509 553 2.075 $0,57 9%

5. Considerações finais e Trabalhos Futuros
Com base em 194 relatos reais de incidentes e na taxonomia NIST SP 800-61r3,

observamos que LLMs e estratégias de prompting podem acelerar a categorização, au-
mentar a precisão e reduzir ambiguidades. Das abordagens testadas, o PHP mostrou-se
eficaz com modelos bem ajustados, enquanto o SHP demonstrou maior versatilidade. O
HTP, por sua vez, apresentou limitações com dados narrativos não estruturados, levando
a um desempenhos menos favoráveis. Isso indica que a seleção da técnica de prompting
deve considerar a acurácia, o tipo de dado, o modelo e os custos operacionais. Nosso
estudo sugere que a engenharia de prompt pode alcançar altos níveis de automação e acu-
rácia na categorização de incidentes, o que pode reduzir o esforço manual e aumentar
a resiliência cibernética, mesmo considerando desafios como a explicabilidade das deci-
sões.

Como direções futuras, destacam-se: o treinamento de um modelo de linguagem
compacto (SLM) com dados reais de incidentes; a integração de classificadores baseados
em LLMs a frameworks SOAR; e a análise quantitativa do impacto dessa integração na
redução do tempo médio de resposta e recuperação (MTTR) em ambientes industriais.

Agradecimentos. Esta pesquisa contou com apoio parcial da Coordenação de Aperfei-
çoamento de Pessoal de Nível Superior (CAPES), código de financiamento 001; da Rede
Nacional de Ensino e Pesquisa (RNP), por meio do Programa Hackers do Bem e do GT
LFI – Learn From Incidents; e da Fundação de Amparo à Pesquisa do Estado do Rio
Grande do Sul (FAPERGS), por meio dos editais 08/2023 e 09/2023, e dos termos de
outorga 24/2551-0001368-7 e 24/2551-0000726-1.

Referências
CERT.br (2025). Incidentes notificados ao cert.br. https://stats.cert.br/incidentes/.

Anais Estendidos do SBSeg 2025: Indústria e Inovação

8

Chen, J., Tian, J., and Jin, Y. (2024). Self-hint prompting improves zero-shot reasoning in
large language models via reflective cycle. In Proceedings of the 46th Annual CCSS.

Google (2024). Modelos gemini na vertex ai. https://cloud.google.com/vertex-
ai/generative-ai/docs/models/gemini/2-0-flash.

Ibrishimova, M. D. (2019). Cyber incident classification: Issues and challenges. In Xhafa,
F., Leu, F.-Y., Ficco, M., and Yang, C.-T., editors, Advances on P2P, Parallel, Grid,
Cloud and Internet Computing, pages 469–477. Springer International Publishing.

Li, Y., Tian, J., He, H., and Jin, Y. (2024). Hypothesis testing prompting improves deduc-
tive reasoning in large language models. arXiv preprint arXiv:2405.06707.

Meta (2024). Llama 4: Advancing multimodal intelligence.
https://ai.meta.com/blog/llama-4-multimodal-intelligence/.

Nasution, A. H., Monika, W., Onan, A., and Murakami, Y. (2025). Benchmarking 21
open-source large language models for phishing link detection with prompt enginee-
ring. Information, 16(5):366.

Nelson, A., Rekhi, S., Souppaya, M., and Scarfone, K. (2025). Incident response recom-
mendations and considerations for cybersecurity risk management: A csf 2.0 commu-
nity profile. Technical Report NIST SP 800-61r3, NIST.

Ogundairo, O. and Broklyn, P. (2024). Natural language processing for cybersecurity
incident analysis. Journal of Cyber Security.

OpenAI (2024). Gpt-4o mini. https://platform.openai.com/docs/models/gpt-4o-mini.

xAI (2024). Grok-3: Next-generation model. https://x.ai/news/grok-3.

Zheng, Liu, X. et al. (2023). Progressive-hint prompting improves reasoning in large
language models.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. (2022). Large
language models are human-level prompt engineers. In The Eleventh International
Conference on Learning Representations.

A. Apêndice: Tabela de Categorias de Incidentes adotada segundo
orientações do NIST SP 800-61r3

Tabela 3. Categorização de Incidentes de Segurança (com prioridade)

Código Categoria Descrição Prioridade
CAT1 Comprometimento de Conta Acesso não autorizado a contas de usuários ou administradores. 5
CAT2 Malware Infecção por código malicioso que compromete dispositivos ou dados. 5
CAT3 Ataque de Negação de Serviço (DoS/DDoS) Tornar sistemas ou redes indisponíveis. 4
CAT4 Exfiltração ou Vazamento de Dados Acesso, cópia ou divulgação não autorizada de dados sensíveis. 5
CAT5 Exploração de Vulnerabilidade Uso de falhas conhecidas ou desconhecidas para comprometer ativos. 5
CAT6 Abuso Interno Ações intencionais ou negligentes de usuários internos. 5
CAT7 Engenharia Social Engano de pessoas para obter acesso ou informações. 3
CAT8 Incidente Físico ou de Infraestrutura Violação física que impacta ativos computacionais. 4
CAT9 Alteração Não Autorizada Modificação não autorizada em sistemas, dados ou configurações. 3
CAT10 Uso Indevido de Recursos Uso não autorizado de sistemas para outros fins. 2
CAT11 Problema de Fornecedor/Terceiro Incidente originado por falha de segurança de terceiros. 4
CAT12 Tentativa de Intrusão Tentativas hostis de invasão ainda não confirmadas como bem-sucedidas. 3

Fonte: NIST (National Institute of Standards and Technology)

Anais Estendidos do SBSeg 2025: Indústria e Inovação

9

