
An approach to Elliptic Curve Cryptography
with AOP oriented to Hardware

Luckas A. Farias1,2, Bruno C. Albertini1, Paulo S. L. M. Barreto1,3

1 Escola Politécnica, Universidade de São Paulo, Brazil.
Av. Prof. Luciano Gualberto, trav. 3, no. 158 (Ed. Engenharia Elétrica), s. C2-46.

05508-900 Sã Paulo, Brazil - BR.

luckas.farias@usp.br ; balbertini@usp.br ; pbarreto@usp.br

2Departamento de Sistemas e Computação
Universidade Anhembi Morumbi - UAM - São Paulo - SP.

luckas.farias@anhembi.br

3Computer Science program committee
Institute of Technology of the University of Washington Tacoma

pbarreto@uw.edu

Abstract. This work describes a family of binary Edwards curves that admits
modular reductions (an operation that can be responsible for up to 30% of the
processing time in point arithmetic) twice as fast than the best usual settings,
while essentially being as secure as a binary elliptic curve can be (in terms
of being rigid and twist-safe). Moreover, we present a hardware architecture
with a generic VHDL description that can be synthesized to any FPGA with
enough area to support the circuit. For this architecture, we are able to execute
a point multiplication by scalar on F562 in 2.28ms on Cyclone 4 GX, in 1.23ms
on Virtex7 and in 1.01ms on Zynq7020.

1. Introduction
This work defines a class of elliptic curves that applies the rules of Edwards binary curves
and AOP (All-One-Polynomial) as the irreducible polynomial. These curves have opera-
tional advantages over binary fields as regards fastening the reduction.

Another advantage for adopting AOP is that quadratic functions have a property
that can be calculated into a single clock cycle, regardless of number of repetitions. For
example, during an inversion, if a circuit performs one square per clock cycle, if there
are 100 cascade squares operations, an inversion can take more than 100 operations. By
adopting the AOP, it is possible to design a circuit that performs more than one square per
cycle, without lowering the frequency significantly. In fact, AOP needs only one level of
XOR to compute any number of square power repetitions, as will be demonstrated herein.

2. Preliminaries
Let F be a field of characteristic 2. A (complete) binary Edwards curve [4] over F is
an affine curve of form EB,d1,d2 : d1(x+ y)+ d2(x2 + y2) = xy+ xy(x+ y)+ x2y2 where

d1,d2 ∈F, d1 6= 0 and the trace of d2 is 1 (Tr(d2)= 1). This curve is birationally equivalent
to a Weierstrass curve WB,d1,d2 : v2 + uv = u3 + a2u2 + a6 where a2 = d2

1 + d2 and a6 =
d4

1(d
4
1 +d2

1 +d2
2).

The quadratic twist of the curve WB,d1,d2 of order n = 2m +1− t (where the trace
t of Frobenius satisfies the Hasse bound |t| ≤ 2m/2+1) is the curve W ′B,d1,d2

: v2 + uv =

u3 +(a2 + d2)u2 + a6 of order n′ = 2m + 1+ t. An efficient special case is d1 = d2 = d,
i.e. EB,d : d(x+ x2 + y+ y2) = (x+ x2)(y+ y2)

An elliptic curve is twist-safe if both curve and quadratic twist have near-prime
order, i.e. the curve order has a form of n = hp and its quadratic twist order has a form of
n′ = h′p′ where both p and p′ are large primes (hence, cofactors h and h′ are very small).

The order of a binary elliptic curve is always even, but it is possible to find Ed-
wards curves with order of form n = 2p where p is prime. In this case, it is also possible
to find curves with quadratic twist of order n′ = 4p′ where p′ is prime as well. This work
considers only the curves satisfying these conditions.

3. Modular reduction

Modular reduction can be responsible for up to 30% of the processing time in point arith-
metic. Conventional wisdom mandates the use of a very sparse polynomial reduction
when resorting to polynomial basis representations, typically a trinomial.

Itoh and Tsujii [9] analyzed the properties of reduction by the so-called All-Ones-
Polynomial (AOP), i.e. the arithmetic in F2[x]/(xm + xm−1 + · · ·+ x+ 1) assuming that
the AOP xm + xm−1 + · · ·+ x+1 is irreducible. Unfortunately, this setting has been disre-
garded in the literature, where m is most typically taken to be prime to avoid Weil descent
and related attacks [10, 8, 11], while xm + xm−1 + · · ·+ x+1 can only be irreducible if it
has an odd number of terms; hence, if m is even.

This work adopts m = 2q where q is prime. This near-prime setting is out of reach
from any known conventional attack based on m being composite, except for possibly a
very small advantage factor O(

√
m). In this sense, it resembles a situation of curve group

orders, which do not need to be prime as long as they are near-prime. As shown by Itoh
and Tsujii [9], a necessary and sufficient condition for AOP to be irreducible is that m+1
is prime and that 2 is a generator of Z∗m+1. These stringent requirements severely limit the
available choices of m, but there are still plenty of values of interest, adequately covering
all practical security levels.

4. Point multiplication by scalar

The main operation in ECC (Elliptic Curve Cryptography) is the multiplication of a point
in the curve by a scalar value. The intuitive way is to implement this operation as a series
of double-and-add operations. However, doing so means that the number of operations
would be key dependent, leaking a potential information.

Montgomery ladder [13] is an algorithm to solve this problem, performing multi-
plication as a series of double-and-add operations, but always performing the same num-
ber of steps for any key. This algorithm iterates over bit ki of key K, and the operation
does not depend on ki value, preventing information leakage.

Using the Montgomery ladder algorithm, we can define the double-and-add oper-
ation based on Edwards [5, 4] equations, proven to be a complete operation1 for all cases
of binary Edwards curves, enabling its use for any point in the curve.

Memory reutilization allows avoiding recalculating the inverse, because it is a
function that is calculated with squares and multiplications. Itoh and Tsujii [9] has shown
that this operation is singular for each field. An interseting work that made other opti-
mizations is Kim et. al work [12].

4.1. Addition and double optimization
Other works have concerned in presenting new formulas for the arithmetic on the binary
Edwards curves which are much faster than the-state-of-the-art [12, 3]. In this work,
he concludes that it is possible to perform the complete mixed differential addition and
doubling for complete binary Edwards curves with only 5M +D+ 4S, this considering
d1 = d2. This result is the cost of the fastest (but incomplete) formulas among various
forms of elliptic curves over finite fields of characteristic 2 in the literar [12]. Here M,
S, and D are the cost of a multiplication, a squaring and a multiplication by constant,
respectively.

We do not make extra optimization, but opt for using the formula for affine dif-
ferential addition and doubling that have the cost I +4M +2D+3S in Bernstein-Lange-
Farashashi [3] and cost I+4M+D+3S in Kin et. al [12]. Here I, M, S, and D are the cost
of an inversion, a multiplication, a squaring and a multiplication by constant, respectively.
We use these results in our work and derive our results based on this cost per operation of
this affine double-and-add operation.

5. Curve choice
For F2[x]/(xm + xm−1 + · · ·+ x+1), it is often (always for all cases of practical interest)
the case that polynomial x itself has Tr(x) = 1; therefore, it is an obvious candidate for
the curve equation. This leaves d1 as an open choice, limited only by the requirement
that both EB,d1,d2 and its twist E ′B,d1,d2

have orders of n = 2p and n′ = 4p (or n = 4p and
n′ = 2p), respectively, where p and p′ are prime and by the practical constraint where the
multiplication by d1 is efficient (for instance, by imposing that d1 has the lowest degree
possible).

5.1. Sample curves
The underlying finite field is F2[x]/(xm + xm−1 + · · ·+ x+ 1) for the stated value of m,
and d2 = z. The value of d1 is always the first in lexicographical order that yields a
curve of order n = 2p or 4p for a prime p, whose quadratic twist of order is n′ = 4p′

or 2p′ for a prime p′, respectively. As an example of curve and parameters that were
obtained, the definition for a curve with 562 bits is d = z20 + z15 + z3 + 1, n = 4×
37739624248215413522415545809882688909169212204164404283762063002456241
62392148852085424555861285302871699693039890116397569024054345480705562
779107921462952194579361881 and n′ = 2× 754792484964308270448310916197653
77818338424408328808567524126004912483247842977041736577889880644644224
74114043275146803944290411008209119120178789887858270208422584143

1Complete operation: when it is possible to calculate the result with one logical operation, regardless of
input value.

6. Hardware implementation

Figure 1. Top level coprocessor block diagram.

A coprocessor was built in a generic VHDL (VHSIC Hardware Description Lan-
guage), tailored to support all operations (including overload operations) defined over the
field.

The top level circuit can be seen in Figure 1, where the program memory is de-
picted (for 16-bit instructions). This architecture is an abstraction of the architecture that
we published in ”Cryptographic architecture for co-process on consumer electronics de-
vices” [7], but the main diference is that here the memory is organized as 4 nibbles.

6.1. Binary Field Multiplication
Binary field multiplication is a multiplication between two polynomial elements of the
field. If the field multiplication produces a polynomial that is not in the field, it will
be necessary to reduce it back to the field. This is obtained reducing the result by an
irreducible polynomial (IP), generating an element of the field.

Classical hardware multiplication is implemented by a shift-and-add algorithm,
where we have a multiplication of polynomial a by b; a,b ∈ Fm. Considering “⊕” as the
logical operation XOR, “&” as the logical operation AND and “� x” as a shift operation
by x bits.

This method requires m steps to converge into solution, but has the characteristic
that it is a complete operation. Moreover, this operation can be parallelized [6]. Knowing
this advantage, the next section describes the construction of a parallel architecture to
execute the field multiplication.

6.2. Parallel Field Multiplication
The multiplication module is tailored to explore the advantages over the AOP field ele-
ments, which is the subject of this work. The first advantage is, since all fields are even,
two steps of multiplications can be performed at the same time [6].

The proposed architecture is based on a basic module that performs two shift-and-
add operations. We call it Double Step Module (DSM) and its logical equation is:

cout := {[(cin⊕ (a&bi))� 1]⊕ [(a&bi−1)� 1]} mod(IP)

The number of times that we are going to replicate this module is proportional to
the field size and parallelism level, assuming that DSMu has u levels. E.g. F562 need one

DSM instance 231 times. Replicating the DSM reduces the number of times by half, but
also doubles2 the area used by this module.

Figure 2, depicts our proposed parallel architecture, composed by the replicated
DSM module and output multiplexor.

The interface is straightforward, being composed of two m bits inputs and one
output of the same size. All inputs are field elements, as well the output. Control signals
are limited to clock, start flag and end flag. Using this start-end synchronization, control
unit hides multiplication parallelism from upper modules.

For more results over this architecture of parallel field multiplication, including
some comparatives between this performance and the area usage, the work ”Parallelism
Level Analysis of Binary Field Multiplication on FPGAs” [6] conducted a deeper study
into this architecture and measured the throughput, the area consumption and made an
index using throughput/area.

6.3. Square
The field square operation, considering AOP and the little Fermat theorem (which proves
ap = (a)mod(p)), can perform an optimization that improves the inverse calculation [9]

2Approximate value due to synthesis optimizations.

Figure 2. Top Level of parallelism in multiplication

Figure 3. Sequential squares in the field n = 4 using AOP as irreducible polyno-
mial

where we are searching for a−1 = a2n

a = a2n−1.

Figure 3 depicts a sequential square operation set over a binary field with n = 4
and where (a) is the first square , (b) is the square of result (a), (c) is the square of result
(b) and (d) is the square of result (c), returning to the initial polynomial as predicted by
the little fermat theorem. As observed, all the results of squares are, at most, a single
logical XOR with two permuted vectors of initial value. In addition, although it is not
certain that it is a property of all fields with AOP, it is a valid property of all fields used
herein3.

By knowing this advantage, modules were implemented for exploring this “roll
effect” to execute the square operations required by the inverse. For example, for fields
346, 446 and 562 we need to implement (1, 2, 5, 10, 21, 43, 86, 172), (1, 3, 7, 14, 29, 58,
116, 232) and (1, 2, 4, 8, 17, 35, 70, 140, 280) squares, respectively, to make use of this
optimization.

7. Experimental Results
Table 1 shows the resources used by the synthesis tool without any specific optimization.
Any resource tied to FPGA model was also avoided. For each field size, the required hard-
ware is synthesized to perform the instructions for which the coprocessor was designed
(i.e. all the cryptography operations over the field) without any pipeline. Minimum delay
for each unit, which directly implies the maximum clock frequency, is depicted in Table 2.

Board Field Parallelism Slices Slices FF LUT’s
Zynq 7020 Available —- 106,400 35,104 53,200
Zynq 7020 346 24 11123 7624 42352
Zynq 7020 466 24 9,991 7,046 36,797
Zynq 7020 562 24 11,123 7,624 42,352

Table 1. Synthesis results by Xilinx ISE [14] for Zynq 7020

Board Field Parallelism General Multiplication
Minimum Period (ns) Frequency (MHz) Minimum Period (ns) Frequency (MHz)

DE2i-150 346 36 13.749 72.730 10.300 97.090
DE2i-150 466 36 13.615 73.450 10.035 99.650
DE2i-150 562 36 14.888 67.170 12.034 83.100
Zynq 7020 346 24 4.147 241.138 4.792 208.681
Zynq 7020 466 24 4.357 229.516 5.418 184.570
Zynq 7020 562 24 4.690 213.220 5.435 183.993

Table 2. Time results by QuartusII[2] for DE2i-150 and Xilinx ISE[14] for Zynq7020

Table 3 illustrates the number of clock cycles used in the elliptic cryptographic
operation, from the start signal until the finish flag for each bit on Montgomery ladder.
This table is made using the cost I + 4M + 2D + 3S for Bernstein et. al [3] and I +
4M + 1D+ 3S for Kim et. al [12]. We are not considering the mixed coordinate that
uses Z value. Normal Clocks (NC) are for the general process, and Multiplication Clock
(MC) are the clocks used by multiplication. ECC operations are sum, doubling, and the
combination Sum+Double operation.

With those results, we estimated how many point multiplications by scalar op-
erations the synthesized hardware can execute. Table 4 is derived from the same data,

3This has been extensively tested manually to the fields of interest

Field DSM Bernstein et. al [3] Kim et. al [12]
NC MC NC MC

346 1 39 4176 36 4176
346 12 39 372 36 372
346 24 39 204 36 204
346 30 39 168 36 168
346 36 39 144 36 144
466 1 39 5616 36 5616
466 12 39 492 36 492
466 24 39 264 36 264
466 30 39 216 36 216
466 36 39 180 36 180
562 1 42 7332 39 7332
562 12 42 637 39 637
562 24 42 338 39 338
562 30 42 273 39 273
562 36 42 234 39 234

Table 3. Clock cycles required by each operation

showing how many multiplication operations the synthesized hardware can accomplish
per second, considering each field size.

Board × Field 82 106 178 226 346 466 562
Zynq 7020 29,371.65 19,495.66 7,336.41 5,233.57 1,875.18 1,462.80 984.93

Virtex-7 690T 29,371.65 17,626.98 6,623.95 4,501.74 1,636.20 1,266.70 810.26
DE2i-150 10,978.32 7,280.19 2,941.38 2,422.57 1,167.79 729.71 437.80

Table 4. Point multiplications by scalar per second

8. Publications
We published one paper about the field multiplication architecture and the analysis per-
formed on its parallelism level. This paper is the Parallelism Level Analysis of Binary
Field Multiplication on FPGAs [6] whose authors are Luckas Farias, Bruno Albertini
and Paulo Barreto. It was published at the V Brazilian Symposium on Computing Systems
Engineering - SBESC.

Another accepted paper is about the architecture for a high level coprocessor, try-
ing to explain the idea of a future standard architecture on consumer electronics. The pa-
per Cryptographic architecture for co-process on consumer electronics devices [7],
whose authors are Luckas Farias, Bruno Albertini and Paulo Barreto, was published in
2016 at the IEEE International Symposium on Consumer Electronics.

The most recent publication is about the architecture and the new Edwards curves
(which is presented in this work). The paper A class of safe and efficient binary Ed-
wards curves [1], whose authors are Luckas Farias, Bruno Albertini and Paulo Barreto,
was published at the Journal of Cryptography Engineering - JCEN.

8.1. Talks on events
In some non academic events, we presented some talks on this subject. This occurred
during a master’s, whose subject is part of this research. In total, we presented 38 talks (7
of them in international events) and 4 workshops.

9. Conclusion
In conclusion, a new approach over binary Edwards curves is proposed by applying op-
timization with AOP. This method was not found in the literature, but it is possible to

apply in actual scenarios, since it was based on secure concepts such as Montgomery lad-
der, Edwards curve and secure hardware implementation. The resulting coprocessor can
be used for different security levels and it is just as efficient as the ones proposed in the
literature.

Therefore, it is considered a good approach for binary ECC, updating the tech-
nology and opening new possibilities of research that include other curves with this opti-
mizations employing this approach, other methods and hardware optimizations.

References
[1] Luckas A. Farias, Bruno C. Albertini, and Paulo S. L. M. Barreto. A class of safe and

efficient binary edwards curves. Journal of Cryptographic Engineering, Jan 2018.

[2] Altera. Quartus ii web edition. dl.altera.com?edition=web, 2015.

[3] Daniel J. Bernstein and Tanja Lange. Faster Addition and Doubling on Elliptic Curves,
pages 29–50. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[4] DanielJ. Bernstein, Tanja Lange, and Rezaeian Farashahi. Binary edwards curves. Cryp-
tographic hardware and embedded systems – CHES 2008, 5154:244–265, 2008.

[5] Harold M. Edwards. A normal form for elliptic curves. Bull. Amer. Math. Soc., pages
393–422, 2007.

[6] L. A. Farias, B. C. Albertini, and P. S. L. M. Barreto. Parallelism level analysis of binary
field multiplication on fpgas. In 2015 Brazilian Symposium on Computing Systems
Engineering (SBESC), pages 64–69, Nov 2015.

[7] L. A. Farias, B. C. Albertini, and P. S. L. M. Barreto. Cryptographic architecture for co-
process on consumer electronics devices. In 2016 IEEE International Symposium
on Consumer Electronics (ISCE), pages 3–4, Sept 2016.

[8] S.D. Galbraith, F. Hess, and N.P. Smart. Extending the ghs weil descent attack. Cryp-
tology ePrint Archive, Report 2001/054, 2001. http://eprint.iacr.org/
2001/054.

[9] Toshiya Itoh and Shigeo Tsujii. Structure of parallel multipliers for a class of fields gf (2
m). Information and computation, 83(1):21–40, 1989.

[10] Rivera J. and Meulen R. D. V. Weil descent page. www.cs.bris.ac.uk/˜nigel/
weil_descent.html, 2017.

[11] Michael Jacobson, Alfred Menezes, and Andreas Stein. Solving elliptic curve dis-
crete logarithm problems using weil descent. Cryptology ePrint Archive, Report
2001/041, 2001. http://eprint.iacr.org/2001/041.

[12] Kwang Ho Kim, Chol Ok Lee, and Christophe Negre. Binary Edwards Curves Revisited,
pages 393–408. Springer International Publishing, Cham, 2014.

[13] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation, (48):243–264, 1987.

[14] Xilinx. Xilinx ise webpack 14.7. www.xilinx.comproductsdesign-toolsise-design-
suiteise-webpack.html, 2015.

