
Hardware-Assisted Malware Analysis

Marcus Felipe Botacin1, Paulo Lício de Geus1 , André Grégio2

1 UNICAMP

2UFPR – Co-Advisor

{marcus,paulo}@lasca.ic.unicamp.br

gregio@inf.ufpr.br

Abstract. Malicious software (malware) are persistent threats to modern com-
puter systems and the development of countermeasures to them becomes harder
each day due to the emergence of anti-analysis and anti-forensics techniques,
able to evade software-based monitoring solutions. In this scenario, hardware-
assisted solutions are effective alternatives, but still present development gaps.
The presented dissertation surveyed the limits of software-based solutions, pin-
pointed the existing development gaps on hardware-assisted solutions and in-
troduced a lightweight, hardware-based alternative for malware analysis. The
developed framework was released as open-source and is being used on further
research developments.

1. The Malware Problem

Malicious software (malware) are persistent threats to modern computer systems, being
responsible for a myriad of attacks, from information leaks to financial losses. To handle
malware attacks, analysis procedures are applied, thus enabling vaccine development,
incident response and forensic procedures.

Analysis procedures are classified into static and dy-
namic [Sikorski and Honig 2012]. Static analysis procedures rely on binary inspection
without its execution, thus being defeated by obfuscation techniques. Dynamic analysis
approaches defeat obfuscation by running the suspicious binary on an isolated, controlled
environment named sandbox, thus requiring the development of runtime monitoring
solutions.

Monitoring tools can be implemented as pure-software solutions or hardware-
based ones. Whereas software-based monitoring solutions are easier to implement—thus,
so-far more popular—, these are ineffective against modern malware, which employ anti-
analysis techniques to remain stealth. As we identified in a survey [Botacin et al. 2017a],
many anti-analysis techniques succeed on software-based environments given the identifi-
cation of internal monitoring components [Marpaung et al. 2012] and/or because the exe-
cution side-effects caused by instruction emulation and instrumentation [Shi et al. 2014].
In a summary, anti-analysis tricks can be classified in three main categories, as presented
in the Table 1.

On a 4-year-long, Brazilian malware study [Botacin et al. 2015], we identified the
use of anti-debug tricks have grown from 25% in 2012 to 40% in 2015. Similarly, anti-VM
tricks have grown from 3% to 8% in the same period. In total, more than 50% of samples



Table 1. Anti-Analysis: Tricks summary. Malware samples may employ multiple
techniques to evade distinct analysis procedures.

Technique Description Reason Implementation
Anti Check if running Blocks reverse FingerprintingDebug inside a debugger engineering attempts
Anti Check if running Analysts use VMs Execution
VM inside a VM for scalability Side-effect
Anti Fool disassemblers AV signatures may Undecidable

Disassembly to generate wrong opcodes be based on opcodes Constructions

are armored with at least one anti-analysis trick. Given this scenario and its evolution,
more transparent monitoring solutions are required to handle current and future threats.
A way of achieving more transparent monitoring is to rely in hardware assistance instead
of software components.

In the dissertation, I surveyed existing hardware features which may be used for
system and binary analysis and identified their strong and weak points as well as existing
development gaps. I also contributed to advance the current scenario by developing an
analysis framework able to fill the existing gap regarding branch-monitor-based solutions.
These developments are presented in the following sections.

2. Hardware-Assisted Solutions

To draw a panorama, I surveyed existing and upcoming hardware features which could be
applied for security purposes. The survey was focused on identifying the pros and cons
of each technology and the existing development gaps. The results are summarized in
Table 2.

Table 2. Hardware features. Distinct approaches present advantages (PROS) and
disadvantages (CONS), requiring analysts to identify the best usage scenarios.
For some cases, there are existing development gaps.

Technique PROS CONS Gaps

HVM Ring -1 Hypervisor High
development overhead

SMM Ring -2 BIOS High
development implementation cost

AMT Ring -3 Chipset No malware
code change analysis solution

HPCs Lightweight Context-limited No malware
information analysis solution

GPU Easy to program No register No introspection
data procedures

TSX Commit-based Store only Overcome the
few KB KB barrier

SGX Isolates goodware Also isolates No enclave
malware inspection

SOCs Tamper-proof Passive Raise alarmscomponents



Figure 1. Introspection. The developed procedure allows bridging the semantic
gap by converting raw branch addresses into high level function information.

The survey pinpointed many technologies as effective alternatives for security so-
lutions implementations, such as BIOS rewriting and Hypervisor instrumentation. These
solutions, however, are very expensive in many aspects—noticeably, in the required de-
velopment cost to implement a hypervisor or to rewrite the BIOS. In addition, I discov-
ered branch monitors as interesting features, since they are lightweight alternatives both
regarding the imposed performance impact as well as the required development cost. I
observed branch monitors had not been used in the context of malware analysis sandboxes
before. Therefore, the research was guided to present the first branch-based framework
able to perform malware analysis, debugging and Return-Oriented-Programming (ROP)
attack detection, thus contributing to advance the current scenario.

3. The Branch-Monitoring framework

The Branch Trace Store (BTS) is a processor feature which logs source and target ad-
dresses of branch instructions on O.S. pages, raising an interrupt when the collection
buffer is full [Intel 2011]. It operates on a system-wide way, having no process filtering
capabilities. As a hardware feature, small performance overheads are imposed. To de-
velop a BTS-based monitoring solution, some challenges have to be overcome, namely:
i) How to isolate processes despite having no hardware support?; ii) How to interpret
low-level branch addresses as human-meaningful information?; iii) How to reconstruct a
given program complete execution flow from the collected branch data?

The first challenge derives from the fact that the processor is not aware of the
process concept (an O.S. abstraction), thus a way of associating processor execution with
O.S. scheduling was required. This issue was approached by setting the BTS interrupt
threshold to one, thus triggering an interrupt at every executed branch instruction, and
so having the system to operate on a debugger-like, step-by-step way. As the execution
is immediately interrupted, one can immediately query the O.S. about the last scheduled
process, thus allowing individual process tracking.

The second challenge derives from the distinct representations data have on dis-
tinct system layers, which is known as the semantic gap problem. To bridge such seman-
tic gap, an introspection procedure was developed, allowing the association of instruc-
tion addresses to the loaded modules and their function names, as shown in Figure 1.



_lock_file+0x90printf+0xe3__iob_funcprintf+0xcaprintfNewToy

Figure 2. Printf’s step-into call graph. All intermediate calls represented.

The developed introspection procedure allows digging into programs’ internals to
understand their behavior. For instance, Figure 2 shows an excerpt of a printf call. We
notice it internally calls _lock_file, which assures I/O ordering, since printf is a
non-reentrant function.

The third challenge derives from the branch-based collection, which skips non-
branch instructions. However, as a block of non-branch instructions surrounded by branch
instructions is a lax basic block definition, we demonstrated we could retrieve all executed
instructions by disassembling the code portion between two consecutive branches—i.e.
from target of a previous branch until the source of the current one. Listing 1 exemplifies
the block identification procedure.

Listing 1. Block identification—from
0x48ff5ab8 to 0x48ff5ac0

1 PID : 4876 FROM: 0 x 4 8 f f 5 a b 0 TO: 0 x 4 8 f f 5 a b 8
2 PID : 4876 FROM: 0 x 4 8 f f 5 a c 0 TO: 0 x 4 8 f f 5 a d 0
3 Disa s sembly from : 0 x 4 8 f f 5 a b 8 t o 0 x 4 8 f f 5 a c 0

By repeating the procedure for all branches, one is able to rebuild the whole Con-
trol Flow Graph (CFG) for any running binary, as shown in Figure 3.

Figure 3. Control Flow Graph. By repeatedly querying consecutive branches, it
is possible to reconstruct the whole execution flow.

The aforementioned developments were compiled in a modular monitoring frame-
work which allows security policies to be built on top of it. During the master period, three



Figure 4. Divergent Behavior Identifica-
tion. By aligning branches, distinct exe-
cution paths can be compared and eva-
sion attempts identified.

Figure 5. Identified evasion-
based divergence case. Dis-
tinct paths are taken on an em-
ulator and on a real machine.

Figure 6. Ordinary Debugger. The monitored application refused to run.

solutions were developed: i) a malware analysis tool; ii) a debugger; iii) a ROP detector.
They are below detailed.

Analyzing malware using branch monitors has many advantages: i) no side effects
are observed, as the code runs on a native processor; ii) no code injection is required, as
the processor stores taken branches natively; iii) no significant overhead is imposed, as
BTS is a hardware feature.

I explored such features to transparently analyze anti-analysis-armored samples.
A major analysis capability is to identify evasion attempts. More specifically, one can
leverage the solution to identify execution deviation between the transparent monitor and
software-based solutions. By applying a sequence alignment algorithm to the obtained
traces, as shown in Figure 4, I was able to identify true divergent behaviors, such as the
one shown in Figure 5.

In addition to trace-oriented malware analysis, I developed a complete debugger,
able to perform real time inspection. To implement this capability, an inverted I/O
mechanism was implemented from within the interrupt handler, thus allowing the frame-
work to call the debugger client on-demand.

The main debugger capability is to inspect even protected applications. To
demonstrate this, I inspected some game launcher software, applications which are well-
know for applying anti-cheat mechanisms. As an example, the Ubisoft launcher refused
to run under an ordinary debugger (Fig. 6) but was successfully analyzed by the developed
solution (Fig. 7).

To reduce the analyst learning curve, the debugger is integrated to GDB, thus
allowing the use of ordinary GDB commands to control debugger steps (Fig. 8).

Finally, we also leveraged our framework to implement a ROP attack detector. The
Return-Oriented-Programming is a technique which chains RET instructions to change a
program control flow and thus perform a code injection attack without the restrictions



Figure 7. Developed Debugger. The monitored application executed and was
inspected.

Figure 8. GDB integration. The re-
mote stub allows a Linux client to
monitor a Windows instance.

Figure 9. Daemon Alert. A warn-
ing is raised by the solution when
a ROP attack is detected.

of current buffer overflow protections. ROP attacks against applications can be remotely
launched through the internet or an application can be locally exploited by a malware
sample. Our solution is well suited for the detection task since, as the attack is based
on a branch (the RET instruction), these are naturally logged by the BTS mechanism.
In addition, a significant advantage of our solutions is that, as the taken branches are
extracted in hardware, the solution is not vulnerable to alignment issues (Listing 2 and 3),
a frequent code construction employed by the attackers. Our solution can perform real-
time monitoring and operates as a daemon (Figure 9).

Listing 2. Static disassembly of the MSVCR71.dll
library. This code is executed on non-corrupted
flows.

1 c08 : f2 0 f 58 c3 addsd %xmm3,%xmm0
2 c0c : 66 0 f 13 44 24 04 movlpd %xmm0, 0 x4(% esp )

Listing. 3. ROP Payload. The gadget is build based on a misaligned instruction
block.

1 c0a : 58 pop r a x
2 c0b : c3 r e t

4. Current Results and Future Work

During the Master course, project results were published in many ways, as presented
below:



A survey on malware anti-analysis was published in the XVII SBSEG, in the form
of the article “Analysis, Anti-Analysis, Anti-Anti-Analysis: An Overview of the Evasive
Malware Scenario” [Botacin et al. 2017a].

A survey on hardware-assisted security solutions, titled “Who watches the watch-
men: A security-focused review on current state-of-the-art techniques, tools and methods
for systems and binary analysis on modern platforms”, has preliminary acceptance for
publication on the ACM Computing Surveys [Botacin et al. 2018b] (A1).

Preliminary framework results were published in the XVI SBSEG, in the form of
the following articles: VoiDbg: Projeto e Implementação de um Debugger Transparente
para Inspeção de Aplicações Protegidas [Botacin et al. 2016c]; Detecção de ataques por
ROP em tempo real assistida por hardware [Botacin et al. 2016b]; Análise Transparente
de Malware com Suporte por Hardware [Botacin et al. 2016a].

The final framework version was published in the ACM Transactions on Pri-
vacy and Security journal (A2), under the title “Enhancing Branch Monitoring for
Security Purposes: From Control Flow Integrity to Malware Analysis and Debug-
ging” [Botacin et al. 2018a].

To enable reproducibility and allow community participation, the framework’s
source code was opened and is available on Github1, being—at this moment—starred
by more than 65 people and forked 13 times. Branch data is also available in the project
website2. In addition, media is available on Youtube3 and community has created a Reddit
topic about the project4.

In addition to the previously mentioned papers, some other, indirectly-related pa-
pers were published during the master course, as presented below:

A conventional, software-based sandbox solution was developed and used as
ground-truth for malware evasion, being published in the Journal of Computer Virol-
ogy and Hacking techniques (B1), under the title “The other guys: automated analysis of
marginalized malware” [Botacin et al. 2017b].

All referred statistics about malware impact and anti-analysis trends derives from
a 4-year-long study published in the XV SBSEG, under the title “Uma Visão Geral do
Malware Ativo no Espaço Nacional da Internet entre 2012 e 2015” [Botacin et al. 2015].

As future work, my current PhD research will directly benefit from the developed
framework as basis for further developments. More specifically, the following develop-
ments regarding branch monitors are research in progress: i) a branch-monitor exten-
sion to handle multi-core malware; ii) a branch-monitor extension to handle kernel-based
malware; iii) a branch-trace-based solution for application misbehavior detection; iv) a
hardware-assisted anti-virus engine based on hardware counters; v) a polymorphic mal-
ware classification engine based on transparent traces.

1https://github.com/marcusbotacin/BranchMonitoringProject
2https://sites.google.com/site/branchmonitoringproject/
3https://www.youtube.com/watch?v=BguVzqMt_j0&list=

PLVYZ2jULLUDvqFVpU3pCZGlY9gCzYoyXP
4https://www.reddit.com/r/ReverseEngineering/comments/5ycg08/code_

tracing_framework_based_on_intel_branch/



References
Botacin, Falcão, Geus, and Grégio (2017a). Analysis, anti-analysis, anti-

anti-analysis: An overview of the evasive malware scenario. https:
//sbseg2017.redes.unb.br/wp-content/uploads/2017/04/
20171109_ANAIS_SBSEG_2017_FINAL_E-BOOK.pdf.

Botacin, Geus, and Grégio (2015). Uma visão geral do malware ativo no espaço nacional
da internet entre 2012 e 2015. http://siaiap34.univali.br/sbseg2015/
anais/WFC/artigoWFC02.pdf.

Botacin, Geus, and Grégio (2016a). Análise transparente de malware com su-
porte por hardware. http://sbseg2016.ic.uff.br/pt/files/anais/
completos/ST8-3.pdf.

Botacin, Geus, and Grégio (2016b). Detecção de ataques por rop em tempo real as-
sistida por hardware. http://sbseg2016.ic.uff.br/pt/files/anais/
completos/ST6-4.pdf.

Botacin, Geus, and Grégio (2016c). Voidbg: Projeto e implementação de um debugger
transparente para inspeção de aplicações protegidas. http://sbseg2016.ic.
uff.br/pt/files/anais/completos/ST6-1.pdf.

Botacin, M., Geus, P. L. D., and Grégio, A. (2018a). Enhancing branch monitoring for
security purposes: From control flow integrity to malware analysis and debugging.
ACM Trans. Priv. Secur., 21(1):4:1–4:30.

Botacin, M., Geus, P. L. D., and Grégio, A. (2018b). Who watches the watchmen: A
security-focused review on current state-of-the-art techniques, tools and methods for
systems and binary analysis on modern platforms. To be published.

Botacin, M. F., de Geus, P. L., and Grégio, A. R. A. (2017b). The other guys: auto-
mated analysis of marginalized malware. Journal of Computer Virology and Hacking
Techniques.

Intel (2011). Intel 64 and ia-32 architectures software developer’s manual. http:
//www.intel.com/Assets/en_US/PDF/manual/253668.pdf. Access
Date: July/2016.

Marpaung, J., Sain, M., and Lee, H.-J. (2012). Survey on malware evasion techniques:
State of the art and challenges. In IEEE ICACT, 14th Intl. Conf. Advanced Comm.
Technology, pages 744–749.

Shi, H., Alwabel, A., and Mirkovic, J. (2014). Cardinal pill testing of system virtual
machines. In 23rd USENIX Security Symp. (USENIX Security 14), pages 271–285,
San Diego, CA. USENIX Association.

Sikorski, M. and Honig, A. (2012). Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, San Francisco, CA, USA, 1st edition.


