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Abstract. In this thesis, we developed a method that exploits the random-like
properties of chaotic systems as a pseudo-random number generator (PRNG).
We explored the k-digits to the right of the decimal separator (less significant
digits) of an original orbit of a chaotic map. This approach called as “deep-
zoom” demonstrated the relationship between the parameter k and the quality of
the pseudo-random sequences, since it showed a rapid transition from “weak to
strong” randomness as k tends to infinity, thus allowing to manipulate pseudo-
randomness in a parametrically manner.

1. Motivations and objectives
Pseudo-random number generators (PRNGs) are the backbone of the most diverse fi-
elds of application, ranging from statistics and probability theory, decision theory,
numerical calculus, simulation, and systems modeling, in the gaming and entertain-
ment industry, programming languages, and even in more critical scenarios such as
cryptography. Classically, the construction of PRNGs is based on deterministic al-
gorithms using linear recurrences, bitwise operations, and algebraic concepts, among
other artifacts, often without mathematical foundations, e.g. the linear congruence
generator (LCG) or the Mersenne Twister [Matsumoto and Nishimura 1998]. Unlike
classical algorithms, chaos-based PRNGs are implemented based on chaotic systems
that produce values with random-like properties. In fact, significant progress has
been reported, for example, with the CB-PRNGs based on differential equations and
recurrence maps [Radwan et al. 2016, WANG and YANG 2012, Öztürk and Kılıç 2015,
FranÇois et al. 2014, Min et al. 2013, Hu et al. 2013], as well as using chaotic cellular
automata [Tomassini et al. 2000, Spencer 2015, Hortensius et al. 1989].

One of the most important properties of the chaos theory is its sensitivity to the
initial conditions since the smallest variation on the initial conditions (seed) can disturb
completely the system over time (butterfly effect). Additionally, because of its random-
like behavior, and its unpredictability, that is, the difficulty of being able to predict over
a long period what the system’s behavior will be in the future. All these features are
of great applicability in different branches including cryptography and PRNGs, where
there is a need to obtain sources of pseudo-randomness in chaotic systems with a high
positive Lyapunov exponent. For this reason, the close relationship between chaos and
pseudo-randomness has aroused great interest in the academic community, which is also
commercially and militarily exploited, as demonstrated by the state-of-the-art over the
past 32 years.



Notwithstanding, some researchers have expressed certain doubts about the cha-
otic properties of well-known chaotic maps, such as the logistic map in the context of
cryptography, which presents non-uniform probability distribution (pattern U), where a
plateau distribution is expected; dependence of the control parameter which may lead
to periodic windows; large enough ciphertext samples that can estimate the parame-
ter [Álvarez et al. 2003]; short cycle length orbits where long periodicity is expected
depending on machine limitations [Persohn and Povinelli 2012]; degradation of digital
chaotic system problems [Hu et al. 2014].

However, we have observed that the true potential of chaotic systems relies on the
infinitesimal depth of the precision digits of their orbit points. For example, considering
the well-known Mandelbrot set, when displayed on a computer screen, it reveals interes-
ting but rather limited patterns. However, when this pattern is repeatedly extended, a large
number of complex patterns can be distinguished and, certainly, is in these magnificati-
ons where legitimate chaos occurs. Thus, higher computational precision is required to
exploit the deep-zoom of a chaotic system and hence to investigate the pseudo-random
properties of such chaotic systems.

In this thesis, we presented patterns and pseudo-randomness as an approach that
relates both concepts, which traditionally are seen as opposites. This approach uses the
mathematical basis of complex systems for two purposes: on the one hand, to explore the
spectrum of pseudo-randomness of chaotic systems in a quest to achieve true randomness
and, on the other hand, the development of methods based on artificial life and complex
networks such as method of pattern recognition that finally intertwined the search for pat-
terns in pseudo-random sequences. In this thesis two important questions are developed:
is it possible to generate pseudo-random numbers as close to true randomness? Is it possi-
ble to create a method that generates such random numbers that make it difficult to search
for patterns? The answer to both questions is affirmative.

In this work, we developed a method that explores the deep-zoom properties of
the chaotic systems, specifically in the logistic map and tent map, as sources of pseudo-
randomness. We observe that the patterns disappear and the pseudo-randomness is in-
creased by removing k-digits to the right of the decimal separator of each of the points
of an original orbit of a chaotic map. Thus, a rapid transition from “weak” randomness
to “strong” was evidenced as k tends to infinity, which allows assessing to a spectrum
of pseudo-randomness manipulated parametrically. This conjecture becomes more evi-
dent since the different strategies analyzed (statistical tests, dynamics analysis of chaotic
systems, analysis of the Lyapunov exponent and spectral analysis) corroborate that k is
related to the pseudo-random qualities. Finally, this same approach was used to analyze
the sequences of pseudo-random numbers generated by the gold standard of the k-logistic
map in the context of pattern recognition. Our main results are summarized as follows:

• Regarding chaos theory, it has been corroborated that, despite the simplicity of
some chaotic systems, it is possible to obtain good sources of pseudo-randomness.
• We developed two chaos-based PRNGs based on the k-logistic map and the
k-tent map, respectively, that yielded an article published in the Chaos jour-
nal [Machicao and Bruno 2017].
• The main product of this thesis is that we obtained a parameterized gold-standard

PRNG, which is the first of its kind into the literature. The gold standard repre-



sents an important research tool that can aid the development of three different
areas: pattern recognition, cryptography, and cryptanalysis. Since it can generate
virtually infinite sets of random numbers with known theoretical basis. Conse-
quently, the proposed approach has brought significant advances to a wide range
of fields including cryptography and cryptoanalysis.

2. Main results

In this work, it was observed that the pseudo-random properties of a chaotic map can
be improved as k increases. In fact, by means of all the visualization tools (bifurcation
diagram, Poincaré diagram, frequency histogram), analysis by the Lyapunov exponent, of
the randomness tests, including spectral analysis; suggest that the quality performance of
the proposed PRNG with k ≥ 4-logistic map overpass the pseudo-randomness properties
of classical PRNG such as LCG and Mersenne Twistter.

Hereafter, we summarized all of the main results obtained. All subsequent experi-
ments were focused on one of the more chaotic regions of the k-logistic map provided by
the parameter µ = 4 which corresponds to the largest Lyapunov exponent and the most
chaotic region as well. In Fig. 1a-b, we can observe the Poincaré diagram, which rela-
tes the sequences xkt , x

k
t+1 and xkt+2, respectively. The original orbit k0 shows the classic

inverted parabola of the logistic map, whose pattern remains in the 3D plot. Then, from
top to bottom, we present the phase diagrams from k1 to k4, we can observe the transfor-
mation of the parabola pattern into zig-zag patterns, which are progressively disappeared
until they become visually random, as can be seen from k2 onwards. In fact, it is observed
that the phase space is being filled as k increases, that is, that k-logistic map produces
almost all possible values between [0, 1], as expected of a good pseudo-random number
generator and also becomes a non-invertible map. So future and past numbers are beco-
ming more uncorrelated. In Fig. 1c is observed the Fourier power spectrum displayed in
two dimensions. From top to bottom, this spectral analysis is shown for different values
of the parameter k, for k0, k1, k2, k3 and k4. For the original logistic map (k0) the parallel
traces indicate the presence of patterns, however, as the value k is increased, the spectral
density is approaching to a constant in the center, which is a clear indicator of the absence
of patterns.

For the purposes of good construction of a PRNG, a uniform distribution is expec-
ted as much as possible [Álvarez and Li 2006, Arroyo 2009]. The U pattern of this distri-
bution is evident by looking at the first graph of Fig. 1d, which represents the frequency
curve of the original orbit k0 using the parameter µ = 4. This U pattern is well known
in the theory of dynamic systems since the logistic map follows an invariant probability
density function. However, from top to bottom, it can be seen that this distribution beco-
mes more uniform as k increases, that is, the pseudo-random properties of the k-logistic
map changes becoming, in spite of redundancy, more random as k � 1. In addition, this
uniformization process is illustrated in Fig. 1e, which shows a comparison of the former
curves [Machicao and Bruno 2017].

Besides the former plots, the results of the 18 statistical tests are reported in Ta-
ble 1 and Table 2, for the DIEHARD suite and the NIST suite, respectively. Each column
corresponds to the number of files that passed the sub-tests. In both tables, the tests that
failed in at least 50 files were highlighted in gray, which can be observed in the case of k0,
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Figura 1. Different visual results for the k-logistic map for k0, k1, k2, k3 and k4 (top
to bottom) using µ = 4. (a-b) Two- and three-dimensional diagrams are shown
on the left and right column, respectively. The horizontal and vertical axes show
the phase space of xkt against xkt+1. Each orbit contains 104 points started from
random initial conditions, where the first 200 iterations were discarded (transient
time). (c) 2D Fourier power spectrum for 1503 numbers generated by PRNG k-
logistic map. (d) Frequency distribution curves. Horizontal axis shows the x ∈
[0, 1] (500 bins) and vertical axis shows the frequency of the 104 values discarding
firsts 103 transient values. The curves represent the mean and standard deviation
(shaded error bar) for sequences generated over 100 random initial conditions.
(e) The inset plot depicts a zoom on the windows x ∈ [0, 0.03]. Adapted from
[Machicao and Bruno 2017].



k1, k2 and k3-logistic map. We observed that k = 0 fails to both Diehard and NIST tests,
however the panorama changes as the parameter k increases. The k-logistic map passes
on all of the tests from Diehard and NIST when k ≥ 4.

Tabela 1. Average number of files that passed Diehard tests using the k-
logistic map PRNG from 100 file samples. Severely failed tests are shown in
gray. All tests passed using the interval 0.0001 < p-value < 0.9999. Source:
[Machicao and Bruno 2017].

Diehard tests k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

BirthdaySpacings [KS] 100 100 100 100 100 100 100 100 100 100
OverlappingPermutations 99 97 98 95 98 96 98 98 99 100
Ranks31x31 matrices 100 100 100 100 100 100 100 100 100 100
Ranks32x32 matrices 100 100 100 100 100 100 100 100 100 100
Ranks6x8 matrices [KS] 0 0 25 99 100 100 100 100 100 100
Monkey20bitsWords [KS] 0 99 100 100 100 100 100 100 100 100
OPSO [KS] 98 99 100 100 100 100 100 100 100 100
OQSO [KS] 98 100 100 100 100 100 100 100 100 100
DNA [KS] 100 100 100 100 100 100 100 100 100 100
Count1sStream 0 0 0 98 100 100 100 100 100 100
Count1sSpecific [KS] 0 0 0 0 94 100 100 100 100 100
ParkingLot [KS] 100 100 100 100 100 100 100 100 100 100
MinimumDistance [KS] 96 100 100 100 100 100 100 100 99 100
RandomSpheres [KS] 100 100 100 100 100 100 100 100 100 100
Squeeze [KS] 100 100 100 100 100 100 100 100 100 100
OverlappingSums [KS] 100 100 100 100 100 100 100 100 100 100
Runs (up) 100 100 100 100 100 100 100 100 100 100
Runs (down) 100 100 100 100 100 100 100 100 100 100
Craps (wins) 100 100 100 100 100 100 100 100 100 100
Craps (throws/game) 100 100 100 100 100 100 100 100 100 100

Tabela 2. Number of files that passed the NIST test suites [Rukhin et al. 2001] for
the k-logistic map. Failed tests are shown in gray. All the tests passed to the
α = 0.01 significance level. Source: [Machicao and Bruno 2017].

NIST tests k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

Frequency 98 99 99 99 99 99 99 99 99 99

BlockFrequency (m = 128) 0 1 66 95 98 98 99 100 99 99

CumulativeSums
Forward sums 97 98 99 99 98 99 99 99 99 99
Reverse sums 97 99 99 99 99 99 99 99 99 99

Runs 0 0 14 91 98 99 99 99 99 100

LongestRun 0 0 15 89 98 99 98 100 99 99

Rank 99 100 99 99 99 99 99 99 99 99

FFT 77 98 99 99 99 99 99 99 99 99

Non-overlappingTemplate
000000001 0 0 48 97 99 99 99 100 99 99
000000011 0 3 87 98 99 99 99 99 99 99
000000101 0 41 94 98 98 99 99 99 98 99

OverlappingTemplate 0 0 11 93 98 99 98 99 99 99

Universal 0 68 97 98 99 99 99 99 99 99
ApproxEntropy (m = 10) 0 0 64 98 99 99 99 100 99 99

RandomExcursions
x = -4 90 98 99 99 98 99 99 99 99 100
x = -3 91 97 99 99 99 99 99 99 99 99
x = -2 94 99 98 99 99 98 99 99 99 99
x = -1 95 99 99 98 99 99 99 99 99 100

RandExcursVar
x = -9 99 100 99 99 100 99 99 99 99 100
x = -8 99 99 99 99 99 99 99 99 99 100
x = -7 100 99 99 99 99 99 99 99 99 100
x = -6 100 99 99 99 99 99 98 99 99 99
x = -5 100 99 99 99 99 99 99 99 99 99
x = -4 99 100 99 99 99 99 99 99 99 99
x = -3 99 100 99 98 99 99 99 99 99 99
x = -2 99 99 99 98 99 99 99 100 99 99
x = -1 99 99 99 99 99 99 99 99 99 99

Serial (m = 16)
Serial 1 0 1 82 96 98 99 99 98 99 99
Serial 2 10 81 95 98 98 99 99 99 98 99

LinearComplexity (M = 500) 99 98 99 99 99 99 99 98 99 99

In all of these analyzes, we have found that the pseudo-random properties of the
logistic map can be noticeably improved when k is increased. In fact, patterns become in-
creasingly widespread until they become visually indistinguishable (k ≥ 4). With respect



to the pseudo-randomness tests, it was also corroborated that the sequences generated
by using the map k ≥ 4-logistic map passed successfully for the randomness tests of
DIEHARD and NIST. Thus, we formulated the following conjecture: as the k parame-
ter increases, the pseudo-randomness is improved, going from the regular pattern (k0)
to the most random (k∞). Obviously, in computational terms, k∞ would be impossible
to prove, but we are not intending to exploit this side of the conjecture, but to exploit
the fact the parameter k increases the pseudo-randomness and thereby creating a useful
tool: a PRNG gold standard. With this gold standard, it is possible to generate datasets
produced with different parameters k that provide the distinct classes, which allows the
study and development of methods aimed at the recognition of patterns and non-linear
time series.
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• MACHICAO, J.; CORRÊA E. Jr.; MIRANDA, G.H.B.; AMANCIO, D.; BRUNO,

O. M. Authorship attribution based on Life-Like network automata. Plos One, v.
13 (3), p. e0193703, 2018.
• MACHICAO, J.; RIBAS, L.; SCABINI, L; BRUNO, O. M. Cellular automata rule

characterization and classification using texture descriptors. Physica A v. 497, p.
109—117, 2018.
• MACHICAO, J.; BRUNO, O. M. Improving the pseudo-randomness properties of

chaotic maps using deep-zoom. Chaos: an interdisciplinary journal of nonlinear
science v. 27 p. 053116, 2017.
• MACHICAO, J.; BRUNO, O. M. A cryptographic hash function based on chaotic

network automata. Journal of Physics: conference series v. 936, p. 012058, 2017.
• FILHO, H. A.; MACHICAO, J.; BRUNO, O. M. Geometry from stomata

networks at leaves of the Ctenanthe oppenheimiana. Journal of Physics: con-
ference series v. 936, p. 012085, 2017.
• FILHO, H. A.; MACHICAO, J.; BRUNO, O. M. Geometric plasticity at leaves

from Ctenanthe oppenheimiana probed by measure of distances between stomata.
Journal of Physics: conference series v. 936, p. 012094, 2017.
• MIRANDA, G. H. B; MACHICAO, J.; BRUNO, O. M. Exploring spatio-temporal

dynamics of cellular automata for pattern recognition in networks. Scientific Re-
ports v. 6 n. 37329, 2016.
• MIRANDA, G. H. B; MACHICAO, J.; BRUNO, O. M. Network Analysis Using

Spatio- Temporal Patterns. Journal of Physics: conference series v. 738 p.
012011, 2016.
• MACHICAO, J.; BAETENS, J. M.; MARCO, A. G.; DE BAETS, B.; BRUNO, O.

M. A dynamical system approach to the discrimination of the modes of operation
of cryptographic systems. Communications in Nonlinear Science and Numerical
Simulation v. 29 n. 1–3, p. 102–115, 2015.
• MACHICAO, J.; BAETENS, J. M.; MARCO, A. G.; DE BAETS, B.; BRUNO,

O. M. A Dynamical Systems Approach to the Discrimination of Cryptographic



Modes of Operation. In: 8th International Congress on Industrial and Applied
Mathematics, 2015, Proceedings... Beijing, China 2015, p. 61.

3.2. In press
• MIRANDA, G. H. B; MACHICAO, J.; BRUNO, O. M. An optimized shape des-

criptor based on structural properties of networks. Digital Signal Processing.
• MIRANDA, G. H. B; MACHICAO, J.; BAETENS, J. M.; DE BAETS, B.

BRUNO, O. M. A family of network automata based on neighborhood density.
Automata 2018.

3.3. Submitted
• MACHICAO, J.; ALVES, M.; BAPTISTA, M.; BRUNO, O. M. Exploiting ergo-

dicity of the k-logistic map to improve security in cryptographic systems. Chaos:
an interdisciplinary journal of nonlinear science.
• MACHICAO, J.; ALMEIDA, H. A.; LAHR, D. J. G.; BUCKERIDGE, M.;

BRUNO, O. M. Topological assessment of metabolic networks reveals evoluti-
onary information. Scientific Reports.

3.4. In drafting stage
• MACHICAO, J.; ALMEIDA, H. A.; BRUNO, O. M. Analyses of the stomatic

phenotypic plasticity by using Life-Like network automata (LLNA).
• MACHICAO, J.; RIBAS, L.; BRUNO, O. M. Binary Pattern on Life-Like

Network Automata to Network Classification.
• MACHICAO, J.; BRUNO, O. M. Dynamical analysis of a deformation on unimo-

dal maps.
• MACHICAO, J.; BRUNO, O. M. The logistic map and the number of the beast.
• MACHICAO, J.; ALVES, M.; BRUNO, O. M. Analyzing the Life-Like network

automata rule space based on parametric pseudo-randomness.
• MACHICAO, J.; SCABINI, L; RIBAS, L.; BRUNO, O. M. Life-Like cellular

automata rule space clustering using texture descriptors.
• MIRANDA, G.; MACHICAO, J.; BAETENS, J. M.; DE BAETS; BRUNO, O. M.

Family of like-like network automata for pattern recognition.
• LARSEN, B. MACHICAO J.; BRUNO, O.M. A randomness test based on the

probability intermittency distribution.

Referências
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