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Abstract. This work investigates efficient and secure implementations of
Curve25519 to build a key exchange protocol on an ARM Cortex-M4 microcon-
troller, along with the related signature scheme Ed25519 and a digital signature
scheme proposal called qDSA. As result, performance-critical operations, such
as modular multiplication, are greatly optimized; in this particular case, a 50%
speedup is achieved, impacting the performance of higher-level protocols.

1. Introduction

The ubiquity of technology tends to pervade every single area of knowledge, including
environmental, personal, professional and industrial applications. Small-factor computing
devices are deployed to identify an in-manufacturing item in a production line, to detect
changes in the chemical properties of the soil where crops are cultivated, and to control
life-supporting equipment, such as pacemakers and implantable defibrillators [Atzori
et al. 2010]. These devices are equipped with the ability of running private, safety-
critical or legally liable activities, sensible data collection, manipulation, and transmission.
Complex schemes providing data security are hardly implemented, despite the relevance
of collected data. For example, sensor networks may collect personally identifiable
information available in tags inside cars for surveillance purposes without any kind of data
protection.

A possible way to deploy security in new devices is to reuse well-known building
blocks, such as the Transport Layer Security (TLS) protocol. In comparison with reinvent-
ing the wheel, using a new, under-analyzed option, this has a major advantage of avoiding
risky security decisions that may repeat issues already solved in TLS. In the handshaking
phase, asymmetric (or public key) cryptographic schemes are largely used; namely, key
exchanges and digital signatures.

In the Request for Comments (RFCs) 7748 and 8032, published by the Inter-
net Engineering Task Force (IETF), two asymmetric cryptographic protocols based on
the Curve25519 elliptic curve and its (twisted) Edwards form are recommended and
slated for use in the TLS suite: the elliptic curve Diffie-Hellman key exchange us-
ing Curve25519 [Bernstein 2006] called X25519 and the Ed25519 digital signature
scheme [Bernstein et al. 2012]. These schemes rely on a careful choice of parameters,
favoring secure and efficient implementations of finite field and elliptic curve arithmetic
with smaller room for mistakes due to their overall implementation simplicity. Protocols
based on the curve are used in numerous softwares, including The Tor Project, OpenSSH
and the Google Chrome browser.



The main objective of this work was to provide an efficient implementation of the
Curve25519-based cryptographic protocols, resistant to side-channel attacks; in particular,
timing and cache attacks. This required efficient underlying arithmetic modulo 2255 − 19
with no conditional branches to avoid timing issues, leading to handcrafted implementations
in assembly code to avoid compiler interference. At the protocol level, elliptic curve group
arithmetic was also optimized; in particular, the scalar multiplication operation.

2. Methodology

Efficiently implementing the arithmetic operations of a cryptosystem is the most fun-
damental way to improve performance in cryptographic schemes. In order to speed up
group operations in Curve25519 and in its Twisted Edwards birrationally equivalent curve,
strategies to operate with 256-bit long numbers were designed and implemented to speed
up basic arithmetic operations of numbers in finite field modulo p = 2255 − 19, hereon
denoted as Fp.

2.1. Curve25519-based Protocols

Curve25519 [Bernstein et al. 2012] is a curve defined over the prime field F2255−19

represented through the Montgomery model

Curve25519: y2 = x3 + Ax2 + x, (1)

compactly described by the small value of the coefficient A = 486662. This curve model
is ideal for curve-based key exchanges, because it allows the scalar multiplication to
be computed using x-coordinates only. This property is explored in the Elliptic Curve
Diffie-Hellman X25519 key exchange protocol.

The Edwards-curve Digital Signature Algorithm [Bernstein et al. 2012] (EdDSA)
is a signature scheme variant of Schnorr signatures based on elliptic curves represented in
the Edwards model. Using a birational equivalence, Curve25519 can be also represented in
the twisted Edwards model using full coordinates to allow instantiations of secure signature
schemes:

edwards25519: − x2 + y2 = 1− 121655

121666
x2y2. (2)

When EdDSA is used with Equation 2, the instance is called as the Ed25519 signature
scheme.

A Kummer variety K computed by K = E/〈±1〉 is foundation of the Quotient
Digital Signature Scheme (qDSA) [Renes and Smith 2017]. If E is an elliptic curve,K turns
out to be an one-dimensional space known as the x-line, in which scalar multiplications are
still possible. In a instance of qDSA using the parameter E = Curve25519, this scheme
allow that X25519 keys be used, without modifications, to sign data.

2.2. Target Architecture

The ARMv7E-M instruction set, present on the Cortex-M4 and higher-end cores, comprises
of standard instructions for basic arithmetic (such as addition and addition with carry) and
logic operations, but differently from other lower processors classes, there is support for the
so-called DSP instructions, which include multiply-and-accumulate (MAC) instructions:



• Unsigned MULtiply Long: UMULL rLO, rHI, a, b takes two unsigned inte-
ger words a and b and multiplies them; this double-word result is stored as (rHI,
rLO).
• Unsigned MULtiply Accumulate Long: UMLAL rLO, rHI, a, b takes un-

signed integer words a and b and multiplies them; the product is added and written
back to the double word integer stored as (rHI, rLO).
• Unsigned Multiply Accumulate Accumulate Long: UMAAL rLO, rHI, a, b

takes unsigned integer words a and b and multiplies them; the product is added
with the word-sized integer stored in rLO then added with the word-sized integer
rHI. The double word integer is then stored as (rHI, rLO).

The mentioned MAC instructions takes one CPU cycle for execution in the Cortex-M4
and above [ARM 2010]. However, those instructions deterministically take an 3rd extra
cycle to write rLO back and a 4th cycle to write into rHI. This makes proper instruction
scheduling necessary to avoid pipeline stalls.

2.3. F2255−19 Arithmetic Implementation
Each 255-bit integer field element is densely represented, using 232-radix, implying in
eight “limbs” of 32 bits, each one in a little-endian format.

The 256-bit addition is implemented by respectively adding each limb in a lower
to higher element fashion. With no extra bits to store in the dense representation, the
carry flag, present in the ARM status register, is used to ripple the carry across the limbs
without overhead, with the Add-with-Carry (ADC) instruction handling it. The result must
be always less than 2256 − 1, fitting in the 8 32-bit long limbs, requiring further handling
of the carry flag if it is set by the end of the routine. Subtraction follows a similar strategy.

A “weak” modular reduction modulo 2256 − 38 is performed at the end of every
field operation in order to avoid extra carry computations between operations, as suggested
in [Düll et al. 2015]; this reduction must find a integer less than 2256 that is congruent
modulo 2255 − 19. “Strong” modular reduction modulo p = 2255 − 19 is only used when
results must be communicated to the other party. This operation is not used in-between
operations because the “weak” modular reduction, in the cases after multiplication and
squaring for example, takes approximately 10% less cycles than a strong modular reduction
modulo p.

The multiplication by a word operation is used a single time when doubling a point
in X25519, where a 256-bit long integer must be multiplied by d = 121666. This operation
follows the algorithm described in [Santis and Sigl 2016].

2.3.1. Multiplying two 256-bit numbers

The 256× 256→ 512-bit multiplication follows a product-scanning like approach; more
specifically, Full Operand-Caching [Seo and Kim 2015], using parameters n = 8, e = 3,
r = bn/ec = 2; since b3/2c < 8− 2 · 3 ≤ 3. Figure 1 illustrates this instance.

Storing partial products in extra registers without adding them avoids potential carry
values, which requires at least 2-3 extra CPU cycles to handle. In a trivial implementation,
a register accumulator may be used to add the partial values, potentially generating carries.
The UMAAL instruction can be employed to perform such addition, while also taking



A[7]B[7]

A[0]B[7]

A[7]B[0]

A[0]B[0]

C[0]C[7]C[14]

r0

r1

binit

......

Figure 1. Full Operand-Caching method to multiply two 8-word integers. Black
dots represents 32× 32-bit multiplications

advantage of the multiplication part to further calculate more partial products. This
instruction never generates a carry bit, since (2n−1)2+2(2n−1) = (22n−1), eliminating
the need for extra handling. Partial products generated by this instruction can be forwarded
to the next multiply-accumulate(-accumulate) operation; this goes on until all rows are
processed. Figure 2 show a toy example of multiplication employing the product scanning
approach with 3-word sized operands A and B using the UMLAL and UMAAL instructions.

The multiplication strategy using the UMAAL instruction can be also used to imple-
ment a 256-bit multiplication using a operand-scanning approach. Figure 3 shows a toy
example of the operand-scanning approach for multiplication with 3-word sized operands
A and B using the aforementioned strategy.
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Figure 2. Multiplying two 3-
word integers with the product
scanning approach using the
UMLAL and UMAAL instructions.
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Figure 3. Multiplying two 3-
word integers with the operand
scanning approach using the
UMLAL and UMAAL instructions.

2.3.2. Squaring

We implemented a squaring operation based on the Sliding Block Doubling (SBD) algo-
rithm presented in [Seo et al. 2013]. With the usage of carry flag present in the ARM
architecture, both Sliding Block Doubling and the Bottom Line steps of SBD can be ef-
ficiently computed. In order to avoid extra memory access, those two routines may be
implemented without reloading operands; because of the need of the carry bit in both those



operations, high register pressure may arise in order to save them into registers. Calculating
some multiplications akin to the Initial Block step, as in the Operand Caching [Hutter and
Wenger 2011] multiplication method, reduces register usage by spilling partial results in
memory. This allows proper carry catching and handling in exchange for a few memory
accesses. This method is exemplified in Figure 4.

C[0]C[7]C[14] ......

A[7]A[7]

A[7]A[0]

A[0]A[0]

binit

Figure 4. Sliding Block Doubling, computing an initial block beforehand. Black
dots represents 32× 32-bit multiplications; hollowed ones represent squarings.

3. Results
Table 1 presents timings and Table 2 shows the code size for field operations with imple-
mentation described in Section 2.3. In comparison to the previous state-of-art [Santis and
Sigl 2016], our addition/subtraction take 18% less cycles; the 256-bit multiplier with a
weak reduction is almost 50% faster and the squaring operation takes 30% less cycles.
Implementation of all arithmetic operations take less code space in comparison to [Santis
and Sigl 2016], ranging from 20% savings in the addition to 50% in the 256-bit multiplier.

Table 1. Timings in cycles for arithmetic in F2255−19 executing in ARM Cortex-M4
controllers; average of 256 executions. Two 256-multiplication implementations
are measured: one based on the Fully Consecutive Operand Caching (“COC”)
and the other one based on Operand Scanning (“OpScan”). a Teensy 3.1 board.
b STM32F401C board.

Cortex Add/Sub Mult Mult
by word Square Inversion

[Santis and Sigl 2016] M4 106 546 72 362 96337
COC OpScan

This work
M4 @ 48 MHz a 91/89 284 329 95 251 66681
M4 @ 72 MHz a 91/89 311 358 100 290 77356
M4 @ 84 MHz b 91/89 274 321 92 245 64955

As noted by [Haase 2017], cycle counts of a given code running on the same
Cortex-M4-based controller can be different depending on the clock frequency set on the
controller. This may happen when a slower frequency is set to the memory controller,
causing stalls on the CPU if the running code depends on memory access. Operations
relying on memory operations, such as the 256-bit multiplication and squaring, use 10%
more cycles when the controller is set to a 33% higher frequency, for example. This
behavior is also present on cryptographic schemes implementations, since those are subject
to compiler interference once those were implemented in a higher level language.

Cycle counts of the X25519 function, Ed25519 and qDSA (instantiated with
Curve25519) operations implementations executed on the target processors are shown in
Tables 3 and 4.



Table 2. Code size in bytes for implementing arithmetic in F2255−19, X25519,
Ed25519 and qDSA with Curve25519 protocols on the Cortex-M4. Code size for
protocols considers the entire software stack needed to perform the specific ac-
tion, including but not limited to field operations, hashing, tables for scalar multi-
plication and other algorithms.

Add Sub Mult Mult by word Square
De Santis [Santis and Sigl 2016] 138 148 1264 116 882
This work 110 108 622 92 562

Inversion X25519 Ed25519 Key Gen. Ed25519 Sign Ed25519 Verify
De Santis [Santis and Sigl 2016] 484 3786 - - -
This work 328 4152 21265 22162 28240

qDSA Key Gen. qDSA Sign qDSA Verify
Left to Right Montgomery 14546 20720 15856
Right to Left Montgomery [Oliveira et al. 2017] 24762 29756 25516

X25519 was implemented using the standard Montgomery ladder over the x-
coordinate. Standard tricks like randomized projective coordinates (amounting to 1%
performance penalty) and constant-time conditional swaps were implemented for protection
against power analysis and timing attacks, respectively. Our implementation is 42% faster
than De Santis and Sigl [Santis and Sigl 2016] while staying competitive in terms of code
size.

Key generation and message signing using the Ed25519 scheme requires a fixed-
point scalar multiplication, here implemented using the signed-comb algorithm proposed
in [Hamburg 2012] running in constant-time. We use five teeth for each of the five blocks
and 10 combs for each of the 5 blocks (11 combs for the last one) of the signed-binary
representation of the scalar, much like in the multi-comb approach described in [Hankerson
et al. 2003]. Those parameters where chosen due to the performance balance between a
direct and linear table scan to access precomputed data; this one required if the presence of
cache memory on the CPU requires protection against side-channel attacks. To compute
the scalar multiplication, our implementation requires 50 point additions and 254 point
doublings. Five lookup tables of 16 points in Extended Projective coordinate format with
z = 1 are used, adding up to approximately 7.5 KiB of data. Verification requires a double-
point multiplication involving the generator B and point A using a w-NAF interleaving
technique [Hankerson et al. 2003], with a window of width 5 for the A point, generating
on-the-fly an auxiliary table in volatile memory using 3 KiB. The group generator B is
interleaved using a window of width 7, implying in a lookup table of 32 points stored in
Extended Projective coordinate format with z = 1 taking 3 KiB of ROM.

The qDSA signature scheme is also impacted by the fixed-base scalar multiplication.
A right-to-left implementation of the Montgomery ladder [Oliveira et al. 2017] with a 8 KiB
table is used to store multiples of the generator point in ROM. This approach was chosen
over methods requiring auxiliary tables to compute a fixed-base scalar multiplication. In
these cases, protection to table accesses in cases where cache memory is present may cause
extra performance overhead proportional to the number of entries of a precomputed table.

Our X25519 implementation is inherently protected against timing attacks (i. e.
constant-time execution); the Ed25519 implementation also runs in constant-time (in
exception to the verification procedure) and inherently protected against cache attacks due
to lack of cache memory on tested platforms. The qDSA implementation is also inherently
constant time, and, since no secret indexes are used to access the auxiliary table, there’s no



need to protect it against cache attacks.

Table 3. Timings in 103 cycles to compute X25519; and key generation, signature
and verification of a 5-byte message in the Ed25519 scheme. Numbers are an
average of 256 executions. The measures for this work takes in account the best
256-bit multiplier shown on Table 1. a Teensy 3.1 board. b STM32F401C board.

Cortex X25519 Ed25519 Key Gen. Ed25519 Sign Ed25519 Verify
De Santis [Santis and Sigl 2016] M4 1,563.8 - - -

This work
M4 @ 48 MHz a 925.7 353.0 501.7 1,323
M4 @ 72 MHz a 1,036.6 385.6 537.2 1,463.6
M4 @ 84 MHz b 913.8 394.7 549.0 1,360.8

[Moon 2012] M4 @ 48 MHz a - 693.9 750.5 1,967.7
M4 @ 72 MHz a - 738.4 796.7 2,026.4

Table 4. Timings in 103 cycles for key generation, signature and verification of
a 5-byte message in the qDSA scheme. Numbers taken as the average of 256
executions on a Teensy 3.1 board clocked at 48 MHz.

qDSA Key Gen. qDSA Sign qDSA Verify
Left to Right Montgomery 927.9 1,059.1 1,746.2
Right to Left Montgomery [Oliveira et al. 2017] 614.5 744.8 1,451.8

4. Conclusion

Given the performance numbers shown in Tables 1, 3, and 4, we consider that our imple-
mentation is competitive in comparison to the previous state-of-art while not using too
much ROM (Table 2). Using Curve25519 and its corresponding Twisted Edwards form in
well-known protocols is beneficial in terms of security, mostly due to its maturity and its
widespread usage to the point of becoming a de facto standard.

Partial results of this work were published in the Fifth International Conference
on Cryptology and Information Security in Latin America (Latincrypt 2017) in the paper
“Curve25519 for the Cortex-M4 and Beyond” [Fujii and Aranha 2017] and in the Seventh
International Conference on Security, Privacy, and Applied Cryptography Engineering
(SPACE 2017) [Faz-Hernández et al. 2017].

The full dissertation, as in its preprint version, is avaliable at http://ic.
unicamp.br/˜ra180790/msc/.
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