
Click Fraud Detection and Prevention System
For Ad Networks

Paulo S. de Almeida1, João J. C. Gondim1

1Departamento de Ciência da Computação – Universidade de Brası́lia (UnB)
Brası́lia – DF – Brazil

Abstract. Click fraud detection consists of identifying the intention behind the
clicks a system receives. A system that detects and prevents this type of fraud
is proposed and implemented, based on the ad network, one of the 3 agents in
the online ad environment. To validate, 3 servers were used, representing said
agents. A bot simulates an attacker, and the frauds are ultimately identified by
our proposed detector in tested scenarios.

1. Introduction

The publicity domain grows continually by the day. The report from eMarketer
[McNair 2017] states an estimated growth of nearly 16% for digital advertisement in the
United States compared to the previous year, almost 83 billion dollars (roughly 40% of
the overall investment in advertising). With these numbers, we can see the importance of
the domain and related fields, like detection of click frauds, which are essentially clicks
generated by malicious users. Their identification relies heavily on HTTP requests and
contextual information for such requests.

2. Technical Review

Online advertisement involves four agents. The advertiser wishes to publicize their prod-
uct or service to people that may be interested, the users. To do that, they count with the
publisher, someone with their own publicity platform. The ad network is a middleman
between publishers and advertisers. Click fraud happens in context of a pay-per-click
model, where the advertiser pays for every click their ad receives, and can be defined as
intentional clicks, automated or done by a person, that don’t represent interest in the ad.

[Kitts et al. 2015] presents an overview on the Microsoft adCenter system and de-
sign aspects of it. [Xu et al. 2014] provides a report on the techniques used for a fraud
detection system on the advertiser. However, the lack of reports on ad network systems
is evident, and the elaboration upon design details and implementation of fraud detec-
tion leaves something to be desired. On fraud methods, [Daswani and Stoppelman 2007]
reports on the inner workings of a click fraud botnet, and presents the concept of low-
frequency attacks, which occur over a long period of time, using a small amount of clicks
over short time slots, as to not be detected by methods that look at expected click rates for
a given ad. Reports such as [Leyden 2006] and [Court 2009] go over other cases.

3. Proposal and Implementation

[Kitts et al. 2015]’s proposal is the basis for the overall architecture of the system. The
rules JavascriptEnabledRule and ExternalBehaviorRule in the system derive from



[Xu et al. 2014], while the other rules and their classifications are this work’s novel con-
tribution.

The system has two parallel processes, Online Analysis and Offline Analysis. In
the former, the user goes through a module called URL Hash, which will prevent reuse
of ad URLs by making a unique URL for the user when they see the ad, based on HTTP
headers and a private key from the system, and then verifies it when the user clicks the
ad. Afterwards the user gets redirect to two pages in the domain as their requests go
through the online rules. Finally, the system’s analysis on the user’s legitimacy is stored
in the Database. The latter process takes those recorded requests as input and does further
analysis on them through the offline rules, being the last part of the automatic process to
judge the users’ intentions.

Rules are the main method through which the system will detect frauds, and every
click the ad receives passes through all the rules. They can be divided between online
rules, which are quick and executed during the user’s access to the ad network’s domain
and offline rules, which use the request database to identify odd access behavior from
IPs. Two more groups are defined for the rules: decisive rules will identify a user as
being fraudulent if they fail at any of them, while indicative rules give a probability for
the user to be malicious. The latter have weights associated with them, which are rational
numbers, including negatives. Negative weight indicates that failing the rule will not hurt
the user’s chance of being considered legitimate.

Decisive and online rules are BlacklistRule (checks if the user’s IP is in a table of
blacklisted IP addresses), HumanTimerRule (verifies if the time between the ad loading
or different clicks from the same user are humanly possible, given the average human re-
action time of roughly 0.2 seconds [Census at School Canada 2017], [Thorpe et al. 1996],
and 0.3 seconds estimated for the user to be interested enough to click) and Accept-
LangRule (looks for a valid Accept-Language header). PagesLoadedRule is decisive
and offline, and verifies if the user has visited all the expected pages, like javascript files,
while not accessing pages a normal user wouldn’t, like URLs hidden in HTML code.

Indicative and online rules are JavascriptEnabledRule (most internet users have
javascript and cookies enabled [Xu et al. 2014], [Priebe 2009], [Winnicki 2016]. This
rule will thus verify both by sending a the user a cookie via javascript code in the
page), UserAgentRule (verifies if the request contains a valid UserAgent HTTP header),
DoNotTrackRule (confirms if the user’s request has a DNT field. Should have a negative
weight, as explained previously) and RedirectTimeRule (looks at how much time the
user took to be redirected from the 1st to the 2nd page. A higher delay indicates the user
might be a bot).

Indicative and offline rules are TimePeriodRule (looks over the stored requests to
find odd access patterns by searching for 3 clicks within a short period or 5 or more clicks
within a longer period, all from the same IP) ExternalBehaviorRule (verifies reports sent
by advertisers. The report should contain categories like Number of Clicks and Mouse
Events, split by the values in the first page and in other pages).

During the click process, the user will be redirect through 2 pages in the ad net-
work’s domain before being sent to the ad’s page; this is done to obtain information that
wouldn’t be possible from a single page access. The first page will put the request through



the HumanTimer, Blacklist, AcceptLang and DNT rules, while the 2nd will aply the
rules UserAgent, Javascript and RedirectTime.

The attack bot created to test the system focuses on getting the highest number
of clicks possible without being caught. To emulate the progress a real attacker would
go through, the bot has different modules, which alter how the bot goes through with
its attacks, and they are NormalAccessModule (bot obtains only valid ad addresses),
HumanTimerModule (the program waits a humanly possible time before executing each
click), HeadersModule (uses legitimate HTTP headers to imitate a user with a browser),
DNTModule (adds a valid DoNotTrack header to the requests), WideAccessModule (the
bot will access every link passed by the pages received), SelectiveAccessModule (extends
on WideAccessModule so the bot doesn’t access links a normal user wouldn’t, such as
images hidden in the HTML), RandomTimeModule (adds a pseudo-random amount of
time between the clicks), CookieModule (bot stores cookies sent by the pages correctly)
and CompleteAccessModule (extends on SelectiveAccessModule, loads pages in ways
that are expected from a user, such as loading images and page icons).

4. Results
To test the system we first created locally hosted sites for the 3 online advertisement
agents and selected a few configurations of modules for the bot, 2 of which are reported
below. The bot went through the click process 3 times for each. Finally, we check to
see if the system detected the invalid clicks by defining the score for passing through the
tests to be 0.5 or higher. This process was done in a Windows 10 operating system. The
weights used are 2.0 for JavascriptEnabledRule, UserAgentRule and TimePeriodRule, 3.0
for BehaviorRule and RedirectTimeRule, and -1.0 for DNTRule.

The first part of the test was to see if the system would incorrectly label a real user
as a fraud. Sites were accessed normally with the Firefox 59.0.1 (64-bit) browser. Table
1 shows results for every rule test the click went through. A value of ’t’ means success,
while ’f’ means failure, and the real user passed through all online tests without issues.
In the following test, we use the bot with the following modules used: NormalAccess,
HumanTimer, Headers, DNT and WideAccess. The bot does not pass the tests, as in Table
2, thanks to rules JavascriptEnabled and RedirectTime. For the final test, the bot has
every module activated. The system still manages to detect the fraud, thanks to the rules
RedirectTime and TimePeriod, with the results reported in Table 3.

Table 1. System results for a real user
id dnt java human list agent redir lang behav pages tperiod score
2 t t t t t t t 1.17

Table 2. System results for the bot configuration
id dnt java human list agent redir lang behav pages tperiod score
9 t f t t t f t 0.43

5. Conclusion
Results obtained match expectations. The system, although not yet tested in a real en-
vironment, has shown good performance against different attacks, with at least two of



Table 3. System results for the final bot configuration
id dnt java human list agent redir lang behav pages tperiod score
18 t t t t t f t t f 0.42

the rules identifying each of those attempts. All the attacks attempted by the bot were
identified, but it is emphasized the importance of selecting appropriate values for rules’
weights. Low-frequency attacks are still a threat as malicious clicks spread over long time
intervals will not be detected by the system; there are, however, issues with those methods
of attack, namely obtaining access to this number of IPs and obtaining economical return
from simpler attempts of the attack, given the low return for a single click.

References
Census at School Canada (2017). Average reaction time. http:
//censusatschool.ca/data-results/2016-2017/
average-reaction-time/.

Clifford, S. (2009). Microsoft sues three in click-fraud scheme.

Court, U. S. D. (2009). Microsoft vs Eric Lam et. al.

Daswani, N. and Stoppelman, M. (2007). The anatomy of clickbot. a. In Proceedings of
the first conference on First Workshop on Hot Topics in Understanding Botnets, pages
11–11. USENIX Association.

Fielding, R. and Reschke, J. (2014). Hypertext transfer protocol (http/1.1): Semantics
and content. RFC 7231, RFC Editor. http://www.rfc-editor.org/rfc/
rfc7231.txt.

Human Benchmark (2018). Reaction time statistics. https://www.
humanbenchmark.com/tests/reactiontime/statistics.

Kitts, B., Zhang, J. Y., Wu, G., Brandi, W., Beasley, J., Morrill, K., Ettedgui, J., Sid-
dhartha, S., Yuan, H., Gao, F., et al. (2015). Click fraud detection: adversarial pattern
recognition over 5 years at microsoft. In Real World Data Mining Applications, pages
181–201. Springer.

Leyden, J. (2006). Botnet implicated in click fraud scam.

McNair, C. (2017). Us ad spending: emarketer’s updated estimates and forecast for 2017.

Oentaryo, R. J., Lim, E.-P., Finegold, M., Lo, D., Zhu, F., Phua, C., Cheu, E.-Y., Yap, G.-
E., Sim, K., Nguyen, M. N., et al. (2014). Detecting click fraud in online advertising:
a data mining approach. Journal of Machine Learning Research, 15(1):99–140.

Priebe, J. (2009). A study of internet users’ cookie and javascript settings.

Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of processing in the human visual
system. nature, 381(6582):520.

Winnicki, A. (2016). Just how many web users really disable cookies or javascript?

Xu, H., Liu, D., Koehl, A., Wang, H., and Stavrou, A. (2014). Click fraud detection on
the advertiser side. In European Symposium on Research in Computer Security, pages
419–438. Springer.


