
Malicious Linux Binaries: A Landscape
Lucas Galante1, Marcus Botacin2, André Grégio2, Paulo Lício de Geus1

1 University of Campinas (Unicamp) {galante, paulo}@lasca.ic.unicamp.br
2Federal University of Paraná (UFPR) {mfbotacin, gregio}@inf.ufpr.br

Abstract. Linux applications are finding their role on important computer systems. As
their use grow, they become target for malware. Therefore, understanding the security
impacts of malware infections on them is essential to allow system hardening and
countermeasures development. In this paper, we evaluate malicious ELF binaries
to present a landscape of current threats. We discuss the challenges and pitfalls of
analyzing samples on this platform and compare the identified behaviors to the ones
presented by other platforms’ samples.

1. Introduction
Fighting malware is currently a major security task for incident response teams, as this kind of threat
is responsible for a myriad of damages, from privacy leaks to financial losses [TrendMicro 2017].
To provide proper countermeasures, understanding samples behavior is essential.

Recently, Linux systems have grown their market share [Itsfoss 2017], being present as
back-end of many services. As it brings new, benign opportunities, it makes this environment
target for malicious actors. Therefore, understanding the impact of Linux malware is essential
to protect modern computer systems.

Previous work on Linux malware was guided by sandbox develop-
ment [A 2015, 0x71 2016], thus not presenting a panorama of existing threats. Existing
landscapes are limited to the Android ecosystem [Lindorfer et al. 2014], thus leaving other
contexts underexplored. In this work, we evaluate Linux malware samples to present a
panorama of their behaviors. Our goal is to understand their impact over systems as a whole,
thus allowing more precise and effective incident response.

This work is organized as follows: in section 2, we present related work; in section 3, we
present our assumptions and methods; in section 4, we present the threat landscape; in section 5,
we discuss the impact of our findings; finally, we draw our conclusions in Section 6.

2. Related Work
The first step for analyzing Linux malware is to adopt a sandbox solution. In the literature,
many solutions were proposed, such as a Linux version of Cuckoo Sandbox [0x71 2016]. In
this work, we developed our own solution based on the use of Linux built-in tracing tools, such
as strace, an approach also adopted by other sandbox solutions, such as Limon [A 2015].

A drawback of most solutions is to rely only on generic characteristics, such as the performed
API calls. Few solutions consider OS particularities, such as the ELF (Executable and Linkable For-
mat) format and Linux internal structures [Damri and Vidyarthi 2016, Shahzad et al. 2011].
In this work we considered these in our analysis, covering for instance, the passwd and
shadow files, structures not present in other OS.

Based on the sandbox results, most solutions adopt classification ap-
proaches [Asmitha and Vinod 2014, KA and P 2014] to distinguish malicious from benign
applications. Although important for individual sample analysis, these do not provide insights



regarding the whole malware scenario. In this sense, our work contributes for better understanding
the whole context.

Previous work addressed the malware landscape issue on other platforms. Lindorfer et
al. [Lindorfer et al. 2014] surveyed the Android ecosystem. Bayer et al. [Bayer et al. 2009]
surveyed the Windows one. This work extends these for the Linux scenario.

During the development of this work, we were noticed of the publication of a Linux
malware survey [Cozzi et al. 2018], thus being this the closest work to ours so-far. As a
significant distinction, our work digs into more details about x86 samples’ behavior during
dynamic analysis, thus complementing it.

3. Methodology

3.1. Dataset Description

To provide a comprehensive evaluation of Linux binaries, we collected samples from
distinct sources. In total, this study considers 5,680 unique ELF binaries—identified by their
MD5—crawled from MalShare1, VirusTotal2 and VirusShare3.

A noticeable Linux characteristic is its multi-platform support: the collected ELF samples
cover 8 distinct architectures, as shown in Figure 1.
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Figure 1. ELF binaries by architec-
tures. x86 and ARM are the most
prevalent architectures.
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Figure 2. Binary linking methods
by architecture. Most architectures
present a significant number of both
static and dynamic linked binaries.

We observe that the most prevalent architectures are Intel x86, found in most desktop
computers and servers, and ARM, often found in mobile phones and tablets. Besides that, we
observe a diversity on the remaining platforms, thus showing the heterogeneity of the Linux
ecosystem, which covers a myriad of embedded systems, from co-processors to IoT devices.

The ELF heterogeneity is observed not only in the target platform but also in the binaries
themselves, Figure 2 presents how samples of each architecture are linked4—statically or
dynamically. Whereas some architectures present a higher rate of statically linked samples, other
presents higher rates of dynamically linked ones. The linking project decision is not only tied
to environment characteristics but also to evasion attempts, as statically linked libraries cannot
be traced by some analysis solutions (ltrace).

In addition to linking methods, malware creators also adopt distinct project decisions regarding
the distributed object file, as shown in Figure 3. Whereas executables are prevalent in most

1 malshare.com 2 virustotal.com 3 virusshare.com 4 Unavailable info for m68k.
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Figure 4. Percentage of 32-bit and
64-bit binaries by architecture.
32-bit binaries are prevalent.

platforms, shared objects (libraries) also appear in significant rates. Leveraging executables is
interesting for malware creators as it enables users infecting themselves by directly running the
objects. Shared objects, in turn, allow attackers to inject their payloads in any other binary in
the form of a library. Finally, shared objects are also employed to allow code modularization,
a strategy employed in malware to bypass detection methods.

The most homogenous characteristic in our ELF dataset are binaries word size (32 or 64 bits).
As presented in Figure 4, almost all architectures present higher rates of 32 bit samples, as was
the standard until few years ago. Modern samples, however, are already compiled as 64 bits.
3.2. Analysis Methods

First, all samples were submitted to VirusTotal to retrieve anti-virus detection rates and
label information; secondly, static analysis was performed, by disassembling (using objdump)
all files and retrieving header information; finally, dynamic analysis was performed to evaluate
samples’ behavior and capture network traffic. As samples may be equipped with anti-analysis
techniques, the strategy presented in Table 1 was employed.

Table 1. Analysis techniques. Adopted strategy to handle evasive samples.
Technique Tool Evasion Countermeasure

Static analysis
objdump

obfuscation Dynamic analysisfile
strings

Dynamic analysis

ltrace Static compilation ptrace step-by-step
ptrace ptrace check binary patching
strace Long sleep LD_PRELOAD

LD_PRELOAD Injection blocking Kernel hooks

As static analysis procedures may be defeated by obfuscation, we also submitted sam-
ples to dynamic analysis procedures. Dynamic analysis may be performed in a series of
ways [Gebai and Dagenais 2018]. In our evaluation, we leveraged strace for system call
inspection and ltrace for function call inspection.

Dynamic analysis, however, may also be defeated in diverse ways: i) ltrace analysis may be
avoided by the use of static libraries, as it handles only dynamic ones. These samples are analyzed
in more details through step-by-step instruction tracing by using ptrace, which is able to dig into
samples despite their linking mode; ii) Ptrace analysis in turn, may be defeated by ptrace
checks. In this case, the check may be removed by using a binary patching procedure; iii) ltrace



and strace may be evaded by a long sleep, aimed to trigger a timeout on the sandbox.
Such cases are handled by the injection of a library—through LD_PRELOAD—to hook the
sleep function so it immediately returns; iv) the LD_PRELOAD method may be blocked by
some samples. Such cases may be inspected by a kernel driver which hooks API calls to log them.

In addition to anti-analysis-armored samples, other particular behaviors were considered, as
shown in Table 2.

Table 2. Handling suspicious behaviors. Adopted strategy to keep log files safe.
Behavior Action Countermeasure Method

Evidence removal delete logs log access syslog/audit
Ransomware delete files shadow copy inotify

Some samples present the evidence removal behavior, deleting the stored logs. For these
cases, a logging mechanism was implemented to register such occurrences and thus characterize
the samples as evidence removers. Ransomware samples also may damage the filesystem
by encrypting all files, including the collected logs. Therefore, a shadow copy of files using
inotify was implemented, thus keeping all original files safe.

All aforementioned analysis procedures were conducted on a network-isolated, virtual
machine-based sandbox solutions running Ubuntu 16. The samples were individually analyzed
by up to 3 minutes and the clean system state was restored through snapshots after each execution.
4. Linux Malware Landscape
4.1. Static Features
We initially submitted all samples through static analysis procedures to get general insights about
how samples look like. We first retrieved (via objdump) the linked function calls to understand
which behaviors the samples were supposed to present. For such, we classified the obtained
functions in categories, according to the behaviors defined in [Grégio et al. 2015].

The Network category encompasses functions responsible for allowing samples to commu-
nicate through the Internet, thus enabling malicious content download and information exfiltration.
The Evasion category encompasses functions which can be used to thwart an analysis pro-
cedure thus keeping samples undetected. It covers functions used to modularize malware code and
the ones used to finish and/or block other processes execution. The Environment category
encompasses functions which allows environment fingerprinting, such as retrieving username
information. Such information can be used for evasion and/or for infection accountability. The
Removal category encompasses functions related to anti-forensics produces, thus allowing the
sample to cover its track. Finally, the Timing category encompasses functions which allows the
sample to measure the spent time while processing. Such information can be used for evasion proce-
dures, as the samples may detect the performance overhead imposed by an analysis solution. Figure
5 shows how often samples of each architecture link functions from one or more of these categories.

We notice that attempting to establish a network connection is the most prevalent suspicious
behavior among all architectures, being it present in over 25% of the entire dataset samples.
Attempts to evade analysis procedures are also frequent, either in the form of analysis termination
or in the form of overhead measurement. Environment information was collected in fewer samples,
which indicates such information is not being used for evasion in a broad way but for other
purposes, such as information leaking, according to each samples specific goal.

The identified prevalent use of network capabilities is an even more significant result when
we consider it is a lower bound, because objdump only identifies function entries present
in the dynamic symbol table. Therefore, function calls from statically linked and obfuscated
samples were not retrieved. Figure 6 shows the rate of samples whose dissasembly attempts
failed. Omitted architectures are due to lack of objdump support.
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After identifying the high use of network functions, we queried (via strings 5)
network-related information embedded in the binary. By matching the retrieved strings with
regular-expressions patterns, we identified information about IP addresses, URLs and E-mail
contacts. The ratio of samples presenting network-related strings and the fraction of distinct strings
are present in Figure 7.
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Among all identified strings, we found suspicious IP and URL addresses, including local and
remote hosts, of which many are related to shell script downloads. We also identified embedded
Email addresses, which are probably related to phishing campaigns. As for functions, embedded
strings can also be hidden by packer-based obfuscation. Figure 8 shows the rate of samples
leveraging UPX6, a popular open-source packing solution.

To confirm our findings about the intense network usage, we checked how AVs label the samples.
Figure 9 shows labels attributed to all samples by the Kaspersky AV. Among all 10 attributed labels,
the three more prevalent ones (Exploits, Virus and Backdoor) account for 60% of all samples.

The high presence of Backdoor samples explains the high linkage rate of network-related
functions—presented in the Figure 5—, as Backdoors make use of network connection to allow
the external attackers to remotely access the infected system.
5 man strings 6 upx.github.io



The prevalent labels also explain the low rate of UPX packed samples, as presented in
Figure 8. Exploits, which represent nearly 25% of all samples tend to present low obfuscation
rates due to their nature. These aren’t self-contained applications which unpack themselves, but
payloads which are injected into third processes to cause these to behave maliciously.
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Given many samples present similar behaviors, we checked whether these samples were
independently developed or were variants of the same original code. To perform such check,
we computed the fuzzy hash of all samples using SSDeep7 with a 90% threshold. Further, all
samples were matched against each other. Figure 10 shows the identified distinct clusters, their
sizes and the number of samples on each. We discovered that most samples are located in the
smaller clusters. On the other hand, many clusters hold at least 1 large variant family; the largest
variant family presented 91 samples.
4.2. Dynamic Analysis & Behaviors
Whereas static analysis is useful to determine several features, it is subject to be defeated by
obfuscation. To overcome such limitation, we submitted samples to dynamic analysis. As dynamic
analysis procedures require effectively running the samples, we limited our evaluation to inspect
Intel x86 and x64 ones, as they can be run in common machines without emulation. Each sample
was executed up to 3 minutes, being terminated by a timeout. Their termination signals rates
are presented in Figure 11.

We first observe that ≈15% of samples were terminated due to a segmentation fault error.
It happens due to malware-environment incompatibilities, such as distinct library versions,
nonexistent peripheral communication attempts or lack of a required resource.

Another portion of ≈15% of samples were terminated due to timeout8 expiration. It
happens when a sample enters on an infinite loop or keep a long time waiting a resource. Most
samples were terminated by the usual SIGTERM signal. Fewer samples handled and ignored
this signal, being forcibly terminated by the SIGKILL one.

We also discovered a small fraction (≈3%) of samples making use of the SIGKILL signal
to terminate their own processes. It happens mostly due to evasion attempts, as a child process
may detach itself from a debugger after killing its own father.

As for static analysis, we classified system calls into behaviors. Figure 12 shows the fraction
of samples presenting each one of these behaviors.
7 ssdeep-project.github.io 8 man timeout
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We observe that many samples implement some kind of anti-analysis protection, both
directly and indirectly. Direct approaches make use of methods such ptrace and exit to
detach from a debugger. Indirect approaches make use of methods such as time to infer the
performance overhead imposed by analysis solutions.

During dynamic analysis execution, the samples presented fewer network interactions than
expected given the number of function identified on static analysis. We credit this effect to samples
requiring resources unavailable in our system—such as old libraries—to run. This hypothesis
is corroborated by the fact that this effect is greater on 32 bit—thus, older—samples. In newer,
64-bit ones, dynamic analysis produced more network interactions than identified during static
analysis. This fact is expected as some calls are runtime-generated.

Regarding construction, we observe most samples are implemented in a modular way, launching
child processes, through fork and clone, and relying on third-party binaries, through
execve.

To better understand how the samples internally operate, we retrieved the accessed filesystem lo-
cations, as shown in Figure 13. We discovered the most prevalent samples action is to read and write
information from the /proc directory. The /proc is a filesystem-mapping for configuration
and environment variables, thus allowing malware to leak process information and even tamper with
their execution. The second most prevalent action is to modify the resolv.conf file, respon-
sible for storing DNS configuration. This is typical Proxy behavior and is also related to the high
rate of network use. In addition, some samples also access the shadow and passwd files,
responsible for storing login credentials. Such accesses are related to privilege elevation attempts.

We observe that most interactions are performed in the form of filesystem accesses, due to
the Linux paradigm of “everything is a file”. It reflects in the number of file reads and writes,
as shown in the Figure 14. It also shows few user interactions, such as stdio reads and writes,
indicating most samples operates autonomously in the background.

All presented data can be considered as a lower bound for malware behavior as the samples
present a significant use of evasive methods, as presented in Figure 15.

Around 10% of samples rely on the ptrace syscall for analysis evasion. By acquiring
the ptrace lock, samples block inspection mechanisms, such as debuggers, from attaching
to them. Samples also avoid being analyzed by preventing monitoring solutions from injecting
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instrumentation code within them. In this sense, 30% of samples block LD_PRELOAD injection
attempts. Moreover, 30% of samples use a sleep call for analysis evasion. As sandboxes
solutions often stop their execution after a timeout, a long enough delay may prevent the malicious
payload from being inspected.

Some samples adopt indirect strategies to avoid analysis procedures. 40% of samples are
statically-linked, thus preventing ltrace from dynamically tracing them. Other samples adopt
modular constructions to obfuscate the execution flow. Given the creation of multiple (forked) mali-
cious processes, analysts need correlated independent tasks to draw the general malicious scenario.

4.3. Network Traffic
From the firewall logs generated during dynamic execution was retrieved source and destination
IP addresses. The source IP were all from the local machine, but the destination IP addresses
were from attempted connections. Figure 16 shows the rate of samples which performed at least
one network connection attempt.

Corroborating dynamic analysis results, we observe Intel x86-64 samples perform many more
connections attempts than Intel 80386. When discarding network scanning samples, 50% of
all contacted IPs, on average, were unique, indicating diversity. The scanners impact is
noticeable as we have identified a sample which uniquely attempted to contact more than 75
thousand distinct IP addresses.

In addition to IP information, we performed reverse DNS queries to identify the associated
domains. Given the scanners, most domains (≈60%) are associated to domestic internet providers.
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This fact is also noticeable when we observe the most prevalent top level domains, presented
in Figure 17. Whereas global domains (.net and .com) are prevalent, regionalized domains
are well-distributed, as scanners aren’t region-aware.
5. Discussion
In this section, we discuss our findings and compare the obtained results with other work to draw a
landscape of Linux threats. Our first finding is that the Linux environment is very diverse,
presenting samples of distinct architectures, endianesses and word sizes. Whereas this fact have
already been identified by a previous study [Cozzi et al. 2018], we are the first to discuss samples
implementation in details, presenting, for instance, a comprehensive analysis of linked libraries
and network traffic.

Besides comparing Linux studies, we also identified differences when comparing Linux
threats to Windows ones [Botacin et al. 2015], such as the use of packers. 50% of Windows
malware samples are packed (24% of these are UPX) whereas our dataset presented a rate of
at most 4% of packed samples. Such difference is explained by the high rate of exploit samples
present in our dataset, as shown by the AV labels. In comparison, no exploit was identified in
the Windows dataset.

In common, both environments present a similar rate of network traffic (≈50%), which
indicates it is a general trend regarding malware. However, on each environment, the performed
network action is distinct. The Windows dataset presents a major share of downloaders
whereas the Linux one presents a significant amount of backdoors. Moreover, samples of
both OS install connection proxies in the target machine. Windows samples redirect network
traffic by using Proxy Auto Configuration (PAC) files whereas Linux ones modify the
resolv.conf file.

Finally, we discovered that both Linux and Windows malware present comparable,
significant potential to cause damage in their target machines. Nevertheless, due to environmental,
internal reasons, their malicious actions are deployed by distinct methods.
6. Conclusion
In this paper, we have presented an overview of malicious Linux binaries. Through static
and dynamic analysis, we discovered the most prevalent system calls (fork and execve) and
their associated behaviors (evasion and modularization). We also performed network
traffic analysis and discovered that ≈50% of samples rely on the Internet to achieve their malicious
goals. We compared malware samples targeting Linux and Windows and discovered that
they can cause the same damage extent and present similar characteristics, including the use of



anti-analysis tricks. Given OS particularities, some behaviors are more tied to OS internals, which
should be understood to allow proper countermeasure development. An extended version of this
paper is available at https://github.com/marcusbotacin/Linux.Malware.
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