
A Distributed, Multi-Staged, High-Throughput
Middleware for Relational Databases

Rafael de Paula Herrera1,2, Alan Salvany Felinto1

1Department of Computing – State University of Londrina (UEL)
Londrina, PR – Brazil

2Veltec Technological Solutions
Londrina, PR – Brazil

herrera.rp@gmail.com, alan@uel.br

Abstract. In this paper we present a distributed middleware for relational
databases. Its development was motivated by the need of improvements on a
set of legacy systems from the automotive logistics and tracking industry. The
solution proved to be effective once it was possible to increase the throughput
of handled Requests and offer a minimum level of fault tolerance by employing
a pipelined architecture along with distributed data structures. Its deployment
ensured that the same legacy applications ecosystem could evolve and operate
under growing commercial demand.

Resumo. Neste trabalho apresentamos um middleware distribuı́do para bancos
de dados relacionais. Seu desenvolvimento foi motivado pela necessidade
de se aprimorar um conjunto de sistemas legados da indústria de logı́stica
e rastreamento automotiva. A solução demonstrou ser eficaz uma vez que
foi possı́vel aumentar a vazão de requisições tratadas e oferecer um nı́vel
mı́nimo de tolerância a falhas ao se empregar uma arquitetura multi-estágios
em conjunto com estruturas de dados distribuı́das. Sua implantação garantiu
que o mesmo ecossistema de aplicações legadas pudesse evoluir e operar sob
crescente demanda comercial.

1. Introduction
In technology-based automotive industry, one of main trends is that their applications
being migrated to Cloud Computing model. It is usual that back-end legacy systems
remains in production over years on infrastructures prone to failures at several levels.
Technological and architectural restrictions imposed on scenarios like these, make them
not supporting smooth transition strategies to a distributed nature. Also, organizations
operating growth, caused by fleet and user base increase, makes legacy systems become
gradually saturated.

The main factors that prevented the horizontal scaling of service was how they
were strongly attached to the application of so-called Relational Database Management
Systems (RDBMS), coupled with its waiting time caused by blocking execution. The
development model used before and not subject to brief architectural changes, was
completely thread-centric and suffered from high concurrency overhead on reading and
writing information into relational databases.



On the other hand, implementing a fault tolerant mechanism is not a trivial
task in applications whose core activities relies exclusively on storing internal states
in memory. To ensure operations consistency of offered service, despiting application
servers suffering from outages, data must be replicated over a sufficient number of nodes
in the network. Being the service dependent on multiple Internet links and having its
physical infrastructure subject to periodic maintenance, it becomes ineffective to employ
some solution whose performance is limited to LAN context and single data center.

These reasons lead us to create a distributed middleware as an alternative to bring
legacy systems to some level of survival, enough, unless they can be completely migrated
to an architecture compatible with market needs.

In section 2, we are going to walk over a set of works that addressed performance
and fault tolerance issues. They directly influenced the chosen design of middleware,
whose higher level architectural details about how distributed data structures and
algorithms interact are explained in section 3. A performance measurement is shown in
4, where classic database committing algorithms and proposed approach are confronted,
and its results are properly explored.

2. Related Work
In [Bisbal et al. 1999], difficulties found during the process of maintaining legacy
information systems was addressed. This can be increased even more, if distributed
back-end features introduction is needed on services, in production environment and
designed before to working as singular instances. We propose the idea that when using
a middleware whose characteristics are comparable to the presented in this work, it is
possible to ease much of migration process to a distributed environment. This is depicted
by a re-reading performed over the figure 1, which relates the severity of architectural
modifications introduced in information systems.

RevolutionEvolution

Legacy information systems

Wrapping Migration Redevelopment

- +Changes Vs. Impact Vs. Risk

Figure 1. Severity changes on legacy information systems. The migration
strategy is eased by use of middleware.

The work [Rubel et al. 2006] shows the importance of employing fail-over on
applications whose operation is real-time. In many ways, its problem is similar to that
found in the application we have chose to migrate to a distributed environment.

A discussion is promoted in [Barga et al. 2002] on ways to deal with failures
occurring in databases, when the access is done by multi-tiered applications. In our



approach, there was linked signals to specific Responses of Requests which caused errors,
when their respective SQL statements would be processed by the RDBMS. In addition,
we also employed logs for audit.

Back-end services, multi-tiered interconnected by queues are discussed in
[Urgaonkar et al. 2005]. Multiple processing stages connected by queues are proposed
in [Welsh et al. 2001]. Both works have directly influenced the design of middleware
internal processing stages. The way information is retrieved and inserted in the distributed
data structures were adjusted for events that would guide all the flow in reactive way.

A prototype was developed, presented in [Luo et al. 2002], whose main
motivation was to provide an intermediate caching layer between applications and
database. It addressed the possibility of multiple layer instances, which occurs
similarly with middleware presented here. [Cecchet et al. 2007] discusses data replication
and performance characteristics, both having been taken into consideration during
prioritization of distributed data structures which would be replicated across the WAN.

3. Architecture
The middleware reacts to presence of information in their structures of input and
output, both replicated across multiple nodes in network. Uses distributed computing
resources, provisioned by Hazelcast framework. Its components were developed based
on conventions adopted by Google Guice framework.

Its architecture was influenced by the Inversion of Control design pattern
[Martin 1996], implemented via Dependency Injection [Fowler 2004, Yang et al. 2008],
providing high modularity and loose coupling. This made the input and output structures
fully replaceable, since their implementations conforms to the established contract made
by their interfaces BlockingQueue ConcurrenMap, respectively.

The data are assigned so that each node, n, is responsible for sharing its active
amount along the grid nodes, while it retains a data partition load as backup from its
predecessor node, n − 1, whose is responsible. Similarly, his successor node, n + 1,
charges the active data from node n as its backup data partition. This training circular list,
followed by the processes of partitioning and backup, guarantees a minimum fail-over
level over information stored in memory grid.

A basic API was built, so the developer can interact with the grid in a simple way:
inserting, removing and retrieving information over distributed data structures. Thus it
was possible to fully decouple all the calls with direct references to RDBMS, performed
by legacy systems, while the backward source code has been fully maintained, ensuring
operating compliance for native implementations present in numerous locations such as
those who are in agreement with contract established by ResultSet interface.

3.1. Stages
The middleware execution flow follows a pipeline composed of multiple stages. As shown
in figure 2, stages are being classified as:

1. Identification The accumulated Requests in distributed input queue are consumed
according to a particular algorithm. Each Request processed must have a
corresponding SQL statement. This association is accomplished by means of an



Stages

Identification1. Forwarding2. Commiting3.

Figure 2. Ordered pipeline stages according to default operating flow.

internal correspondences map so it can cross the possible Requests kinds with the
SQL statements related ones. Once obtained, the SQL statements are classified by
its semantics.

2. Forwarding Each SQL statement is sent to an internal blocking queue and then
an consumer algorithm specialist in dealing with that operations family, will then
generate its pure SQL statements which will be committed on RDBMS.

3. Committing After being consumed, according to a specific policy, the SQL
statements are fired against the RDBMS through JDBC (Java TMDatabase
Connectivity). Requests that originates Responses are related upon on a
communication key, automatically generated by Grid Client, and provided on its
distributed map.

3.2. Node

Each grid node corresponds to a stand-alone instance of distributed data structures, stored
in RAM memory from host servers. Upon configuration, can perform discovery of other
instances, if any, over the LAN/WAN. There are two main data structures, persistent
and synchronized across all grid nodes, known respectively as “Requests Queue” and
“Responses Map”, as shown in figure 3. They are considered well-defined points of data
Input/Output to all of middleware instances.

Node

Requests Queue Responses Map

Distributed
Data-Structures

Grid Client

Asynchronous
Requests

Asynchronous
Responses

Figure 3. A grid node, having its distributed data-structures accessed by client.

Periodically, every node tries to find other active instances in the LAN, firing
UDP multicast messages to the address 224.2.2.3 on port 54327. If it finds another
active instance, establishes a TCP connection to it and starts the authentication process,
that is validated by a group code identifier and a password, both must be known
to all grid connected nodes. The communication is optionally encrypted and is
based on JavaTMJCA (Cryptography Architecture). Being the connection successfully



authenticated, newcomers nodes are organized with others in a P2P network and begins
partitioning its data among themselves. One grid can have its data-structures distributed
over the WAN, as long as at least one of its nodes knows about at least one IP address
located on another grid. In last case, the discovery is made solely based on TCP messages.

3.2.1. Grid Client

In order to make the information access transparent, to distributed data structures, there
was developed a basic wrapping API that provides different ways to run the same set
of actions on the grid. Basically, they are understood by (i) Requests Offer and (ii)
Responses Recovery:

Blocking Waiting (i) Tries to insert a Request, blocking the application execution until
there is an available slot in Requests Queue buffer. (ii) Attempts to retrieve the
answer to a previously performed Request by blocking the application execution
until the Response is available on the Responses Map.

Non-Blocking Waiting (i) Tries to insert a Request, stating the case it is not possible.
(ii) Attempts to retrieve the answer to a previously performed Request, stating if
it have not been made available on the Responses Map.

Timeout Driven Blocking Waiting In both cases, (i) and (ii) are extensions of their
“Blocking Waiting” and “Non-Blocking Waiting” versions, respectively. (I) Tries
to insert a Request, blocking the application execution until there is an available
slot in the Requests Queue buffer, respecting a maximum waiting timeout and
stating if it is not possible. (ii) Attempts to retrieve the answer to a previously
performed Request by blocking the application execution until the Response is
available on the Responses Map, respecting a maximum waiting timeout and
stating if it has not been made available.

Trials Number and Timeout Driven Blocking Waiting In both cases, (i) and (ii) are
extensions of their “Timeout Driven Blocking Waiting” versions. The blocking is
driven by a timeout and the process is repeated according to a established number
of trials.

3.3. Requests Queue Vs. Responses Map

To take advantage on middleware, applications are encouraged to make use of provided
Grid Client API, instead of accessing directly the distributed data-structures. Thus, it
is possible to Request and retrieve data in a transparent and simple way. It works on
Requests Queue and Responses Map.

When there is need to operate over data, client grid application will input a Request
in the distributed queue, exemplified by the figure 4(a). A middleware instance soon will
be responsible for consuming the said Request and process it in the pipelined stages.

Once processing have been generated in RDBMS, the answer is input back on
distributed map, exemplified by figure 4(b). The application just Requested that operation
should be watched, asynchronously, so a Response is signaled by its presence on the
Responses Map. To make this possible, one should choose a method of consumption
among those implemented by Grid Client.



Requests Queue

Node 1

Node 2

Node 3 Node 4

...

Node n

(a) Requests Queue

Responses Map

Node n

...

Node 4Node 3

Node 2

Node 1

(b) Responses Map

Figure 4. I/O distributed data-structures over grid nodes.

Distributed data-structures eases the backup process, employing a circular linked
list on its self-organizing way, that guarantees a minimum level of fail-over on outages.

3.4. Request Vs. SQL Statement Vs. Response Vs. Communication Key

As shown in figure 5(a), every Request must contain both Communication Key and Map
of Dynamic Content. The Communication Key is automatically generated by grid client,
which can be replaced by a Long value, provided that it guarantees uniqueness along the
grid until its related Response be consumed. The Map of Dynamic Content should be
implemented based on Map interface contract, so that its key-value must corresponds to
“String x String” format.

During SQL Statement mapping to related Request, an iteration is performed over
all records from Map of Dynamic Content, in order to find labels inside the plain text
SQL stored. If occurrence is found, the label is then replaced by its associated value,
being assured that attempted SQL injection attacks will be barred.

A SQL statement should have a 1x1 relationship with a Request. It has in its
content, as shown in figure 5(b) statement, a plain text representing SQL statement that
should be offered to the RDBMS as an operation after being filtered. When operations
are invariant its representation is static. When dynamic data should integrate statement
fields, a label is searched exactly like it had been inserted into Map of Dynamic Content
at original Request. If it has been found, one would have its textual token representation
replaced by its corresponding value.

A Response must contain Communication Key and Retrieved Data. The first
must be equals to that found in the Request that originated the Response. The second
must be some data-structure that implements the interface specified by ResultSet and
also, capable of assuming a disconnected form. This factor is crucial on performing data
binary serialization before being persisted throughout distributed data-structures. We used
a CachedRowSet interface implementation that includes all of requirements.

Depending on the nature of Requests offering mechanism, it would be necessary
the assignment of a unique and pseudo-random Communication Key, able to identify
each Request made. Thus, any information which was submitted by Grid Client can be
referenced at any stage of processing in middleware internal flow, such as the relationship
shown in figure 5(d). In general, this process simply does the linkage as a cross reference
between a Request and its corresponding Response among distributed data-structures.
Over normal circumstances, the Communication Key is automatically generated by Grid
Client and then is attached to the Request.



Request

Communication Key Map of Dynamic Content

(a) Request

SQL Statement

Communication Key Filtered Plain Text Statement

(b) SQL Statement

Response

Communication Key Obtained Data

(c) Response

Communication Key

Request Response SQL Statement

(d) Communication Key

Figure 5. Entities and the relationship between them.

3.5. Mapping

At the time they are consumed, Requests go through a filtering. Its kind is identified
according to an internal mapping system, responsible for relating the Requests with their
SQL Statements, as shown in figure 6. Thus, it is expected that all operations subject to
turn into Requests and subsequent execution in RDBMS are named and linked explicitly.
This feature improves security, since Requests go through network without any form
of SQL dialect. Thus, the scheme employed in information architecture internal to the
RDBMS, is not revealed.

Mapping

Request SQL Statement

Requests
Queue

Forwarding
Queue

Consumption
Algorithm

Forwarding
Algorithm

Figure 6. Mapping Requests to their respective SQL Statements.

The set of supported operations by the middleware was selected taking based
on those found in the application which had been integrated. Possible operations on
the standard RDBMS are understood by Select, Insert, Update, and Removing Stored
Procedures.

3.6. Proxy

Having a Request received from client application and crossed with their respective SQL
Statement, the routing takes place according to its kind. For each one there is an internal
queue that holds their peers, as shown in figure 7. These queues have their data consumed
by specialized algorithms, because each kind of SQL Statement generates a specific nature
of operations on data stored in RDBMS.



Proxy

Delete

Insert

Select

Stored procedure

Update

Internal
SQL Statements

Queues

Forwarding
Queue

Consumption
Algorithm

Figure 7. The Proxy forwards SQL Statements to its properly queues.

With the presented distinction, it is possible to identify the frequency with which
operations are determined over submitted data. Thus, one can make a fine tunning on
employed consumer algorithms, improving committing operation process in RDBMS
according to optimal interval timings. Additionally, this information can be used to
employ specific improvements in implementation terms.

3.7. Commiter

Once they have been consumed from their internal queues, SQL Statements are submitted
to RDBMS with aid of specialized algorithms in the category of operations to be
performed. Figure 8 effected shows that a pool manages database connection resources.
Once SQL Statements are successfully executed, their answers will be input into the
Responses Map. The same Communication Keys from original Requests are attached
to the Responses.

CommitterSQL Statements
Queue DB Pool

Responses Map

Consumption
Algorithm

DB
Connections

Communication Key
as Identifier

Figure 8. Each SQL Statements queue owns a specialized consumption
algorithm that commits operations on RDBMS and returns a Response.

The operations consumption and committing that modifies the durable state of data
can be accomplished by use of batch algorithms, since their answers can not be important,
resulting in performance gains on RDBMS. It is found under the names (a) Bulk and (b)
Batch. In (a) an amount of SQL Statements are concatenated and submitted together to
RDBMS as a single SQL Statement. (b) is performed scheduling SQL Statements as they
arrive, being validated and submitted to the RDBMS in a second time. Both can be used
on the removal, updating and inserting SQL Statements.

Ones that require review about their Responses, are classified under the name of
(c) Single, does not go through buffers. They are being treated and subjected directly,
in specialized way, one by one. Can be used as any operation kinds and is mandatory to
perform read-only queries and stored-procedures invocations.



3.8. Database Pool
In order the middleware can properly use the offered resources by RDBMS, there
was employed the Apache DBCP (Database Connection Pool) component. It is
a specialized database pooling solution and easily configurable for the following
parameters: limiting minimum and maximum amount of active connections used by client
applications, validation of connections through standard SQL query, re-establishment of
lost connections, unicode support and integration with a wide JDBC drivers variety.

Figure 9 exemplifies pool access to several previously established database
connections. As required, the pool checks for resources availability. If so, a fully managed
connection is returned. Else, is told to wait until resource is available.

DB Pool

Connection 1 Connection 2 ... Connection n

RDBMS

Figure 9. The Pool maintains control over RDBMS connections and provides
them, as automatically managed resources.

4. Results
A core business back-end application was chosen as proof of concept on migrating to
a distributed environment. The use of middleware played a key role easing the entire
process. During the elaboration of data committing mechanism, we conducted a survey
over a variety of SQL Statements which was found on direct RDBMS calls. The table 1
lists SQL Statement kinds with its occurrence.

Table 1. SQL Statement kinds found in proof system

SQL Statement kind Total ≈ Total (%)
Delete 2 1.92
Insert 5 4.80
Select 14 13.46

Stored Procedure 8 7.69
Update 75 72.11

The number of SQL Statements related to updating data, about 72.11%, has
motivated the blocking time measurement, which was suffered as result of this kind of
application calls.

This comparison relates the number of processed operations with timing that
application remains blocked until all being completed. The experiment generated 30
samples after having 1 up to 100,000 Requests processed, consumed by traditional
algorithms for direct access to the RDBMS versus the suggested competitor, employed
by the use of the Grid Client API, where middleware operates. All iterations, the



set of chosen operations was defined randomly, in order to not favor any caching
mechanism. Relevant characteristics of computer hardware that served the experiment
are: Intel R©CoreTMi3-350M (3M Cache, 2.26 GHz), 4GB DDR3 RAM, Samsung
HM321HI HD and RTL8101E/RTL8102E PCI Express Fast Ethernet controller.

Figure 10 shows significant throughput increase, due to asynchronous model used
in detriment to direct access on RDBMS. Up to ≈5 thousand of operations, we observed
that there is still a level of competitiveness between different consumption approaches.
On ≈5 thousand up to ≈20 thousand of operations, becomes clear that direct access to
RDBMS methods are blocking the application at levels much higher than that offered by
the presented middleware.

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000

B
lo

c
k
in

g
 T

im
e

 (
s
e

c
o
n

d
s
)

Amount of Operations

Blocking Time by Amount of Operations

single
batch

bulk
queue

Figure 10. Application blocking time (s) Vs. amount of operations.

Figure 11 shows that when passing ≈20 thousand operations mark, we can see
clearly the importance of having been used a queue based data structure as an entry point
for Requests, fact that gave support to a much higher magnitude of overload with respect
to that provided by traditional methods of blocking waits for RBDMS operations.



0

500

1000

1500

2000

2500

3000

3500

4000

20000 30000 40000 50000 60000 70000 80000 90000 100000

B
lo

c
k
in

g
 T

im
e

 (
s
e

c
o
n

d
s
)

Amount of Operations

Blocking Time by Amount of Operations

single
batch

bulk
queue

Figure 11. Application blocking time (s) Vs. amount of operations.

5. Conclusion
The middleware was successfully able to assist the process of migrating a back-end
systems to a distributed environment. This was achieved because the responsibility
to ensure recovery and durable writing data in RDBMS was completely detached
from the application in evidence. This process, before comprised by a monolithic
flux, was replaced by an event-driven approach, reactive to present data in distributed
data-structures.

Information replication has eased the single points of failure elimination across
entire chained applications. Being data essential to consistently working of services
persisted over several nodes in the grid, it became feasible the process of back-end
services instances multiplying on LAN/WAN, the main effect was the risk reduction due
to outages. Having been satisfied with information flow processed, its implementation
ensures a higher survival course of commercial operations for legacy applications
ecosystem.

The developed migration model, able to make back-end applications operating on
distributed environments, is being explored as primary means of a smooth applications
transition to an infrastructure entirely based on cloud computing and the first stage was
solely dependent on the successfully integration and deployment of proposed middleware.



References
Barga, R., Lomet, D., and Weikum, G. (2002). Recovery guarantees for general multi-tier

applications. Data Engineering, International Conference on, 0:0543.

Bisbal, J., Lawless, D., Wu, B., and Grimson, J. (1999). Legacy information systems:
Issues and directions. IEEE Softw., 16:103–111.

Cecchet, E., Candea, G., and Ailamaki, A. (2007). Middleware-based database
replication: The gaps between theory and practice. CoRR, abs/0712.2773.

Fowler, M. (2004). Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html.

Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B. G., and
Naughton, J. F. (2002). Middle-tier database caching for e-business. In Proceedings of
the 2002 ACM SIGMOD international conference on Management of data, SIGMOD
’02, pages 600–611, New York, NY, USA. ACM.

Martin, R. C. (1996). The dependency inversion principle. C++ Report, 8:61–66.

Rubel, P., Loyall, J. P., Schantz, R. E., and Gillen, M. (2006). Fault tolerance in a
multi-layered dre system: A case study. JCP, 1(6):43–52.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and Tantawi, A. (2005). An
analytical model for multi-tier internet services and its applications. SIGMETRICS
Perform. Eval. Rev., 33:291–302.

Welsh, M., Culler, D., and Brewer, E. (2001). Seda: an architecture for well-conditioned,
scalable internet services. SIGOPS Oper. Syst. Rev., 35:230–243.

Yang, H. Y., Tempero, E., and Melton, H. (2008). An empirical study into use of
dependency injection in java. In Proceedings of the 19th Australian Conference
on Software Engineering, pages 239–247, Washington, DC, USA. IEEE Computer
Society.


