
Self-management as Support
to an Advanced Traveler Information System

Marcia Pasin1, Felipe Silvano Perini1, Ana L. C. Bazzan2

1Centro de Tecnologia – Universidade Federal de Santa Maria (UFSM)
Av. Roraima 1.000 – Cidade Universitária – Santa Maria – RS –Brazil

2Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{marcia, fsperini}@inf.ufsm.br, bazzan@inf.ufrgs.br

Abstract. Advanced traveler information systems (ATIS) are growing in popu-
larity posing new challenges to distributed infrastructures. Services and data
tend to be distributed, heterogeneous, and there are issuesrelated to elastic and
increasing demand, failures and load peaks. Management of such infrastruc-
tures is a complex task. To address these issues, a promisingapproach is to im-
plement system management as an autonomic service. In this paper we propose
a self-managed system (SMS) to support a distributed infrastructure running an
ATIS. Based on current and previous status, the SMS adapts itself to achieve
efficient service and high availability. Experimental evaluation showed that the
system is efficiently reactive due to changing demand and occurrence of faults.

1. Introduction

Well established processes in traffic and transportation are being transformed by the rapid
growing availability of data, as well as by the ever increasing demand for services, espe-
cially those related to mobile devices. One example is the demand for advanced traveler
information systems (ATIS), one important part of intelligent transportation systems. Al-
though ATIS has been conceived primarily for private transportation (e.g. route guidance,
hazards broadcast, en-route planning, etc.), it has been increasingly changed to accom-
modate transit users as well. For instance, users of mobile devices may now access in-
formation about timetables for buses, trams, etc., which serve a given location. Given the
ID of a bus stop or the user’s GPS location, this and other services can be provided by
an information system (IS). This solution is interesting because it operates over a popular
device and it does not require expensive investments in infrastructure.

One issue here is that such an IS is subject to load peaks, withthousands of users
requesting information at the same time, while at some periods the demand drops drasti-
cally. Also, currently, system management is in charge of human beings, thus leading to
configuration errors and low availability. To address theseissues, a promising approach
is to implement system management as an autonomic service [Kephart and Chess 2003].
This can be used to manage a group of servers over a distributed infrastructure running
the IS/ATIS. Advantages of this approach include no human intervention and adaptation
despite failures, load peaks and high number of connected clients.

In this paper we propose a self-managed service (SMS) to support a distributed
infrastructure running IS/ATIS. Our SMS is based on a distributed monitoring sys-

tem that collects information from servers in the infrastructure and triggers a recon-
figuration mechanism whenever necessary. Roughly, the SMS adapts the system upon
load peaks and failures. In contrast with other implementations [Bouchenak et al 2006,
Saleem and Chen 2008], our SMS has a fully distributed implementation. Indeed, the
SMS is composed by a several independent self-services. Therefore, a conflict reso-
lution mechanism is required to allow progress despite of antagonist behavior of inde-
pendent services. This work is being supported by the Brazilian Government agency
FAPERGS/CNPq (Project RS-SOC - Rede Estadual de Simulação Social) under grant
number 10/0049-7.

2. Context

An ATIS that is dedicated to mass transit processes information about buses and other
rapid transit systems, as well as routes for users and eventually also for mass tran-
sit providers using information stored on a database. For sake of illustration consider
the following scenario. A bus leaves the garage and follows apreviously established
route/timetable. The route is composed by a set of bus stops.Bus and bus stop are
uniquely identified using IDs. Each time a bus reaches a bus stop, it sends its ID, the bus
stop ID, and the time in which the bus stop was reached to an IS.The IS calculates the
time the bus will reach the next bus stop. Users (travelers) can then access this informa-
tion using their PC at home or portable devices such as mobilephones, smart phones, and
PDAs. Supporting this ATIS, there is a hardware infrastructure organized as follows:(i)
a set of sensors to detects buses events,(ii) a group of computers (nodes) to execute repli-
cated servers instances running the IS/ATIS,(iii) a load balancer to distribute requests
among severs following round-robin policy and(iv) mobile phones, smart phones, and
browsers widely spread.

Bus data (such as current position and speed) are collected by GPS devices located
in each bus. A micro-controller installed in each bus collects buses’ data and sends them
to the IS via mobile phone technology (GSM/GPRS) in a real-time fashion. When the
message arrives the server, the data are used to update database with current information
about buses’ positions and other issues.

The IS/ATIS has as features:(i) servers in the infrastructure are stateless,(ii)
databases associated with servers hold one table per bus line,(iii) users interact with the
infrastructure via request/reply protocol implemented bya read-only transaction, and(iv)
bus sensors’ interact with the infrastructure via write-only transactions.

The IS was partially implemented in a previously work [Bastos and Jaques 2010],
and is currently being extended to allow all features here described. When it becomes
operational, one issue that will probably arise is that suchan IS is subject to load peaks,
with thousands of users requesting information at the same time, while at some periods
the demand drops drastically.

3. Self-managed system

On the top of the hardware infrastructure previously described, the SMS manages applica-
tion servers using information collected in the infrastructure. Our SMS is based on event
correlation: events are detected in each server and are analyzed using a set of pre-defined
rules. Eventually these events fire rules that cause the application of actions. Currently,

analyzers are decentralized to avoid single point of failure. So, conflicts may occur if a
set of events matches a set of two or more rules in different analyzers. A strategy to detect
and solve conflict is required. In a meta-level, agents are used to decide about conflicting
situations.

3.1. Architecture

Our SMS adapts a set of distributed application servers. In each server, we have the
following components:(i) sensors which collect information about new events (e.g. in-
formation about a failure in a node, a load peak, etc.),(ii) agents which encapsulate
analyzers and communicate each other through messages to resolve conflicting actions,
(iii) analyzers which are designed to match information providedby sensors and rules
stored in databases, and(vi) actuators which are responsible for applying the actions (i.e.
calling services) triggered by the rules such as activatinga new node and removing an ex-
isting one. Note that sensors and events at the SMS level are not the same sensors/events
used by the application level. Figure 1 shows the componentsof the SMS in the middle
of the agent-based system and application layer.

Figure 1. The Self-managed system as middleware service

3.2. Self-managed services

The SMS comprises a set of services to implement self-optimization and self-healing
properties. Roughly, self-optimization means changing the number of current active
servers in face of elastic demand. This property is mainly implemented by the recon-
figuration service. Self-healing means restoring the service in presence of failures. This
property is mainly implemented by the failure detection service. If a server crashes, it will
be unavailable to serve users requests.

Apart from reconfiguration and failure detection, other services are used to man-
age the group of servers such as load balancing and state transfer. Each service is executed
by an independent module and is dispatched by a different actuator. In the following, we
give an overview of these services which are summarized on Table 1. The current imple-
mentation of some services (marked with a ”*” in Table 1) is attached to the application-

context to allow some level of quality of service. Other implementations are generic and
can be easly reused in other contexts.

Table 1. Self-management services

Service Description
Failure detection Detection of crashed nodes
Load peak and idleness detection Detection and prediction of node load peaks and idleness
Node reconfiguration Removal and addition of an application server
State consistent replication* Ensuring database consistency
State transfer* Updating the state of a new application server recently added in

the group of servers

Failure detection service. This service detects faulty servers in the IS, using a
heartbeat mechanism. Each server in the infrastructure continuously advertises to the
failure detection service that it is alive, every predefinedperiod of time. When a heartbeat
is missed, the node is declared as failed by the failure detection service. Consequently,
this server is marked as crashed in the list of operational servers and it does not receive
clients requests any more. The current implementation of this service uses the support of
a group communication system.

Load peak and idleness detection service. This service is implemented by a local
and a global module using a double time series scheme. Locally, each server in the group
is periodically monitored (evaluating the CPU load). Thresholds are previously defined
to limit maximum and minimum values to CPU occupation in nodes. Taking into account
these values, if the low threshold is achieved, the node is marked locally as idle. If the
high threshold is achieved, the node is marked as overloaded. These values are taking in
a local time series vector. The global module takes into account values collected locally
in all servers, using the group communication system support, as well previously stored
information using a global time series vector. The scheme ofdouble-level of time series
is used to avoid the addition or removal of a node due to a momentary high/low load peak.

Reconfiguration service. This service starts and stops servers in the server group
and acts with the support of both failure detection and load peak and idleness detection
services. A new application server is started in an available node in the infrastructure (if
there is a node available) in face of high load peak or failuredetection or stopped if the
system is idle. Nodes, which are not executing an instance ofan application server, can be
reallocated to other purposes. The number of active serversis always less or equal of the
number of operational nodes in the infrastructure. If this threshold is reached, the system
starts to deny client’s request.

State consistent replication service. Taking into account application features re-
ported on section 2, the current implemented database consistency approach is lazy. A
blind write is multicasted to the group of servers and is individually executed in each
database each time a new sensor information arrives in the infrastructure. So, each server
updates its table using no consistency approach. Therefore, clients would possibly get old
information (i.e. 5 min to get a bus instead of 4 min). However, we do not consider this
a problem since sensor information arrives frequently in the infrastructure and the infor-
mation sent to passengers will be always an approximation ofthe actual bus position.

State transfer service. An application server that was out of service for a time

period (due failure or idleness) should recover its state using a procedure called state
transfer. During the execution of this approach, the servergradually requests the current
version of data items stored in other database server. Aiming not overcharging the client
service with additional communication, and due to the characteristics of the ATIS, the
recovered server can request updating only the last data items (i.e. only the information
concerning the last bus which achieves a suitable bus stop).

4. Implementation and evaluation

The SMS is being implemented using Java program language andJGroups as group com-
munication system support. Currently, great part of the self-managed services were im-
plemented, except state transfer and state replication services. More details about the
implemented services can be found in [Pasin et al 2011].

To evaluate our implementation, we defined a set of tests executed under differ-
ent scenarios. Those tests were executed in a set of three ordinary computers running
ubuntu/linux platform connected under 100Mbps Fast Ethernet. Due to space limitations,
were we report only our initial test facing the reconfiguration service with a growing load
peak. Figure 2 shows graphics obtained in a scenario of testswith three nodes and a
variable number of clients requests (from 100 to 1000).

 0

 200

 400

 600

 800

 1000

 0 100 200 300
 0

 1

 2

 3

 4

cl
ie

nt
s

nu
m

be
r

of
 s

er
ve

rs

time (s)

servers
clients

 0

 20

 40

 60

 80

 100

 0 100 200 300
 0

 1

 2

 3

 4

C
P

U
 lo

ad

nu
m

be
r

of
 s

er
ve

rs

time (s)

(1o. peak) (2o. peak)

(3o. peak)

min threshold
max threshold

CPU usage

Figure 2. Reconfiguration of the infrastructure due a change in the system load

Initially, there is only a server executing in a single machine which is processing
client requests. So, the server is charged with more and moreclient requests until the CPU
load reaches a threshold (90%). The load is increased to overload the initial configuration.
So, automatic initialization of a new server occurs at another node, if the CPU rate reaches
90%. The startup of new servers is repeated until the maximumnumber of available nodes
in infrastructure is achieved. Similarly, if the load decreases (in the experiment it was
reduced and maintained at 200 active clients), the CPU occupation rate also reduces and
when it reaches 40%, servers are deallocated.

5. Future works

The total system implementation is still not finished. Future works include improving
the module of detection of load peaks and idleness with a predictive approach (such as
[Sant’Ana et al 2010]). In the current implementation, there is a two-level time series
vector taking into account only the CPU occupation in each sever but other metrics such

as memory occupation, and number of current requests’ in execution can be used in future
implementations.

Finally, self-managed services previously reported can beconflicting. For ex-
ample, two or more decisions taking by concurrent services could lead to inconsistent
actions. Conflict resolution is a challenge for self-managed systems. In the current imple-
mentation, if agents perceive that services are proposing inconsistent actions, they vote to
reach agreement. Therefore, our aim is not only to use already implemented techniques
but also to explore more sophisticated agent-based techniques such as negotiation. Ne-
gotiation among agents can be implemented in a variety of ways (auctions, bargaining,
arguing, etc.). Also, negotiation opens up the possibilityof including a reputation-based
mechanism where agents assign a reputation degree to each other, thus affecting the vot-
ing protocol.

6. Conclusions

ATIS have gained wide-spread popularity. This kind of service typically is distributed
or replicated on clusters to allow availability and scalability. Managing such infrastruc-
ture is complex and costly since services are subject to elastic demand, failures and load
peaks. Autonomic computing is believed to alleviate the complexity of the management
on these systems maintaining a suitable service with regardto system changes. In this
paper, we have proposed a SMS able to deal with these issues. Its main and novel features
are: providing ATIS-related services; accounting for timeseries to avoid unnecessary re-
configurations; and conflict resolution by means of negotiation. Future works include
improving the module of detection of load peaks and idlenesswith a predictive approach
and use of reputation tied to the voting process to improve the task of conflict resolution.

References

Bastos, R. and Jaques, P. (2010) ANTARES: Um Sistema Web de Consulta de Rotas de
Ônibus como Serviço Público. Revista Bras. de Computaç˜ao Aplicada, v.2, pp. 41–56.

Bouchenak, S., De Palma, N., Hagimont, D. and Taton, C. (2006) Autonomic Manage-
ment of Clustered Applications, In: Proc. Cluster 2006, Barcelona, Spain. Sept. pp.
1–11.

Kephart, J. O. e Chess, D. M. (2003) The Vision of Autonomic Computing, In: IEEE
Computer, vol. 36. pp. 41–50.

Pasin, M., Perini, F. S. and Bazzan, A. L. C. (2011) Towards a Self-managed Distributed
Infrastructure to an Advanced Traveler Information System. In: Anais do Autosoft /
CBSoft 2011. São Paulo - Brazil. pp. 33–39.

Sallem, S. K. and Chen, S.-C. (2008) Towards a Self-configurable Weather Research and
Forecasting System, In: Proc. ICAC 2008, pp. 195–196.

Sant’Ana, C. H., Leite, J. C. B. and Mossé, D. (2010) Previs˜ao de Carga para Economia
de Energia em Aglomerados de Servidores Web. In: Anais do SBRC 2010. Gramado -
RS, Brazil. pp. 683–696.

