
A Domain Specific Language for Lessening the Effort Needed
to Instantiate Applications Using GRENJ Framework

Vinícius H. S. Durelli1, Rafael S. Durelli2,
Simone de Sousa Borges2, and Rosana T. V. Braga1

1Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo (ICMC-USP)

13560-970 – São Carlos – SP – Brasil
{durelli,rtvb}@icmc.usp.br

2Departamento de Computação
Universidade Federal de São Carlos (DC-UFSCar)

13565-905 – São Carlos – SP – Brasil
{rafael_durelli,simone_borges}@dc.ufscar.br

Abstract. GRENJ is a white-box framework implemented in Java. White-box
frameworks are reusable designs composed of a set of concrete and abstract
classes so that the collaboration among these classes provides support for large-
scale reuse of design and source code. However, instantiating applications by
using this sort of framework is quite complex and demands detailed architectural
knowledge. In order to lessen the amount of source code, effort, and expertise
required to instantiate applications by using GRENJ framework, we have de-
veloped a domain specific language that manages all application instantiation
issues systematically. This domain specific language facilitates the application
instantiation process by acting as a facade over GRENJ framework as well as
providing the user with a more concise, human-readable syntax than Java. In
this paper, we contrast the major differences and benefits resulting from instan-
tiating applications solely using GRENJ framework and indirectly reusing its
source code by applying our domain specific language.

1. Introduction
An object-oriented framework consists of a collection of several fully or partially imple-
mented components that cooperate among themselves, thereby implementing a software
architecture for a family of applications belonging to a specific domain. Frameworks have
components that are designed to be either extensible or replaceable, these components are
called variation points or hot spots of the framework [Johnson 1997]. Developers are
able to customize and extend these variation points through application-specific source
code, creating applications according to their needs. Thus, frameworks provide support
for large-scale reuse of source code as well as their underlying architecture design [Fayad
et al. 1999].

Despite the benefits provided by frameworks, instantiating applications is a com-
plex task for which architectural knowledge is required. Since the most common way
to instantiate applications using a framework is to inherit from abstract classes defined
in the framework, the following issues hinder the instantiation process: (i) the lack of
adequate documentation; (ii) the developer has to know where the customization source

code should be written and which sort of code is needed to extend each variation point;
(iii) variation points may either have interdependencies or be optional; (iv) frameworks
may provide several ways of adding the same functionality; and (v) the implementation
language compiler cannot verify instantiation restrictions, being unable to report instanti-
ation error messages [Fontoura et al. 2000].

In order to overcome the difficulties related to application instantiation using
frameworks, we propose an approach that is based on developing a domain specific lan-
guage so that it can manage all application instantiation issues systematically. A similar
approach proposed by Fontoura et al. [2000] consists in creating a domain specific lan-
guage for each variation point. In our approach, only one domain specific language, which
acts as a facade over the framework being encapsulated, is implemented. Hence, by us-
ing a domain specific language the developer is able to describe the application being
instantiated as concepts from the application domain, not concepts of a general-purpose
programming language.

In order to describe our approach and the domain specific language developed, the
remainder of this paper is structured as follows. Section 2 presents background on domain
specific languages, Section 3 describes researches that also focus on ways of easing the
application instantiation process, and Section 4 gives an overview of previous research
and technologies that played an important role during the development of GRENJ frame-
work. Section 5 presents an evaluation performed to ascertain whether GRENJ framework
domain is appropriate for being represented as a textual domain specific language, Sec-
tion 6 highlights the major features of the domain specific language we have developed,
and Section 7 contrasts the major differences between instantiating applications using
GRENJ framework and applying our domain specific language. Section 8 concludes the
paper with some remarks, limitations of our domain specific language, and future direc-
tions.

2. Domain Specific Languages
Domain specific languages (DSLs) are small languages that present limited expressive-
ness focused on a particular domain [van Deursen et al. 2000]. Usually, DSLs are not
turing complete and have no imperative control structures, e.g., conditions and loops.
Rather, most of them are declarative, consequently, they can be regarded as specification
languages. These small, declarative, special-purpose languages have a simplified suite of
notations that is tailored toward their domain abstractions, features, semantics, and jargon.
Hence, by using DSLs, developers perceive themselves as dealing directly with domain
concepts [Sprinkle et al. 2009].

DSLs can be divided into two groups: external and internal [Fowler 2009]. Exter-
nal DSLs have their own custom-built syntax. As a consequence, developing an external
DSL implies in writing a full-fledged parser in order to process it. Internal DSLs use ex-
isting general-purpose languages structures and, in most cases, the underlying execution
environment, as a hosting base. An advantage of this approach is that the compiler or
interpreter of the base language is reused. The main limitation is related to the limited ex-
pressiveness that can be achieved by using the base language syntactic mechanisms [van
Deursen et al. 2000].

The benefits of using DSLs include: (i) solutions can be expressed in a high ab-

straction level that encompasses domain idioms and jargons; (ii) DSL programs are con-
cise and self-documenting; (iii) DSLs embody domain knowledge; (iv) it is possible to
perform validation and optimization at the domain level [Menon and Pingali 1999]; and
(v) DSLs enhance productivity, reliability, and maintainability [van Deursen and Klint
1998]. However, it is worth noting that not all domains are appropriate for being repre-
sented as a DSL. A DSL approach is more suitable when: (i) the domain is well defined
and it has repetitive elements; (ii) there is an intuitive or well accepted representation of
the domain concepts; and (iii) the abstractions of the general-purpose language being used
do not provide the required expressiveness [Sprinkle et al. 2009].

3. Related Work in Framework Instantiation
Several approaches have been proposed to support framework instantiation. Most of them
draw the information required for instantiating applications from the framework docu-
mentation. In the context of white-box frameworks, this information basically consists of
the framework class hierarchy, the abstract classes that need to be subclassed in the new
application, the methods to be overridden in these classes, and examples of applications
derived from the framework. Some of the possible types of approach are based upon: (i)
studying the framework source code and its documentation; (ii) exploration of exemplars;
(iii) cookbooks; (iv) patterns; and (v) pattern languages.

The first approach consists in studying the framework documentation and the
framework itself, i.e., its class hierarchy, source code, and other documents. Conven-
tional training or special tutorials are ways of achieving the required knowledge. The
main drawbacks of this approach are the time required to properly learn the framework
and the difficulty to determine whether the newly acquired comprehension is enough to
begin to use the framework.

Examining existing applications built with the framework in order to identify what
needs to be adapted to obtain the custom-application is other possible approach. Never-
theless, the exploration of exemplars has the following disadvantages: (i) its is difficult to
find an application that has all the particular functionalities that need to be implemented
and (ii) when the functionality is present in an example it may have additional features
that are not needed, thus, the user has to know what can be removed without affecting the
functionality behavior. An example of this approach is given by Gangopadhyay and Mitra
[1995].

Cookbooks are a sort of documentation that describes the tasks and configurations
required to instantiate applications. Usually, this information is conveyed in a stepwise
fashion – like in a recipe. Several researches have been conducted aimed at evaluating
this instantiation approach [Pree et al. 1995; Ortigosa et al. 2000]. Several limitations of
this approach are as follows: (i) difficulty in finding the correct “recipe” and (ii) some
tasks and configurations cannot be performed step by step.

According to Johnson [1992], patterns document frameworks and help to ensure
the correct use of their functionalities. Nevertheless, patterns are situated in a lower ab-
straction level than frameworks. Moreover, since frameworks may be quite complex,
usually it is not possible to document the overall design as a set of unrelated patterns, in-
stead they should be related to each other in the documentation. Thus, pattern languages
are a more suitable technique for documenting frameworks.

According to Brugali and Sycara [2000], if a framework is developed based on a
pattern language, this pattern language can be used to guide the instantiation process by
providing: (i) domain-specific advices and (ii) information on the design of the framework
in terms of objects and their relationships. Braga and Masiero [2002] explore this idea
and try to support framework development and instantiation based on pattern languages
and a well-defined process. The proposed process encompasses: (i) analysis by means
of following and applying the patterns of the underlying pattern language; (ii) mapping
between the analysis model, produced during the previous step, and corresponding frame-
work classes; (iii) details concerning the implementation of specific classes according to
the requirements of the application under development; and (iv) testing.

An advantage of Braga and Masiero [2002] approach is that the framework user
knows exactly where to begin the instantiation since the pattern language guides him/her
through the several parts that need to be adapted in the framework hierarchy. The in-
stantiation is focused on the functionality required and there is a clear notion of which
requirements are attended by each pattern. However, applying this approach does not
help to overcome technical problems associated with the instantiation process, i.e., prop-
erly using the programming language at each framework hot spot.

In another related work Fontoura et al. [2000] also propose using DSLs in order
to overcome difficulties from instantiating applications using frameworks. The proposed
approach uses DSLs only to describe hot spots, thereby instantiating applications involves
describing the desired functionality by means of several DSLs. During instantiation time,
DSLs are transformed to generate the framework instantiation code.

As for our approach, it relies on introducing just one DLS atop a framework,
aiming at providing a suite of notations that is tailored toward the underlying domain
abstractions. Thus, a clear advantage of our approach is that it obviates the need for
knowing and using more than one DSL.

4. GRN, GREN, and GRENJ

GRENJ [Durelli 2008] is a white-box framework that is resulting from the reengineering
of a framework implemented in Smalltalk which has been developed based upon a pattern
language; GREN and GRN [Braga 2002], respectively. Therefore, both frameworks and
GRN belong to the same domain, business resource management.

GRENJ has more than twenty-nine thousand lines of Java source code and its ar-
chitecture consists of two layers: persistence and business. In the business layer, there are
implementations of each of the fourteen GRN patterns. Most of the classes in this layer
represent elements of some GRN pattern and are abstract so that they can be extended
for generating specific applications. To properly instantiate applications, the user must
be familiar with GRN and should have a fair knowledge of GRENJ architectural details;
not to mention knowledge of several advanced Java features, e.g., generics and reflection
application programming interface (API). To overcome these difficulties, we intend to
introduce a DSL that encapsulates all details concerning application instantiation. How-
ever, before doing this, in the next section we analyze whether the domain, as dealt and
represented by GRN, deserves to be denoted as a textual DSL.

5. GRN Domain Evaluation
Sprinkle et al. [2009] present a series of questions intended as a checklist for determining
whether a problem merits a DSL approach. The items of such a list that have been con-
sidered can be summarized by the following questions: (i) “Is the domain well-defined?”;
(ii) “Does the domain have repetitive elements or patterns, such as multiple products, fea-
tures or targets?”; (iii) “Is there a clear path from requirements analysis and specification
to execution?”; and (iv) “Is there an intuitive and well-accepted representation?”.

GRN patterns and the way they are organized capture and concisely convey in-
formation on the business resource domain. In addition to it, GRN provides a path that
emphasizes the identification of concepts that can be regarded as a “resource”. After
identifying these concepts, for each potential resource, the user iterates throughout the
pattern language coherently applying the patterns. Hence, we can conclude that the ques-
tions (i) through (iii) can be positively answered. Nevertheless, taking into consideration
the item (iv), it is worth noting that there is no available representation apart from the
analysis-level class diagrams provided by GRN to illustrate each pattern. We have not
emphasized item (iv) since we intend to implement a textual DSL. We argue that an intu-
itive, well-accepted graphical representation would not be of importance for creating the
DSL syntax.

Given that most of the checklist items have been regarded as applicable to GRN
and consequently GRENJ domain, we have developed a textual DSL in order to lessen
the effort required to instantiate applications using GRENJ framework.

6. rm-DSL Implementation
Our domain specific language is called resource management Domain Specific Language
(rm-DSL). We have chosen to implement an internal DSL (i.e., adapting an existing
general-purpose language by adding or changing methods, operators, and other struc-
tures), thus rm-DSL was built on top of the Ruby programming language [Flanagan and
Matsumoto 2008]. Moreover, in order to support the development and design of our DSL,
we have consulted several DSL design patterns described by Spinellis [2001]. Along this
section, as we describe the DSL implementation, we also briefly mention the patterns
applied.

The most important points concerning the implementation of a DSL on top of
an existing language are described by the structural pattern Piggyback [Spinellis 2001].
The use of this pattern consists simply in obtaining all standardized support for common
syntactical elements from the hosting language. Hence, taking advantage of several Ruby
language structures, we have designed rm-DSL so that it provides a notation intended
to reduce the semantic distance between the problem domain and the solution domain.
Therefore, easing the instantiation of applications using GRENJ framework by hiding
details related to the framework and its intricacies.

rm-DSL uses code templates containing valid subclasses of GRENJ framework
classes which, usually, are extended and have their hook methods overridden during ap-
plication instantiation. These code templates have lexical hints, which point out chunks
of code that must be customized according to the application being instantiated. The
notation used is as follows: every element preceded with # is replaced by a value pro-
vided by the user during application instantiation by means of the rm-DSL. In Listing 1

we show an example of the sort of code template used by the DSL. In this chunk of
code, all occurrences of #class_name are replaced by the resource name supplied during
instantiation. The lexical hints #attributes and #attribute_initializations are
replaced by attribute declarations and attribute initializations, respectively. These lexical
hints represent the added attributes in order to customize the resource being instantiated.
It is worth noting that the code templates used by rm-DSL can also be considered a DSL.
More specifically, it can be regarded as an external DSL that applies the Lexical Pro-
cessing pattern [Spinellis 2001] since it is geared towards lexical translation by using a
notation based on lexical hints; in this case, a prefix character (i.e., #).

For instance, the chunk of code shown in Listing 2 can be generated from the
rm-DSL code shown in Listing 3. The utilization of our DSL consists in instantiating
implementations of GRN patterns and adding attributes to these instantiations in order
to customize them. At line 4 of Listing 3, it is shown a instantiation of the Identify
the Resource pattern from GRN [Braga 2002]. In such a context, the resource being
instantiated is a movie and it has a string as attribute which describes its synopsis. During
the addition of attributes, the user is able to specify other properties related to them, e.g.,
access modifier and whether it is required to generate getters and setters methods. As
can be seen from lines 5 to 7 of Listing 3, attributes are added using the += operator.
Our DSL takes advantage of the fact that Ruby implements a number of its operators as
methods [Flanagan and Matsumoto 2008], allowing classes to define new meanings for
these operators.

Listing 1. Chunk of a code template used by rm-DSL.�
9 . . .

10 p u b l i c c l a s s # c l a s s _ n a m e ex tends Resource {
11 # a t t r i b u t e s
12 p u b l i c # c l a s s _ n a m e () {
13 super () ;
14 # a t t r i b u t e _ i n i t i a l i z a t i o n s
15 }
16 . . .
� �

Listing 2. Resulting code from the rm-DSL code in Listing 3.�
9 . . .

10 p u b l i c c l a s s Movie ex tends Resource {
11 p r i v a t e S t r i n g s y n o p s i s ;
12 p u b l i c Movie () {
13 super () ;
14 s y n o p s i s = " " ;
15 }
16 . . .
� �

Listing 3. Instantiating the Identify the Resource pattern and adding an attribute to it.�
3 . . .
4 i n s t a n c e = I d e n t i f y R e s o u r c e . new " Movie "
5 i n s t a n c e += { : type => : s t r i n g , : name => : s y n o p s i s ,
6 : a c c e s s _ m o d i f i e r => : p r i v a t e ,
7 : g e n e r a t e _ g e t t e r s _ a n d _ s e t t e r s => t r u e }
8 . . .
� �

As aforementioned, the information needed to instantiate applications is extracted
from certain key points of rm-DLS programs (.rb files). In order to generate the code
shown in Listing 2, information that varies according to the application being instantiated
has to be explicitly specified, e.g., (i) name of the class to be generated, (ii) its attribute
names, (iii) and whether it is necessary to generate methods to get and set the value of
each attribute. As illustrated in the overview in Figure 1, such information is used to
replace the code template’s lexical hints, thereby generating the resulting Java code.

Figure 1. rm-DSL overview: the interaction among the involved files.

7. Contrasting Instantiation Using GRENJ and rm-DSL

In this section we highlight the main particularities of instantiating applications both using
GRENJ framework (i.e., through extending framework superclasses and overriding hook
methods) and rm-DSL. In order to do that, we have instantiated the class diagram shown
in Figure 2 using both foregoing approaches. The underlying class diagram represents
part of the functionalities required by a DVD rental store and has been created applying
GRN patterns. Inside the arrows, the following format has been adopted: P#n: role,
where n is the pattern number in the context of GRN and role is the “role” played by

this class in the underlying pattern. The added attribute is depicted in a lighter shade of
gray.

Figure 2. DVD rental store modeled applying GRN patterns.

Implementing such an application using GRENJ requires extending three classes.
In each extended class, it is necessary to implement three distinct constructors, i.e. a de-
fault constructor that has no parameters, one that has all added attributes passed as param-
eters, and one that receives instances of java.sql.ResultSet and grenj.util.Index.
It is also necessary to implement all getters and setters methods. Moreover, for
implementing persistence, in each class, the following methods have to be over-
ridden: insertionFieldClause, insertionValueClause, and updateSetClause.
In the context of the Movie class, it is also necessary to override the method
getResourceInstanceClass in order to indicate which class represents an resource in-
stance; in this case, the method must be overridden so that it returns an instance of DVD.
The number of classes and methods that have to be implemented are summarized in Ta-
ble 1. Given that the developer needs to implement many methods, this approach results
in a lot of effort and source code. This large amount of Java source code that needs to be
implemented makes this approach error-prone.

Table 1. Classes and methods that have to be implemented during the instantiation using
GRENJ framework.

Class Added Attributes Added Methods Lines of Code
Movie 1 12 279
DVD 0 6 134

Genre 0 6 89
Total 1 24 502

By applying our DSL the user needs to have knowledge of neither GRENJ ar-
chitecture nor Java programming language. Moreover, application instantiations using
rm-DSL have less lines of code and the resulting source code is more human-readable.
The DVD rental store depicted in Figure 2 can be instantiated using rm-DSL as shown in
Listing 4. In the context of rm-DSL, it consists simply in creating instances of each pat-
tern as if they were simple classes (e.g., lines 6 and 8), whereas using GRENJ framework
new classes have to be implemented and customized at each hot spot.

8. Concluding Remarks
Learning to use an object-oriented framework effectively requires considerable invest-
ment of effort. In addition to it, due to the large amount of customization source code
required for instantiating each application, this process tends to be error-prone. Aiming at

overcoming these problems, we propose the use of a DSL as a facade over the framework
being encapsulated, thereby hiding details related to the underlying framework and its
intricacies. Such a DSL must be sufficiently expressive to support the description of all
possible combinations of valid instantiations.

Listing 4. Instantiating the DVD rental store depicted in Figure 2 using rm-DSL.�
1 r e q u i r e " i d e n t i f y _ r e s o u r c e "
2 r e q u i r e " c o d e _ g e n e r a t o r "
3 r e q u i r e " r e s o u r c e _ i n s t a n c e "
4

5 i n s t a n c e =
6 I d e n t i f y R e s o u r c e . new (" Movie " , { : type => : i n s t a n t i a b l e })
7

8 i n s t a n c e . r e s o u r c e _ i n s t a n c e = R e s o u r c e I n s t a n c e . new "DVD"
9

10 i n s t a n c e += { : type => : s t r i n g , : name => : s y n o p s i s ,
11 : a c c e s s _ m o d i f i e r => : p r i v a t e ,
12 : g e n e r a t e _ g e t t e r s _ a n d _ s e t t e r s => t r u e }
13

14 i n s t a n c e . t y p e s = [" Genre "]
15

16 c o d e _ g e n e r a t o r = CodeGenera to r . new
17 c o d e _ g e n e r a t o r . g e n e r a t e _ w i t h o u t _ v a l i d a t i o n [i n s t a n c e]
� �

In order to prove the feasibility of the proposed approach, we have presented a
DSL to lessen the amount of Java source code and effort needed to instantiate applications
using GRENJ framework. Such a DSL, which is called rm-DSL, encompasses domain
concepts and provides the user with a more concise, human-readable syntax than Java.
Through rm-DSL we have shown that it is possible to reuse GRENJ framework source
code indirectly through code templates containing valid chunks of GRENJ subclasses
code and lexical hints that are replaced according to instantiation needs. Hence, rm-DSL
and GRENJ framework synergistically produce a more flexible approach for instantiating
applications.

A limitation of our DSL is that it covers only four of the fourteen patterns im-
plemented on GRENJ framework. Therefore, as a future work, we intend to implement
the remaining patterns. Another considered extension is to add validation functionalities,
allowing rm-DSL to determine whether an instantiation is in compliance with GRN cri-
teria, thereby providing the user with instantiation error messages. Moreover, we aim at
conducting case studies for evaluating the effectiveness and the amount of reuse that can
be achieved by using our DSL in contrast with solely using GRENJ framework.

Another limitation of our DSL is that it does not implement complex validation
functionalities. We aim at improving on our DSL for the purpose of checking whether
a certain instantiation (i.e., combination of patterns) is valid according to GRN criteria,
thereby providing the user with instantiation error messages.

References
Braga, R. T. V. (2002). Um processo para construção e instanciação de frameworks

baseados em uma linguagem de padrões para um domínio específico. PhD thesis,
ICMC/USP, São Carlos - SP.

Braga, R. T. V. and Masiero, P. C. (2002). The Role of Pattern Languages in the Instan-
tiation of Object-Oriented Frameworks. In Advances in Object-Oriented Information
Systems, pages 403–410. Springerlink.

Brugali, D. and Sycara, K. (2000). Frameworks and pattern languages: an intriguing
relationship. ACM Computing Surveys, 32.

Durelli, V. H. S. (2008). GRENJ: um framework obtido por um processo iterativo de
reengenharia aplicando TDD. master thesis, UFSCar/DC, São Carlos - SP.

Fayad, M. E., Johnson, R. E., and Schmidt, D. C. (1999). Building Application Frame-
works: Object-Oriented Foundations of Framework Design. John Wiley & Sons.

Flanagan, D. and Matsumoto, Y. (2008). The Ruby Programming Language. O’Reilly
Media, Inc.

Fontoura, M., Braga, C., Moura, L., and Lucena, C. (2000). Using domain specific
languages to instantiate object-oriented frameworks. IEE Proceedings – Software,
147(4):109–116.

Fowler, M. (2009). A Pedagogical Framework for Domain-Specific Languages. IEEE
Software, 26(4):13–14.

Gangopadhyay, D. and Mitra, S. (1995). Understanding frameworks by exploration of
exemplars. International Workshop on Computer-Aided Software Engineering.

Johnson, R. E. (1992). Documenting frameworks using patterns. In OOPSLA ’92: con-
ference proceedings on Object-oriented programming systems, languages, and appli-
cations, pages 63–76. ACM.

Johnson, R. E. (1997). Frameworks = (components + patterns). Communications of the
ACM, 40(10):39–42.

Menon, V. and Pingali, K. (1999). A case for source-level transformations in matlab. In
PLAN ’99: Proceedings of the 2nd conference on Domain-specific languages, pages
53–65. ACM.

Ortigosa, A., Campo, M., and Moriyón, R. (2000). Towards Agent-Oriented Assistance
for Framework Instantiation. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 253–263. ACM.

Pree, W., Pomberger, G., Schappert, A., and Sommerlad, P. (1995). Active Guidance of
Framework Development. Software – Concepts and Tools, 16(3).

Spinellis, D. (2001). Notable design patterns for domain-specific languages. Journal of
Systems Software, 56(1):91–99.

Sprinkle, J., Mernik, M., Tolvanen, J.-P., and Spinellis, D. (2009). Guest Editors’ In-
troduction: What Kinds of Nails Need a Domain-Specific Hammer? IEEE Software,
26(4):15–18.

van Deursen, A. and Klint, P. (1998). Little languages: little maintenance? Journal of
Software Maintenance: Research and Practice, 10(2):75–92.

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages: An Anno-
tated Bibliography. ACM SIGPLAN Notices, 35(6):26–36.

