PL/SQL Adyvisor: a Static Analysis-based Tool to Suggest
Improvements for Stored Procedures

Dimas C. Nascimento, Carlos Eduardo Pires, Tiago Massoni

! Department of Computer Science — Federal University of Campina Grande (UFCG)
Campina Grande — PB — Brazil

dimascnf@copin.ufcg.edu.br, {cesp, massoni}@dsc.ufcg.edu.br

Abstract. Stored procedures are commonly used to provide access and manipu-
lation of database data for information systems and other applications. If pro-
cedures present inefficient programming logic or data manipulation, excessive
delays are provided to the client applications. Such delays can cause, among
other problems, expressive financial losses to enterprises. In additon, if proce-
dures are developed using bad programming practices, they may become com-
plex to maintain and evolve. In general, attempts to minimize these problems
using manual analysis of source code are labor- and time-consuming. In this
work, we present PL/SQL Advisor, a static analysis-based tool, which automat-
ically detects potential improvements on database stored procedures written in
PL/SQL. The results of a case study, using real open source projects, show that
our tool is able to suggest a reasonable amount of code improvements with low
cost.

1. Introduction

Many DataBase Management Systems (DBMSs) have introduced platform dependent
database programming languages. These programming languages enable programmers
to develop and store part of the business logic of information systems as stored proce-
dures (for convenience, in this paper we use the term procedure for both procedure and
function). As presented by [Berkovic et al. 2010, Feuerstein 2007], stored procedures
can bring several benefits to the whole system functioning, such as performance improve-
ments, security and simpler maintenance. Due to these advantages, the usage of stored
procedures became an effective technique on the architecture of information systems and
general database applications. However, these advantages only make sense if stored pro-
cedures are developed concerning acceptable performance and good programming prac-
tices.

There are circumstances in which stored procedures can consume CPU resources,
without any database access, at an excessive rate [Harrison 2000]. Inefficient processing
performed by stored procedures can also generate unexpected delays for client applica-
tions. Thereby, stored procedures must follow good programming practices and use the
available resources efficiently. Moreover, since part of the application logic of a sys-
tem can be implemented as stored procedures, efforts to develop procedures using good
programming practices and standards will decrease further costs to evolve and maintain
them. In practice, programmers can eventually use bad programming practices or im-
plement inefficient code while developing stored procedures. In order to minimize these
problems, stored procedures must undergo manual inspections. However, due to the high

343

costs [Sommerville 2010; Young and Pezze 2005], it usually becomes too expensive to
perform manual analysis on large business logic implementations available as stored pro-
cedures.

In general, stored procedures contain both SQL commands and procedural code.
Although SQL optimizations provide a greater performance impact, procedural code op-
timizations can also bring performance gains [Feuerstein 2007; Berkovic et al. 2010]. In
this paper, we present PL/SQL Advivsor, a tool based on static analysis of source code,
which automatically detects efficiency and quality potential improvements on stored pro-
cedures written in PL/SQL [Sheila Moore 2009], the Oracle programming language. The
tool focus on the analysis of the procedural code within stored procedures. We investi-
gate the efficacy and costs of analyzing stored procedures using the proposed tool. For
doing so, we describe a case study, with real open source projects, that we performed to
evaluate the tool capability of detecting improvements on stored procedures. The results
indicate that the tool is able to perform automatic detection of a variety of improvements
on stored procedures and it is able to analyze a reasonable amount of source code with a
low cost. In practice, these improvements can help the development and maintenance of
information systems or other database applications by: i) decreasing the time required to
perform manual inspections on stored procedures; ii) saving maintenance and evolution
costs; and iii) optimizing the time spent by the applications to access and manipulate data
on databases using stored procedures.

2. Improvements of Stored Procedures

In this section, we discuss potential improvements (efficiency and code quality) on the
source code of stored procedures and point out the problems with manually identifying
these improvements.

2.1. Efficiency Improvements

Several approaches in the literature [Berkovic et al. 2010; Feuerstein 2007; Hall 2006;
Harrison 2000] focus efforts on identifying good practices for the development of effi-
cient stored procedures. Efficiency improvements are related to changes that can enhance
the execution time or memory utilization of the procedures. Regarding efficiency, we
investigate the following subclasses of improvements:

Data type changes (DTC). Some data types available on database programming
languages are stored as a lower level representation and use machine arithmetic. The
usage of these data types result in better performance to execute arithmetic operations and
require less storage. Another possible improvement related to this subclass is to optimize
the size of declared variables in order to minimize memory consumption;

Changes in the expression evaluation order (EQ). Ordering conditional struc-
tures or logical expressions such that the most frequently chosen branches/expressions
are placed in the first options of the list to be evaluated will avoid some logic expressions
evaluations, and thus improve performance;

Reduction of parameter copying (PC). The process of copying large parameters,
such as records, collections, and objects requires both time and memory utilization, which
affects performance. Thereby, passing parameters by reference decreases the time and
memory required to copy parameters;

344

Optimization of database-related operations (DB-OP). Regarding a database
context, some specific resource utilization may be optimized in order to save memory
and improve performance: reduce context switches, decrease the frequency of commit
executions and use implicit cursors to iterate over data stored in databases;

Utilization of native functions (NF). Attempts to overwrite built-in functions
available on the database programming languages will result in lower performance, since
the overwritten implementation may perform inefficient computations or add additional
overheads to native functions;

Removal of useless declarations (UD). Removing unused variables and parame-
ters from the stored procedures will result in storage saving. Similarly, removing declara-
tions inside loop statements will cause the same effect. Moreover, the removal of unused
parameters decreases the overhead of the copying effort, and thus improves performance.

Several performance experiments which investigate the impact of these kind of
efficiency improvements are available in the related literature [Berkovic et al. 2010; Hall
2006; Harrison 2000]. In order to illustrate some of efficiency problems, Code 1 is used as
an example. It illustrates an excerpt from a PL/SQL procedure which aims to persist the
employees of an enterprise that are eligible to retire. Some problems have been purposely
added to Code 1, e.g. usage of inefficient data types on a variable used for arithmetic
operations (line 2), unused parameter (line 1), unused variable (line 3), inefficient logic
expressions order (line 6) and execution of a commit statement for each iteration of a
loop (line 9). These kinds of problems can potentially reduce the performance of an
information system or general database applications.

Code 1. Inefficient procedure which persists the employees of an enterprise that are
eligible to retire.

1. CREATE PROCEDURE ELIGIBLE_EMPLOYEES (emp_limit IN INTEGER) AS

2 count_employees INTEGER := 0;

3 emp employee_table$ROWTYPE;

4. BEGIN

5. FOR emp IN (SELECT ID, NAME, YEARS_WORKED FROM EMPLOYEE_TABLE) LOOP
6 IF (employee_score (emp.id) > 5 AND emp.years_worked > 30) THEN

7 INSERT INTO ELIGIBLE_EMPLOYEES VALUES (emp.id, emp.name, emp.years_worked);
8. count := count + 1;

9. COMMIT;

10. P

11. DBMS_OUTPUT.PUT_LINE (’'# Eligible Employees:’ || count_employees);

12. END ELIGIBLE_EMPLOYEES;

2.2. Code Quality Improvements

Maintenance costs of business applications are as expensive as development costs [Som-
merville 2010] and the authors of [Erlikh 2000] suggest that 90% of a software cost is re-
lated to evolution tasks. In this context, it is important that programmers follow good pro-
gramming practices when developing database stored procedures. Otherwise, bad smells
may drastically reduce code readability and lead to high maintenance and evolution costs.
Quality improvements are related to changes that can enhance code readability or instill
patterns throughout the procedures. Regarding code quality, we investigate the following
subclasses of improvements:

Simplify code control flow (CCF). The removal of scape commands as well as
of multiple exit points on the code simplifies its control flow, and thus facilitates its un-
derstanding;

345

Avoid dodgy code (DC). These improvements refer to avoid using constructs
which drastically difficult code readability (and increase the probability of fault inser-
tions) or which are unreliable and may cause runtime errors;

Avoid collateral effects (CE). Understanding a program with side effects requires
knowledge about its context and its possible states; therefore, the code becomes hard to
read, understand, and debug;

Improve the meaning of identifiers (MI). Spreading meaningful identifiers for
non-obvious parts of the source code significantly increases program readability;

Usage of programming styles (PS). Using code patterns, e.g., naming conven-
tions and proper indentation, usually facilitates code understanding.

2.3. Manual Inspections

The task of identifying parts of stored procedures source code in which the improvements
presented in Sections 2.1 and 2.2 may be performed by manual inspections. However, it
is difficult to introduce formal inspections into many software development organizations
and they appear to slow down the development process [Sommerville 2010]. Moreover,
manual inspections are time-consuming tasks and may require meetings, which can be-
come a scheduling bottleneck [Young and Pezze 2005]. For these reasons, we believe that
an automatic approach is more suitable to analyze the source code of stored procedures.

3. PL/SQL Advisor - A Static Analysis-Based Tool

In this section, we present a tool, based on static analysis of source code, to perform
automatic detection of potential improvements on stored procedures. Automated static
analysis is more limited in applicability compared to manual inspection, but is selected
when available because substituting machine cycles for human effort makes them partic-
ularly cost-effective [Young and Pezze 2005].

Automated static analysis uses a suitable representation of a program’s source
code to achieve its goal. This representation can be quite different depending on the
type of analysis that is performed and on the underlying formalism. We use a Control De-
pendence Tree (CDT) [Young and Pezze 2005, Lengauer and Tarjan 1979], which derives
from the definition of Control Flow Graph [Young and Pezze 2005] [Allen 1970], to rep-
resent a stored procedure source code. A CDT provides a hierarchical representation of
the source code using the definition of control dependency between the statements of the
source code. The related literature [Lengauer and Tarjan 1979, Young and Pezze 2005]
presents formal steps required to turn a procedural code into an equivalent representation
as a Control Dependence Tree. For example, Figure 1 shows the CDT representation
of the Code 1. The statements of the Code 1 are represented as their respective lines in
Figure 1.

We implemented a tool, called PL/SQL Advisor', to perform automatic detection
of potential improvements on stored procedures written in PL/SQL. The proposed tool is
a implementation of a generalizable approach [Nascimento 2013] to analyze stored pro-
cedures and is fully implemented in JAVA. Figure 2 illustrates an overview of the process
performed by the proposed tool. In the first step, a PL/SQL stored procedure source code

Thttp://sites.google.com/plsgladvisor

346

Figure 1. CDT representation of Code 1.

is parsed by a suitable parser for the PL/SQL programming language. This process is
supported by a PL/SQL Lexer. The generation of the PL/SQL Lexer and Parser was car-
ried out by ANTLR [Parr and Quong 1995]. In the second step, a CDT is created for the
PL/SQL stored procedure after the parse operation. Since we do not intend to create a
compiler, we require that the source code must be syntactically correct. Otherwise, the
CDT analysis will lead to a mistaken static analysis.

Developer

Develoger Procedae P
§i- A:rl-@'.r_" EMicency retumn | Analysis ii .
\ —3
V) m Analyzer . Summary F e
v
» - —r 1 A
1 |read 3 luse 5 use read
v i ¥
Parserfor create o Improverment | retum moroverrent
, » Representation , -
PL/SCL 2 of Procedure P Advisar 6 wanisg
— - A
1
| use 3 e S luse
s
v
Lexerfor Quality retum J Anatysis Tool Module
PU/SCRL Analyzer s Summary Cencreted
Artifect

Figure 2. Process executed by PL/SQL Advisor.

In the third step, once the CDT is properly structured, the CDT Analyzers (Effi-
ciency Analyzer and Quality Analyzer) search for predefined patterns on the statements
represented as a CDT. The Efficiency Analyzer is responsible for analyzing the CDT
structure in order to detect patterns of the source code in which procedural efficiency
improvements can be applied. Analogously, the Quality Analyzer is responsible for de-
tecting code smells throughout the CDT structure. To implement the third step, classic
search algorithms like DFS (Depth First Search) and BFS (Breadth First Search) can be
executed for finding useful information.

In the fourth step, the CDT Analyzers return an analysis result summary, which
contains all the identified patterns and their respective positions in the CDT. In the fifth
step, the Improvement Advisor evaluates the analysis summary and decides which im-
provements will be reported on the output and in which order they will appear. This step
is important since sometimes more than one problem may be related to the same statement

347

and there might be a single warning which suggests a better solution for the problems. For
example, if a variable is declared using an inefficient data type and the variable is not used
in the procedure, suggesting the variable removal is the most suitable warning in this case.
Besides, ordering the warnings, according to a certain relevance criteria, is important to
improve the output readability, and thus save time in the tuning process. Some possible
ordering criteria are: warning frequency, warning subclass or warning detection difficulty
(i.e., how hard it is to identify the improvement using manual inspection). In the sixth
step, the Improvement Advisor selects the suitable warnings related to possible improve-
ments on the stored procedure source code and redirects them to the output. Note that the
process executed by the tool can be easily extensible to add new analysis. For doing so,
only the components Efficiency Analyzer, Quality Analyzer and Improvement Advisor
need to be evolved.

In Table 1 we show all the improvements that are detected by PL/SQL Advisor.
The improvements are classified according to the subclasses defined in Section 2. In
order to illustrate how the CDT structure can be analyzed by the proposed tool, Figure
3 shows an example of a pseudo-code to detect the improvement E9, shown in Table I.
The pseudo-code searches for commit statements that are dominated by a loop statement.
Additionally, it is checked if the amount of iterations executed by the loop is above a
threshold received as parameter (the parameter can be configured by the developer). This
checking can be statically analyzed in the cases that the range of the loop is fixed. If these
conditions are verified, the Efficiency Analyzer reports this fact in the analysis summary,
which will lead the tool to report a warning related to the efficiency improvement E9.

search commits within loops (Statemant stmt threshold intu)
1P (TYPE(stmt) = LOOPF AND RANGE (stmt) > threshold)
FOR child im ohildren{stat)
search ocommit{child)
POR ahaild IN ehildren{stms)
pearch commits whithan Z'f"-(-".'..'. threshold)
END
penrch commit (Stateamant »stmt)
IY TYPE(azmt) = COMMIT
analysis susmary.add(
line (at=t))
FOR child IN childcen{at=t)
search_cosmit (child)

END

Figure 3. Example of a search in the CDT representation for a stored procedure.

In order to illustrate an output of PL/SQL Advisor, Code 1 is used as example.
A SQL file containing the source of Code 1 was selected on the PL/SQL Advisor GUI
(Figure 4) and the process shown in Figure 2 was executed by the tool. In Figure 5 it is
shown the warnings reported by PL/SQL Advisor after the analysis of Code 1. To sim-
plify, only the efficiency warnings are shown. Note that the tool is able to create suitable
warnings related to all efficiency problems of Code 1 discussed in Section 2.1. Accord-
ing to the related literature [Berkovic et al. 2010; Feuerstein 2007; Hall 2006; Harrison
2000], the appliance of these warnings can significantly improve the performance of a
stored procedure.

348

Table 1. Improvements reported by PL/SQL Advisor.

Efficiency Improvements

Short Description Subclass
E1l: Use native INTEGER types DTC
E2: Use native NUMBER types DTC
E3: Avoid using constrained datatypes (e.g. POSITIVE, POSITIVEN, NATURAL) DTC
E4: Optimize the order of logic expressions EO
ES5: Optimize the order of conditional commands EO
E6: Pass parameters by reference PC
E7: Optimize the length of variables DTC
ES8: Reduce context switches [Berkovic et al. 2010; Feuerstein 2007] DB-OP
E9: Decrease commit frequency DB-OP
E10: Remove declarations inside loops UD
E11: Use built-in string functions NF
E12: Tterate over rows implicitly DB-OP
E13: Remove unused variables UD
E14: Remove unused parameters UD
Code Quality Improvements
Short Description Subclass
Q1: Avoid using GOTO commands CCF
Q2: Avoid declaring a variable using the same identifier of a loop for counter DC
03: Avoid using escape commands (e.g. EXIT, CONTINUE) inside loops CCF
(Q4: Avoid using return commands inside loops CCF
05: Avoid using multiple RETURN clauses in a function CCF
06: Avoid using result parameters on functions signatures CE
Q7: Turn a procedure which has only one result parameter into a function PS
Q8: Encapsulate complex logic expressions using functions MI
Q9: Use naming conventions to indicate the parameter passing types PS
Q10: Declare one variable by line PS
Q11: Place one parameter by line PS
Q12: Declare named constants for literal values MI
Q13: Use %type or %rowtype for data types used on fetch or select into statements DC
Q14: Verify if an explicit cursor is not already opened before opening it DC
Q15: Use an ELSE clause on CASE commands DC
Q16: Use named (instead of positional) notation to pass parameters on procedure calls DC
Q17: Avoid returning NULL values on boolean functions DC

Wrusounveor RIS

File Run Output Software

[‘input | Output | Output Summary |

¢ 1] procedures
[cached_top_n.sql
¥I [) letigible_employees.sal

Figure 4. Selection of the eligible_employees.sql file on PL/SQL Advisor GUI.

349

B PL/SQL Advisor Warnings =10] x|

PROCEDURE: eligible_employees

PL/SQL Advisor Warmings

>onsider removing <emp_limit= from the routine signature | Line: 1
IConsider using a nawite INTEGER type on variable <count_employees= | Line: 2
IConsider removing variable <emp= | Line: 3
[Place the quickest or leas! expensive logic tests to be evaluated first| Line. 6
jIConsider decreasing commit frequency | Line: 9

Figure 5. The PL/SQL Advisor output.

4. Evaluation

Our evaluation methodology addresses three questions: (i) Is the proposed tool able to
detect possibilities of improvements on the source code of stored procedures?; (ii) Are the
efficiency and quality mistakes analyzed by the tool present on real stored procedures?;
and (iii) Does the proposed tool perform an efficient detection of code improvements?

To address the first question, we measured the total amount of warnings reported
by PL/SQL Advisor in our case study. To answer the second question, we discuss the
frequency of warnings reported by the tool. Finally, to answer the third question, we
measured the elapsed time to execute PL/SQL Advisor. The obtained results are discussed
in Section 4.2.

4.1. Case Study

We performed a case study using real projects written in PL/SQL. We selected four
projects from an online repository?. Among the available options, we selected the projects
which contained a reasonable amount of lines of code and a good variety of programming
constructs. The selected projects are the following:

e JSON Library: a set of tools for generating JSON from PL/SQL;

e CodeBrew: a framework for PL/SQL Gateway developers;

e DBLens: an Oracle-based toolkit for performing collaborative filtering;
e STR: a set of tools for string manipulations.

For each project, we selected 10 stored procedures to be analyzed by PL/SQL
Advisor. We prioritized the procedures that presented more lines of procedural code.
Each procedure was passed as argument to PL/SQL Advisor and we measured the total
amount of reported warnings and the elapsed time of each execution. Table 2 presents
information about the stored procedures selected in the case study, e.g. number of Lines
of Code (LoC). We also show the number of Efficiency (EW) and Code Quality (CQW)
Warnings reported by PL/SQL Advisor after analyzing the selected procedures of each
project.

The individual warnings count on PL/SQL Advisor output, related to the improve-
ments presented in Section 2, is shown in Table 3. The improvements which are not
contained in Table 3 were not reported by PL/SQL Advisor on the case study.

The projects are available at http://plnet.org

350

Table 2. Warnings occurrences on PL/SQL Advisor output.

Project SP Analyzed | Analysis Time | LoC Analyzed | EW | CQW
JSON Library 10 2,33 s 268 16 45
CodeBrew 10 1,35 s 473 22 34
DBLens 10 1,87 s 829 80 40
STR 10 1,26 s 314 27 35

Table 3. Individual warnings occurrences on PL/SQL Advisor output.

Efficiency Improvements

Project | E1 | E2 | E3 | E4 | E5S | E6 | E7 | E8 | E9 | E10 | E12 | E13 | El4
JSON O(2[0]2]9]0]3]|0 0 0 0 0 0
CodeBrew | 1 8102 (30|53 0 0 0 0 0
DBLens |22 | 13| 0 | 2 |17] 0] 9 |0 4 0 4 4 5
STR 121001010 0|1 1 0 0 0 0 3
Code Quality Improvements

Project | Q1 | Q2| Q3 | Q4 |1Q5|Q7[Q8|Q9|Ql1|Q12| Q13| Q15| CQl6
JSON O[O0/ 6] 0] S8 1 10]10] 6 12 0 0 2
CodeBrew | O | O | 3 1 |6 1 0|7 0 16 0 0 0
DBLens 31015 1]0 1 2 1 8 0 18 2 0 0
STR 04|40 8]0]0] 4 0 14 0 0 1

4.2. Discussion

This section discusses the methodology used to validate our work as well as the obtained
results. Basically, we address the raised questions in the evaluation planning.

(i) Is the proposed tool able to detect possibilities of improvements on the source
code of stored procedures?

PL/SQL Advisor reported 299 efficiency warnings after analyzing 1884 lines of
code of all 40 stored procedures. The tool reported general programming improvements
as well as specific improvements on a database context. The amount of reported warnings
is a good evidence that the investigated coding mistakes are present on the development
of real stored procedures. Moreover, it shows that simple static analysis techniques seem
to effectively identify common programming mistakes within a database context.

(ii) Are the efficiency and quality mistakes analyzed by the tool present on real
stored procedures’?!

We now discuss the data shown in Table 3. PL/SQL Advisor reported 145 effi-
ciency warnings. The warnings related to data type changes (E1, E2, E3, and E7) summed
together 58 hits. These improvements may cause meaningful impact on procedures that
performs intensive arithmetic operations [Feuerstein 2007; Hall 2006; Harrison 2000].
We attribute the excessive quantity of these warnings to two reasons. First, some warnings
can be false positives since there are procedures that do not perform enough arithmetic
operations to justify the data type changes. Second, we believe that the developers of the

351

DBLens project are not aware of the improvements E1 and E2.

The improvements related to changes on the expression evaluation order (E4 and
ES) summed 45 hits. Although these warnings are in fact opportunities for improvements,
we believe that part of them is useful to tune the analyzed stored procedures. The warnings
related to optimization of database-related operations (E8, E9, and E12) appeared together
12 times. These improvements may cause significant impact [Berkovic et al. 2010; Hall
2006; Harrison 2000] on the memory consumption and execution time of specific stored
procedures in the investigated projects. PL/SQL Advisor reported 12 warnings related
to the removal of useless declarations (E10, E13, and E14). These warnings are surely
useful to minimize memory usage during the execution of the analyzed stored procedures.
We believe that they were frequently reported because as the number of lines of code
increases, it becomes harder to notice unused variable declarations and unused parameters
on the stored procedures signatures.

PL/SQL Advisor reported 154 warnings related to code quality. The warnings re-
lated to control flow complexity (Q1, Q3, Q4, and Q5) appeared 45 times. This amount
of warnings is a significant part (nearly 30%) of the reported code quality improvements.
These warnings can substantially simplify the control flow of some of the investigated
stored procedures and greatly improve their readability. PL/SQL Advisor reported 9
warnings related to the improvements Q2, Q13, Q14, Q15, Q16, and Q17. Although
this quantity of warnings is not a significant part of the reported code quality improve-
ments, they are useful to prevent possible runtime errors and remove obscure pieces of
code.

The warnings related to programming style (Q7, Q9, Q10, and Q11) improve-
ments summed together 49 hits. They are quite representative (nearly 32% of the re-
ported quality improvements) and useful to establish patterns and conventions throughout
the code. The improvements related to code semantics (Q8 and Q12) appeared 61 times.
The improvement Q12 was the most recurrent improvement on the case study (60 oc-
currences). Apparently, the developers of the investigated projects are not concerned on
creating named constants for the literal values (many of them are quite meaningless) used
on the stored procedures. In general, the occurrence of improvements is not uniform.
Some of the improvements (E1, E2, ES, E7, Q3, Q5, Q9, and Q12) occurred very fre-
quently, whereas other improvements (E3, E6, E10, E11, Q6, Q8, Q10, Q15, and Q17)
had very few occurrences or any occurrences at all. Some of the coding mistakes pre-
sented in this paper seem more likely to be remembered and properly avoided/corrected
on the development of stored procedures.

(iii) Does the proposed tool perform an efficient detection of code improvements?

PL/SQL Advisor took less than 7 seconds to analyze and create suitable warnings
for 1884 lines of code. Clearly, the automatic analysis time is much faster than an equiva-
lent time to perform a manual inspection in all the 40 stored procedures. Besides, manual
inspection is an error prone process and may occasionally fail to detect potential code im-
provements. On the other hand, once the tool implementation is correct, it is guaranteed
that all implemented improvement detections will be properly reported on the analysis
output.

According to the obtained results, the proposed tool neither seem to be sensitive to

352

the complexity of stored procedures nor to the amount of analyzed lines of code. Thereby,
the tool can be used to analyze a large amount of stored procedures with low cost. The
tool can be executed repeatedly during the development phase (after subsequent source
code changes) and its execution will not represent a significant overhead to the devel-
opment process. This characteristic can potentially reduce costs of developing database
applications that use stored procedures to manipulate data in databases.

5. Related Work

SQL and PL/SQL tuning. The Quest SOL Optimizer for Oracle tool identifies potential
performance issues and automates SQL optimization by scanning and analyzing running
SQL statements, PL/SQL, or other source code. The tool identifies problematic SQL,
rewrites statements, locates fastest alternatives, and generates optimized code automat-
ically. Although the Quest SQL Optimizer for Oracle is able to analyze PL/SQL code,
it focuses on optimizing SQL statements within the procedural code. The SQL Tuning
Advisor tool allows the Oracle query optimizer to run in tuning mode where it can gather
additional information and make recommendations about how specific statements can be
tuned. The SQL Tuning Advisor also focuses on tuning SQL statements. Our work is
different from these tools since the proposed tool focuses on improving the procedural
code of stored procedures.

Automatic Analysis of Stored Procedures. The SQL Enlight [Ubisoft 2007]
tool aims to check the conformity of stored procedures written in Transact-SQL with
aspects such as naming conventions, design rules, performance and readability of the
source code. The Sonar Source [SonarSource 2008] tool is able to check the conformity
of PL/SQL procedures with pre-defined guidelines concerning performance, good pro-
gramming practices, naming conventions and comments. PL/SQL Advisor is different
from the copyrighted tools offered by [SonarSource 2008, Ubisoft 2007], since no infor-
mation is published about the internal details of these tools. On the other hand, we provide
details about the design and implementation of the proposed tool. Moreover, we also dis-
cuss the results of an experimental evaluation of PL/SQL Advisor in the context of open
source stored procedures.

6. Conclusions

In this paper, we present PL/SQL Advisor, a tool designed to reduce the costs of the
development and maintenance of database applications that manipulate data using stored
procedures. We presented a list of efficiency and code quality improvements on database
stored procedures discussed in the related literature. We then pointed out the practical
drawbacks related to the usage of manual inspections to identify these improvements.

PL/SQL Advisor performs automatic analysis on database stored procedures. To
this end, the tool employs a simplified source code representation (CDT) and is able to
identify well-known source code improvements as well as specific improvements on a
database context.

We performed a case study, using real open source projects written in PL/SQL,
in order to evaluate the proposed tool. The tool was able to report warnings related to
both general programming languages improvements as well as to specific improvements
within a database context. We discussed the most frequently reported warnings, their

353

implications on the stored procedures and possible explanations for their frequency of
occurrence. The subclasses of improvements more frequently reported on the case study
were: data type changes, changes on the expressions evaluation order, optimization of
database-related operations, simplification of code control flow, avoid dodgy code, im-
provement of the meaning of identifiers and usage of programming styles. The appliance
of these kind of improvements on stored procedures used to manipulate real world data
can lead to several benefits, such as: decreasing of application delays, improvement of
source code readability and reduction of costs to understand and analyze stored proce-
dures. For future work, we intend to evolve PL/SQL Advisor in order to detect other
efficiency improvements which are not covered in this paper. For example, minimizing
data type conversions, optimizing loops and avoiding recursion.

References
Allen, F. E. (1970). Control flow analysis. SIGPLAN Not., 5(7):1-19.

Berkovic, 1., Ivankovic, Z., Markoski, B., Radosav, D., and M., 1. (2010). Optimization of
bulk operation performances within oracle database. In 8th International Symposium
on Intelligent Systems and Informatics (SISY), 2010, pages 163 —167.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT Professional,
2:17-23.

Feuerstein, S. (2007). Oracle pl/sql best practices, 2nd edition. O’Reilly, second edition.

Harrison, G. (2000). Oracle SQL High-Performance Tuning, Second Edition. Prentice
Hall Professional Technical Reference, 2nd edition.

Lengauer, T. and Tarjan, R. E. (1979). A fast algorithm for finding dominators in a
flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121-141.

Nascimento, D. C. (2013). Uma Abordagem para Andlise Estatica Automatica de Pro-
cedimentos Armazenados em Bancos de Dados. Master’s thesis, Universidade Federal
de Campina Grande, Campina Grande, Brasil.

Parr, T. J. and Quong, R. W. (1995). Antlr: A predicated-11(k) parser generator. Software:
Practice and Experience, 25(7):789-810.

Sheila Moore, E. B. (2009). Oracle Database PL/SQL Language Reference, 11g Release
2(11.2). Oracle.

Sommerville, 1. (2010). Software Engineering. Addison-Wesley, Harlow, England, 9.
edition.

SonarSource (2008). Sonar for pl/sql: http://www.sonarsource.com/products/plugins/.
Ubisoft (2007). Sql enlight for t-sql: http://www.ubitsoft.com/index.php.

Young, M. and Pezze, M. (2005). Software Testing and Analysis: Process, Principles and
Techniques. John Wiley & Sons.

354

