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Abstract—One of the most common and costly problems that organizations are 
facing is to find the causes of failures in business processes. Failures are often 
due to missing or unnecessary execution of some process activities; or with how 
some activities are performed. Currently, there is no automatic technique that 
helps finding these causes. We propose a novel technique to identify potential 
causes of failures in business process by extending available Process Mining 
techniques. Initially, the original event log is filtered in two logs, the former with 
successful cases and the latter with failed cases. Then, behavioral patterns are 
extracted from both event logs using the Performance Sequence Diagram 
Analysis algorithm. Finally, both sets of patterns are compared considering 
control flow and time perspectives. The differences found represent potential 
causes of failures in business processes. We tested this technique using several 
synthetic event logs. Results show the technique is able to successfully find 
missing or unnecessary activities, and failed behavioral patterns that differ from 
successful patterns either in the control flow or in the time perspective. 

 

1. Introduction 
Organizations are currently carrying out very comprehensive initiatives to improve their 
business processes, since they acknowledge process management is fundamental for 
achieving their business goals in a highly competitive environment. Finding the causes of 
failures in a business process has become one of the most common and costly problems in 
these initiatives. 

A failure is identified when the execution of a business process generates a result 
(product or service) that does not fulfill the target expectations. The result of a business 
process that has failures is a defective product or service, and becomes visible in several 
ways, e.g., a customer complaint, a product that does not satisfy quality controls, or the 
return of a product. These failures are often due to missing or unnecessary execution of 
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some process activities; with how some activities are performed, such as the execution flow 
or the processing time; or with the data used to perform some activities. 

Finding the source of failures (root cause analysis) is a process based on semi-
formal techniques and brainstorming, Andersen & Fagerhaug (2006), but these techniques 
are difficult to systematize and resource-consuming. These techniques can be classified into 
two, Hongtao, Yong, & Jiansa (2006): participatory and analytical techniques. 

Participatory techniques organize ad-hoc multidisciplinary teams in order to solve a 
problem through workshops and other collaborative activities. According to experts, these 
techniques require tedious and very subjective processes, Sharp & McDermott (2008). 

The analytical techniques use principles or formal theories created specifically for 
this type of problem, e.g., Michael Hammer's Process and Enterprise Maturity Model, 
Hammer (2007). 

Currently, there is no automatic technique to support and expedite the search for 
causes of failures in business processes. In this document, we propose a novel technique to 
identify potential causes of failures in business process by extending Process Mining 
algorithms. 

Process Mining allows discovering and analyzing business processes based on 
event logs. Through this analysis, certain characteristics that describe process functionality 
(e.g., bottlenecks, behavioral patterns, or business rules) can be identified. For further detail 
on the subject, you can review Van der Aalst, Weijters, & Maruster (2004), Wil van der 
Aalst (2004), Van der Aalst (2011).  

Our proposal is divided into three stages (Figure 1). First, in the Filter stage, the 
original event log is filtered in two logs, the former with successful cases and the latter with 
failed cases. Then, in the Pattern Discovery stage, behavioral (or execution) patterns are 
extracted from both event logs, i.e., extracting patterns that produce acceptable results and 
patterns that produce failed results. The Performance Sequence Diagram Analysis 
algorithm, Hornix (2007) is used to extract these patterns. We selected this algorithm 
because it considers control flow (the order in which activities are performed) and time 
(tasks’ duration and waiting times between tasks) features. 

Finally, we compare the failed patterns against the patterns that produce acceptable 
results; we have called this stage Behavioral Pattern Conformance. This comparison takes 
into account control flow and time features, e.g., sequencing of tasks or processing times. 
The differences found represent potential causes of failures in the analyzed business 
process. 

We have identified four types of potential failures: missing tasks (when some tasks 
are not performed), unnecessary tasks (unnecessary execution of some tasks), different 
behavior (execution patterns different from normal sequencing), and different timing 
(durations different to normal executions). 

The rest of this document is structured as follows. Section 2 presents the related 
work and the comparison with other techniques. Our proposed technique is detailed in 
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Section 3. Section 4 describes an evaluation of the technique. Finally, the conclusions are 
presented in Section 5. 

2. Related Work 
We have found three kinds of works that could be considered related to our proposal. These 
reports did not directly address the problem of finding causes of failures in business 
processes in an automatic way. 

Heravizadeh, Mendling, & Rosemann (2008) proposes a conceptual methodology of 
root-cause analysis in business processes, based on the definition of softgoals (non-
functional requirements) for all process activities, as well as correlations between these 
softgoals and related quality metrics. This methodology has two important differences with 
our proposal; first of all, requires much effort from participants to document requirements, 
relationships and respective metrics, and second, it is not automatic. 

Bezerra & Wainer (2008) and Van der Aalst & De Medeiros (2005) present 
mechanisms to identify anomalies in business processes executions, by using available 
Process Mining techniques in ProM1 (e.g., the alpha algorithm plug-in or the control-flow 
benchmark plug-in). These mechanisms are not designed to find the source of failures, but to 
find strange executions within a process. They also require much interaction with the user to 
get a solution. 

Bose & Suresh (2008) presents two mechanisms to identify the root cause of failures 
in software programs. For this purpose, Bose uses the sequence of events that led to the 
failure in order to identify common patterns of execution. This is an important difference to 
our proposal, since Bose uses only the sequence of events until the failure occurs, i.e., the 
execution stops when the failure appears, so it is known where the failure is. In event logs, 
when the process is executed until the end, we do not know where the failure is. 

Besides, we use the Performance Sequence Diagram Analysis algorithm, Hornix 
(2007), which is a means to assess the performance of business processes. Specifically, it 
allows identifying behavioral patterns, i.e., executions that have the same sequencing 
behavior. Therefore, it is possible to identify certain characteristics of the processes, e.g., 
most common execution patterns or patterns that exceed the normal execution time. This 
algorithm shows these patterns as sequence diagrams (Figure 2), where the blocks are related 
to activities and the arrows are related to waiting times between activities. Currently, many 
studies use patterns to analyze and improve business processes, Souza, Azevedo, & Santoro 
(2012), our work is embedded within this category of works. 

As we said, there are not automatic techniques that allow finding the source of 
failures in a business process. Despite this, we found two Process Mining techniques that 
could be used as a starting point to solve this identification problem. 

The first of these techniques is the Conformance Checker algorithm, Rozinat & Van 
der Aalst (2008). This algorithm allows identifying failed activities in a process, i.e., 

                                                             
1"ProM is a pluggable and open-source framework for Process Mining"
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activities that are not executed. But this algorithm does not analyze this problem; neither 
assures these failed activities are related to wrong executions in the process. 

The second of these techniques is the Anomaly detection algorithm, Bezerra & 
Wainer (2008). This algorithm classifies the cases in an event log into normal and 
anomalous, taking into account the control flow perspective. As the Conformance Checker, 
this algorithm does not analyze the anomalous cases; neither assures these anomalous cases 
are related to wrong executions in the process. 

Our proposal has the following main differences: 

• It identifies failures in the control flow and time perspective. 

• It identifies the potential sources of these failures. 

• Works in an automatic way.  

3. Developed Technique 
We propose a novel technique to identify potential causes of failures in business process 
logs by extending available Process Mining techniques, specifically the Performance 
Sequence Diagram Analysis plug-in (a Process Mining technique implemented in ProM). 

The three steps of our proposal are described below and are shown in Figure 1. 
 

 
 

Figure 1. Discovering potential failures in business processes in three stages 
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3.1 Filter 
This filtering is based on business metrics; therefore, a requirement for using this technique 
is to have a characterization of the process output for each process instance in the event log. 
Generally, this information is associated with a metric of the process, e.g., in an Internet 
sales process, a metric could be the delivery time; this metric must be stored in the event log 
as an additional attribute. Those process instances that have not complied with the delivery 
time will be separated in the failed-cases log, and the remaining ones in the successful-cases 
log. 

We have developed a plug-in in ProM, called Metrics Filter. It splits the log based 
on any process attribute in order to get a successful-cases log and a failed-cases log. 

3.2 Pattern Discovery 
As a second step, behavioral (or execution) patterns are extracted from both event logs, i.e., 
patterns that produce acceptable results (successful executions) and patterns that produce 
failed results (failed executions). The Performance Sequence Diagram Analysis plug-in is 
used to perform this step. 

Before proceeding with the next step, the successful patterns are filtered considering 
a minimum frequency of appearance (%f).  In this way, the successful patterns that have low 
frequencies are put aside, since they could represent strange or undesirable behavior. 

3.3 Behavioral Pattern Conformance 
In the last step, we compare both sets of patterns (i.e. successful patterns vs. failed patterns). 
The comparison is performed by taking each failed pattern and comparing it against all 
successful patterns. The differences found represent the potential causes of failures in the 
analyzed business process. 

It is possible to identify four types of differences (i.e., potential causes of failures): 

• Missing tasks. Those activities that are not performed in any failed pattern but 
are performed in all successful patterns. 

Not performing these activities may be a likely cause for getting undesirable 
results in the business process. 

• Unnecessary tasks. Those activities that are performed in some failed patterns 
but not in any successful pattern. 

Performing these activities may be a likely cause for getting undesirable results 
in the business process. 

• Different behavior. Those failed patterns that are not equivalent to any 
successful patterns. These failed patterns may be a likely cause for getting 
undesirable results in the business process. 

• Different timing. When a failed pattern has an equivalent pattern among the 
successful patterns, i.e., both have the same flow, the time perspective is 
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analyzed: processing time, tasks’ duration, and waiting times are compared 
between the equivalent patterns. When the time difference exceeds a value 
defined by business experts, a potential cause of failure is found. 

These four potential causes of failures consider two business process perspectives: 
the control flow and time perspectives. The first three potential causes of failures (i.e., 
missing and unnecessary tasks, and different behavior) are from the control flow 
perspective. The last potential cause of failure (i.e., different timing) is from the time 
perspective. 

3.4 Identifying failures in the control-flow perspective 
To understand how the control-flow causes of failures are identified, we will use the 
following graphic examples.  

• Missing tasks. Consider the successful patterns in Figure 2 and the failed patterns in 
Figure 3. By comparing each failed pattern against all successful patterns, we could 
identify that Task 5 is never executed in any failed patterns. Not executing an activity 
could be the reason for wrong outcomes in a business process. 

• Unnecessary tasks. Comparing the same examples in Figure 2 and Figure 3, we could 
identify that Task 6 is executed in some failed patterns but never in the successful 
ones. Executing extra activities could be the reason for wrong outcomes in a business 
process. 

 

 
 

Figure 2. Examples of successful patterns. These patterns are shown as sequence 
diagrams. 
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Figure 3. Examples of failed patterns, with missing and unnecessary tasks. 

 

• Different behavior. For this source of failure, consider the successful patterns in 
Figure 2 and the failed patterns in Figure 4. By comparing the failed pattern F2 against 
all successful patterns (S0 and S1), we can observe that pattern F2 has a different 
sequence behavior. Executing activities in different sequencing could be the reason 
for wrong outcomes in a business process. 

If we continue the comparison (i.e., pattern F3 against all successful patterns), we can 
identify that pattern F3 is equivalent to successful pattern S0. In this case, we should 
evaluate another business process perspective (e.g., time or data) to find out the 
reason for wrong outcomes in pattern F3.  

 
 
 
 

 
 

Figure 4. Examples of failed patterns. Some different behavior and time-related 
failures are shown.  
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3.5 Identifying failures in the time perspective 
If a failed pattern is equivalent to a successful pattern, it is necessary to make a time-based 
evaluation. For this, the processing time, the duration of all tasks (blocks) and the waiting 
times (arrows) are compared with the corresponding time metrics in the equivalent 
successful pattern. It is necessary to have some parameters to apply this comparison, these 
are: 

• Processing time threshold (%U) for normal executions. It represents an 
acceptable percentage variation of the processing time. 

• Duration threshold (%Ti) for each task i. 

• Waiting threshold (%Wj) for each waiting time j between tasks. 

A global threshold for all task durations and waiting times could be considered, if 
there is not detailed information about the process. For example, 10% for the overall 
processing time, 5% for all task durations and 8% for waiting times could be considered. 

In the time-based verification, first the processing time of the failed pattern is 
compared against the processing time of the successful pattern, considering the processing 
time threshold %U. If they are different, a Different-timing potential cause of failure has 
been identified. 

If the processing time of the failed pattern is within the limits of the threshold %U, 
the duration of each task (i.e., duration of the block) is compared. If the duration of a task in 
a failed pattern is greater or less than the defined threshold %Ti, a Different-timing potential 
cause of failure has been identified. 

Also, the waiting times between tasks (i.e., the duration time associated to arrows) 
are compared. If the result is greater or less than the defined threshold %Wj, a Different-
timing potential cause of failure has been identified. 

To clarify the algorithm, let us show the following graphic examples. For these 
examples consider the successful patterns S0 and S1 (Figure 3). Also, consider the failed 
pattern F3 (Figure 4). It can be seen that pattern F3 is equivalent to pattern S0 (they have the 
same blocks and arrows, and in the same order). The technique identifies two failures: 

• The duration of tasks 3 (in pattern F3) is greater than its peer (in Pattern S0) and 
it exceeds the threshold %T3. Therefore, a Different-timing potential cause of 
failure is identified 

• The duration of tasks 4 (in pattern F3) is lower than its peer (in Pattern S0) and it 
exceeds the threshold %T4. Therefore, a Different-timing potential cause of 
failure is identified 

To clarify some concepts, let us explain a real business process. The process of 
Handling Customer Complaints begins with a customer call explaining a problem or with an 
identified problem submitted by the Services area. For each problem, a ticket is created. The 
ticket should be assigned to a qualified employee for resolution. If the employee cannot 
solve the problem, it is delegated to another entity (this task can be repeated many times). 
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Once an employee accepts a ticket, it should be analyzed and solved (which often does not 
happen). Finally, the ticket is closed. 

A successful pattern –in the control-flow perspective- for this process could be: 

• Create Ticket – Assign Ticket – Delegate Ticket – Analyze Problem (start) – Try 
solutions – Analyze Problem (complete) – Close Ticket 

A failed pattern –in the control-flow perspective- for this process could be: 

• Create Ticket – Assign Ticket – Delegate Ticket – Analyze Problem (start) –
Close Ticket 

4. Evaluation 
The technique was implemented in ProM2 and tested with several synthetic event logs. 
Figure 5 shows the main screen of the implemented plug-in, where it is possible to see the set 
parameters and some failures in the control-flow and time perspectives. To generate these 
event logs, we used CPN Tools3 to model and simulate a process. By adding a set of pre-
built functions to CPN Tools, De Medeiros & Günther (2005), it is possible to generate 
event logs in a XML format. Then, using the ProMImport4 tool, Günther & Van der Aalst 
(2006), all generated logs are grouped in a MXML file5. All generated event logs had 1,000 
cases, where 844 were successful cases and 156 failed cases. 

251 event logs were created and different failure types were introduced in different 
event logs. In the control-flow perspective, the following failure types were introduced: 

• Missing task(s). Those activities that are not performed in any failed pattern, but 
are performed in all successful patterns. 

• Unnecessary task(s). Those activities that are performed in some failed patterns, 
but are not performed in any successful pattern. 

• Omitting task(s) in some failed cases. 

• Change in the order of activities in the failed cases. 

• Combinations of the above failures. 
In the time perspective, the following failure types were introduced: 

• Longer or shorter processing times. 

• Longer or shorter task durations. In different failed cases, some cases with very 
long task durations, others with very short task durations. Also, both types of 
problems in the same case. 

                                                             
2 Link to plug-in and examples: http://dcc.puc.cl/process-mining/ProM/puc-plugins/. 
3
 http://wiki.daimi.au.dk/cpntools/cpntools.wiki 

4
 http://prom.win.tue.nl/research/wiki/promimport/start 

5
 Special XML format used by the ProM framework. 
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• Longer or shorter waiting times. In different failed cases, some cases with very 
long waiting times, others with very short waiting times. Also, both types of 
problems in the same case. 

• Combinations of time failures into different cases. Also, combinations of time 
failures into a single case. 

In addition, sensitivity tests were performed with the following changes: 

• Event logs with a very low percentage of failed cases were created (1%, 5%, 
10% and 20%). 

• Event logs with a very high percentage of failed cases were created (80%, 90%, 
95% and 99%). 

 

 
Figure 5: Main screen of the developed plug-in. 

 
Results show the technique is able to identify potential causes of failures, i.e., 

missing or unnecessary activities and behavioral patterns that differ from each other in the 
control flow or time perspectives. 

Our proposal has a global effectiveness of 86%. It has some problems by identifying 
combined problems in the time perspective, i.e., if one case has more than one failure in the 
time perspective, the technique only identifies the first one. For example, one case has a very 
long processing time, activity A has also a very long duration, and activity F has a very short 
duration. In this situation, our technique only identifies the long processing time. 
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5. Conclusions 
We have proposed a novel technique to identify potential causes of failures in business 
process based on event logs. This technique is able to identify four types of causes. We 
tested this technique using a simulated process. Results show the technique is able to 
successfully find missing or unnecessary activities, and behavioral patterns that differ from 
each other in the control flow or the time perspective. These results might explain wrong 
outcomes. 

This technique will enable organizations to reduce time and costs in carrying out 
business process improvement initiatives; and hopefully, to boost their performance. 

This technique could be introduced into the emerging methodologies of Process 
Mining, Van der Aalst (2011), specifically in the Operational Support phase, enabling 
process managers to reduce time and costs in finding potential causes of failures in a 
business process; and thus facilitating business process improvement initiatives. 

Currently, we are working on improving the technique by adding the comparison in 
the data perspective. When successful and failed patterns are equivalent in the control-flow 
and time perspectives, we will analyze the data in the process to try finding the source of 
failures in this perspective. 
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