
Using PDCA as a General Framework for Teaching and

Evaluating the Learning of Software Engineering Disciplines

S

´

ergio Mergen

1
, F

´

abio N. Kepler

1
, Jo

˜

ao Pablo S. da Silva

1
, M

´

arcia C. Cera

1

1Universidade Federal do Pampa (UNIPAMPA) - Campus Alegrete
Av. Tiarajú, 810, Ibirapuitã, Alegrete/RS

{sergiomergen, kepler, joaosilva, marciacera}@unipampa.edu.br

Abstract. Software engineering disciplines need to be taught in contexts as di-
verse as undergraduate courses and large corporations training programs. A
primary challenge in teaching such disciplines, in any context, is to quickly and
effectively evaluate the students learning and measure their strengths and weak-
nesses. Another challenge is to make students of different instances of a disci-
pline end up with the same basic foundations, turning knowledge independent
of the instructor. To overcome these challenges we propose an approach for
software engineering teaching based on adapted PDCA cycles and checklists
as instruments of evaluation. We also report a case study which shows the im-
plementation of this approach in teaching a first year undergraduate software
engineering course. With a careful definition of checklists, the use of the adapted
version of PDCA as a methodology for software engineering teaching is promis-
ing, allowing an efficient form of evaluation.

1. Introduction

The difficulty in establishing a clear division between good and bad software artifacts
translates into a proportional difficulty in spotting peoples abilities and deficiencies to-
wards the building of such artifacts. Organizations could benefit from this kind of pro-
filing. By identifying the strengths and weaknesses of employees, managers could work
on interventions to solve the weaknesses and to explore the strengths. Without a precise
way of measurement, organizations need to guess the quality status of its internal staff,
and this may lead to poor decision making.

This lack of criteria also affects the learning of software engineering concepts,
which can vary according to the course instructor. This is particularly relevant in con-
texts where the learning should provide uniform results. For instance, organizations nat-
urally desire that all employees participating in a training program end up with the same
knowledge, regardless of when the training occurred and of who was responsible for the
teaching.

Academic programs have a similar goal. Students who graduate should all share
the same fundamentals of software engineering. In either case, it is hard to assure and
control if the planned goals are reached, specially when the measurement is not objective.

In this work we propose a teaching methodology targeted at reducing this sub-
jectivity. Our methodology is based on PDCA cycles, where the four stages (Plan, Do,
Check, Act) are adapted to the context of teaching software engineering disciplines. We
call this adaptation l-PDCA, where l stands for learning. As we shall explain throughout

451



the paper, one of the main premises of our proposal is the usage of checklists as objective
instruments to evaluate students. With proper checklists defined, the evaluation can be
done efficiently, reaching results that are well understood by both students and instruc-
tors. At the end of each l-PDCA cycle, the checklists can also provide useful information
about existent profiles, such as human behavior and performance factors.

Additionally, the four stages surrounding the application of checklists enable a
uniform learning experience, where the knowledge is equally distributed among the stu-
dents. The l-PDCA approach can be considered a teaching framework. To implement it,
one must consider the goals to be achieved, and prepare proper checklists to reach those
goals. To demonstrate this idea, this paper presents a case study applied to an under-
graduate course. The course is part of a software engineering program whose teaching
methodology encourages the usage of Problem-Based Learning in any of its forms, such
as the one described in this work.

This paper is organized as follows. Section 2 presents a brief introduction to
PDCA and describes how PDCA was adapted to be used as a learning methodology.
Section 3 presents the case study, reporting the results obtained. Section 4 discusses
related work. Finally, Section 5 brings our concluding remarks.

2. The l-PDCA Teaching Methodology

The Plan-Do-Check-Act (PDCA) cycle is a management method used to control improve-
ments or maintenances of processes. It originated from a Japanese interpretation to the
”Daming Wheel” - a modification of the Shewhart cycle [Darr 2007]. Figure 1 shows a
PDCA cycle with its four basic stages. The purpose of the Plan Stage is to define the
control goals and the means to achieve them, i.e., to establish the control directives (or
procedures) to the management. The Do Stage aims at executing the tasks predicted in
the Plan Stage and collecting data to process assessment. This stage requires training
so the job is performed accordingly. The Check Stage proposes the evaluation of results
through the comparison of the collected data with the established goals. The purpose of
the Act Stage is to carry corrective actions to remove the anomalies found in the results,
preventing them from happening again [Frakes and Fox 1996].

Figure 1. The PDCA cycles: Plan, Do, Check and Act stages and their purposes.

The PDCA cycle has been used to maintain or improve the process control direc-
tives. When used to maintenance, PDCA aims to comply with standard operating proce-
dures, i.e., the process is repeated and the goal is a range of acceptable values. When used

452



for improvement, the process is not repeatable and the work carried out with a PDCA
cycle aims at meeting a specific goal. In this case, the goal establishes a new control level
for the organization [Jarvinen et al. 1998b]. The fact that a PDCA cycle is a management
tool do not imply that it is used just by managers. All roles of an organization (direc-
tors, managers, technicians and operators) use the PDCA cycle as previously presented.
However, technicians and operators are concerned about keeping the standard operating
procedure; hence, they apply the PDCA cycle aiming maintenance.

On the other hand, directors and managers are concerned about establish-
ing a new control level; hence, they apply the PDCA cycle aiming improvement
[Jarvinen et al. 1998b]. We propose the use of PDCA stages as a way of teaching stu-
dents about concepts related to software engineering and evaluating their learning. As
mentioned, we named this adaptation l-PDCA, where l stands for learning.

While the focus of the original PDCA usually relates to verifying and improving
the quality of a given process, the l-PDCA focus on establishing a teaching methodology
that is able to spread knowledge and evaluate learning uniformly. Figure 2 illustrates the
four stages of an l-PDCA cycle. The end of a cycle (an iteration) means that the teaching
of some predefined knowledge units is done and a set of artifacts related to those units
were delivered. The next sections explore the stages in details.

Figure 2. l-PDCA: adaptation of the PDCA stages for use on a learning environ-

ment.

2.1. Plan Stage

The purpose of the Plan Stage is to prepare the students for the work of the current iter-
ation. The preparation introduces the students to the problem at hand, describes which
artifacts should be delivered and explains the format of evaluation. Additionally, support-
ing lectures may be presented at this point, providing knowledge related to the task that
should be accomplished. For instance, supposing that the project is currently at the Anal-
ysis iteration, the instructor declares that the goal of the iteration is to create a use case
diagram. The students are also warned that the diagram would be evaluated according to
its completeness and adherence to standards. To mitigate the risk of failure, the instructor
talks to the students about good practices that apply in use cases creation.

At this stage, the instructor may also prepare an evaluation checklist (if none exists
from a past instance of the teaching program). The items in the checklist should provide
clear and unambiguous criteria to verify if the work is being performed as expected. Al-
though the students know about the general topics of evaluation, they do not know exactly

453



what particular issues will be scored, so they should be prepared for everything that con-
cerns the general topic. For instance, the Analysis iteration checklist could be composed
by an item that checks if the use cases follow the naming convention detailed in the UML
specification.

2.2. Do Stage

This is when the work actually gets done. The students know what the problem is and
what needs to be done to solve it. At the end of the Do stage they are expected to deliver
some software artifacts, as defined during the prior stage. At intermediary iterations, these
may be sub-products of the project. At the final iteration, it will most likely be a complete
product. The role of the instructor in this stage is reduced, so it becomes an observer most
of the time. If necessary, the students can be aided with follow up lectures related to the
concepts learned during the prior stage. However, we discourage guidance that is directly
related to the specific problem the students are facing, since it may inhibit pro-active
behavior and bias the evaluation. For instance, resuming the Analysis iteration example,
the instructor should not mention that the name of a specific use case is incorrect, or that
there are some important use cases missing. This sort of observations can be made at the
Act stage, as we discuss later.

2.3. Check Stage

As the name suggests, this stage verifies the artifacts produced at the prior stage. After the
evaluation is complete, the students become aware of the difference between the desired
solution and what they actually accomplished. The instructor is responsible for providing
feedback to the students about their work, so they can clearly understand the reasons
of either failure or success. We propose the usage of checklists to evaluate software
engineering learning.

Checklists are collections of items whose purpose is to verify if individual require-
ments of the work were done. The verification is binary. Each item can be marked as done
or undone. The final score is measured by computing how many items of the checklist
were done. It is desirable that the checklists allow instructor independent verifications,
that is, the score obtained is the same regardless of the person who evaluated the artifacts.
Large corporations can benefit from this sort of evaluation, since it helps homogenizing
the knowledge among the employees, specially in aspects that involve internal standards
and regulations.

Besides, it helps creating an atmosphere of fairness, since personal opinions would
have no impact in the evaluation. This is particularly relevant in software engineering
disciplines, in which there may be several solutions for the same problem, and the best
solutions are usually underrated by the examiner. We emphasize that different checklists
can be part of the same evaluation, measuring different skills. If a final grade is neces-
sary, it can be a weighted composition of the individual checklists, with weights balanced
according to the course goals.

The checklists can also be balanced according to a profiling strategy. In this case,
the results are used to spot strengths and weaknesses. By identifying the weaknesses, it
is possible to take corrective actions to overcome individual limitations. In large orga-
nizations, it is also important to identify people’s strengths, so that their efforts can be
channeled to functions where their skills are leveraged at their full extent.

454



2.4. Act Stage

With the knowledge of how much the delivered artifacts deviate from the expected solu-
tion, the students are able to perform the necessary changes to put the product back to its
originally traced route. The Act stage is where these changes are made, allowing the next
iteration to start with valid artifacts. We observe that the students may get stuck at some
particular problems, having difficulties in deciding the proper strategy to solve it. In such
cases, the instructor may become more directly involved in the project. The depth of the
involvement depends on the instructor. It could range from a far support, such as using
the Socratic Method to help students discover the root of the problem by themselves, to a
close support, by proposing exactly what should be done to correct the defect. Naturally,
this allows instructors to add their personal touch to the solution, which seems to violate
the “lack of subjectivity” principle stated before. However, we believe this kind of direct
intervention is needed in some cases, specially those where there is no standard rule that
should be followed.

Besides, those situations generally imply the need of tacit knowledge, which is
not easily found in manuals or books. There may be some relevant aspects not captured
in the evaluation checklists, specially those that are not easily transformed into objective
items. For instance, one item hard to verify is the existence of “code smells” in source
code artifacts. It is important that all of those aspects are taken care of, even those that
are not part of the evaluation, so they do not negatively impact the work at a later phase.

The Act stage ends a cycle, and if the students did their job, it assures that they all
enter a new phase with valid artifacts. It does not mean the artifacts of different students
will be the same. We emphasize that the existent artifacts are adapted rather than rebuilt
from scratch. This opens the possibility of people working on different sets of artifacts,
but that are in essence equivalent. At the end, these slightly different versions enable
students to share ideas and to reason about the possibility of achieving the same result
through different lines of thoughts.

3. Case Study

To evaluate our proposal, we report a case study developed within a course of the Software
Engineering Undergraduate Program (SEUP) at the Federal University of Pampa (UNI-
PAMPA). The intention of SEUP is to prepare students for a variety of career options in
both academic areas and software industry. The program is known for encouraging the
usage of non-traditional teaching methods as an effort to enhance the quality of teaching.
One of the approved initiatives, which actually defines the program – and differentiates
it from most other programs – is the embracing of the Problem-Based Learning (PBL)
methodology [Billa 2012].

In essence, PBL proposes a new teaching and learning process that provides means
by which students can achieve a self-directed learning through the investigation of prob-
lems [Selçuk and Tarakçi 2007]. Throughout the academic life at the SEUP, students at-
tend to several PBL based courses, one per semester. During a PBL-based course, they are
introduced to a problem. The scope of the problem is defined according to the knowledge
units that should be taught at the present semester [IEEE and ACM 2004].

The students are commonly divided in groups, and the course is given by one or
more professors, which are called tutors. Each tutor is responsible for guiding a number

455



of groups. The number of groups per tutor is carefully decided, so tutors can dedicate
enough time to their groups. Each group has the entire semester to elaborate and execute
a project to solve the problem. To do that, students have to work with software engineer-
ing methods and techniques. Additionally, other tasks are required, such as teamwork,
creativity thinking and pro-active research. On his turn, the tutor provides the neces-
sary guidance and defines a calendar, considering the final presentation and checkpoints
to evaluate the intermediary progress. Given this context, our goal was to introduce the
l-PDCA as a way to implement the PBL methodology adopted at the SEUP.

3.1. Using the l-PDCA as the teaching framework for Problem Solving II

To implement the l-PDCA approach, we chose the Problem Solving II course
(PSII), offered to undergraduate students in the second semester. The course project in-
volved developing a central reservation system to be used for hotel management. The
reasons for choosing this theme were manifold. First, students are relatively familiar with
this kind of system (most of them probably already had the need to book a room in the
past). The tutors were also familiar with the dynamics of a central reservation system, so
they could easily come up with the software requirements and constraints.

41 students attended the course. They were divided in groups of 4 to 5 members,
which resulted in 9 groups. Group members were chosen by applying a random selection.
The outcome is the formation of arbitrary groups, which emulates a common scenario
that happens in large corporations. Four tutors were designated to the course, resulting in
the reasonable amount of 2 to 3 groups per tutor.

In the case study, tutors perform the instructor’s role of the l-PDCA approach. The
project was composed by three consecutive phases, namely Analysis, Design and Coding.
In the first phase, the groups built a specification of the requirements. In the second phase,
a class diagram was created, based on the requirements specification from the preceding
phase. Finally, the class diagram was turned into functional code during the last phase.
One of the most important parts of building the course was defining the checklists for
each phase.

For this particular case study, the evaluation was more focused on the complete-
ness of the solution found. In other words, we decided to evaluate how much of the
expected product was delivered, instead of how well the delivered product solves the
problem. The reason is that we were dealing with freshmen who just got started with
the foundations of software engineering. It would be unfair to penalize them for ignoring
good practices that only time and practice can teach. As we shall see, those quality related
aspects were handled during the Act Stage, where the tutors feedback showed what could
be improved and why specific changes were important.

To follow the l-PDCA principles, the checklists were composed beforehand by the
tutors and kept hidden from the students. Since we focused on completeness, the students
scored higher if they were able to cover most of the components the tutors expected them
to cover. If needless/incorrect components were identified, the penalty was to ignore them
completely.

We also observe that “Software Modeling and Design”, “Database Modeling and
Design” and “Human Computer Interaction” are courses only taught in the consecutive
semester. Therefore, the project scope and complexity needed to be tailored according

456



to the students expected abilities. To do so, we striped the presentation layer and the
persistence layer out of the project. Additionally, we only touched the surface of the
full spectrum of UML software engineering models available, as we shall demonstrate.
Next sections present details about the three phases of the project. For each phase, the
four stages of l-PDCA are described, including the corresponding set of artifacts to be
delivered and the checklists that verified their completeness.

3.1.1. Analysis Phase

At the Analysis Phase, the groups needed to establish a contract with the customer about
the product that should be delivered, detailing precisely which requirements and con-
straints should be addressed. At the end, two documents were demanded: the use case
diagram (UCD) and the requirements specification document (RSD). In what follows we
describe how we implemented the four stages of the l-PDCA cycle in order to reach those
goals.

Plan Stage: During this stage, the students received information related to the set
of artifacts that should be delivered. Additionally, they got supporting lectures about Use
Case Diagramming and Requirements Engineering, which included strategies to require-
ments elicitation and tools to document them. They also became aware that their work
would be evaluated based on their ability to identify most of the use cases and require-
ments needed to implement the proposed system.

Do Stage: To enable a satisfactory requirements specification, the students were
given a period of time to gain an understanding of the problem and the desired solution.
It was up to the groups to acquire this knowledge, using the requirements elicitation tech-
niques learned in class.

Check Stage: To measure completeness of the Analysis Phase, the UCD and the
RSD were cross-validated against two different checklists: the Use Case Checklist and
the Requirements Checklist. The Use Case Checklist verified if the necessary use cases
were identified by the groups. According to the tutors’ perspective, there was a total of
10 use cases. The Requirements Checklist verified if the necessary requirements were
identified by the groups. According to the tutor’s perspective, there were a total of 40
requirements, related to either functional requirements or business rules.

Act Stage: After the Check Stage, the groups knew how much of their job was
done and how much was missing. During the Act Stage, they got a chance to add the
missing use cases and requirements to the proper documents. Additionally, the tutors ob-
served other problems with the delivered artifacts. The students were advised to improve
their analysis to handle these issues. As expected, the most common problems identified
relate to the correctness of the requirements. Some examples are provided below: (i) the
meaning of the requirement was unclear and subject to interpretation; (ii) the requirement
contradicted other requirement(s); (iii) implementation details were provided.

457



3.1.2. Design Phase

At the Design Phase, the groups needed to model the application for the project theme
using software engineering fundamentals. At the end, a class diagram containing the
underlying data model of the system should be delivered. In what follows we describe
how we implemented the four stages of the l-PDCA cycle in order to reach this goal.

Plan Stage: During this stage, the students received information related to the
artifacts that should be delivered. Additionally, they got supporting lectures about basic
class diagram modeling and tools that allow UML diagramming. The students also be-
came aware that their work would be evaluated based on their ability to identify most of
the attributes and methods needed to implement the proposed system. They were also
oriented to start their investigation based on the set of artifacts delivered in the Analysis
Phase.

Do Stage: According to the tutors’ orientations given in the prior stage, the groups
built the class diagram following a bottom-up sequence of steps. At some specific mo-
ments, the tutors revisited concepts taught during the Plan Stage, providing further ex-
planation about the bottom-up creation of the diagram. However, we observe that the
concepts were illustrated without direct contact with the project theme. This is a border-
line the tutors did not cross in order to enhance the learning experience.

Check Stage: To measure completeness of the Design Phase, the class diagram
was cross-validated against two different checklists: the attributes checklist and the meth-
ods checklist. The Attributes Checklist verified if the necessary attributes were identified
by the groups. According to the tutors perspective, there was a total of 60 attributes,
spread across the classes of the model. For each attribute, we asked the groups to identify
where in the class diagram it was located. The Methods Checklist verified if the nec-
essary methods were identified by the groups. In essence, all requirements (functional
requirements and business rules) needed to map to methods.

Act Stage: After the Check Stage, the groups knew how much of their job was
done and how much was missing. During the Act Stage, they got a chance to add the
missing attributes and methods into the class diagram. Additionally, the tutors observed
other problems with the delivered diagram. As expected, the most common problems
identified relate to the correctness/quality of the diagram. Some examples are provided
below: (i) Methods with incorrect parameter lists; (ii) Incorrect associations between
classes; (iii) High coupling and low cohesion.

3.1.3. Coding Phase

At the Coding Phase, the groups needed to transform the class diagram into source code.
At the end, functional code related to the data layer of the system should be delivered. In
what follows we describe how we implemented the four stages of the l-PDCA cycle in
order to reach this goal.

Plan Stage: During this stage, the students became aware that their work would
be evaluated based on their ability to build functional code. Additionally, supporting
lectures were given about test coverage and how to identify test scenarios and test cases

458



from the UCD and the RSD.

Do Stage: This is when the source code actually got written. If we assume the
groups had refined the class diagram considering the instructors suggestions, most of
the work of this stage involved filling the gaps of the skeleton code. The students were
encouraged to write good code from the start, testing the functions and business rules as
they got implemented. To promote this idea, the tutors introduced notions about Test-
Driven Development.

Check Stage: To measure completeness of the Design Phase, the source code
was cross-validated against a Test Case Checklist. The Test Case Checklist verified if the
code passed a number of different cases, involving some input values and an expected
output. Of course, mapping all possible test cases is an unrealistic goal. For the sake of
the evaluation, we restricted the set of test cases using a simple rule. For each use case,
there should be one test case where the use case executed successfully and one test case
for each constraint where the constraint was not satisfied.

Act Stage: After the Check Stage, the groups knew how much of the proposed test
cases failed in the execution. In most cases, the failure occurred because the constraints
were not properly handled in the code or even because the use case was not implemented
at all. Either way, the students were warned about what should be done in order to correct
the flaws. We observe that there was no need to adjust the code, since this was the final
phase of the project. Instead, the tutors used the time available during the stage to point
out other issues with the code, such as those related to static analysis and usage of patterns.
Additionally, the students became aware that the test cases evaluated by the tutors were
far from a comprehensive list of possible situations, and much more testing was necessary
in order to deliver a high quality product.

3.2. Results

This section reports the observations made when compiling the information gathered from
the course. Figure 3 sums up the results achieved, by presenting the general performance
of the students at each checklist.

Figure 3. Results Related to the Students Performance on the Checklists.

The first conclusion is that the groups did a better job at the first two phases (Anal-
ysis and Design). This shows that programming skills needed improvement, which was
expected for first year students. Observing the checklists of the Analysis Phase (Use Case

459



and Requirements), we also concluded that students faced difficulties in capturing the re-
quirements, which indicates a need to enhance communication skills. Additionally, even
though the students score were basically a matter of making sure the job was done, and
not how well it was done, still their overall performance was relatively low, as depicted
in Figure 3. This indicates that, in general, the students lack maturity to conclude work
where the goals are well-defined and easy to understand. These results were reported
to the SEUP coordination, so that corrective measures could be taken, such as applying
motivational lectures, explaining that dedication and perseverance are important factors
in the educational growth.

It is important to remark that a higher number of checklists could be used to iden-
tify a more diverse range of profiles. As stated before, the number and type of checklists
should be decided based on what qualities need to be mapped. In our case, considering the
course is given for students in the first year of the program, the intention was to identify
the level of effort of the students rather than their intellectual qualities.

We could not analyze if the proposed checklists are suited as instructor indepen-
dent ways of evaluation. Since there was a disjoint relation between tutors and their
groups, it was not possible to compare the checklists results among themselves. As future
work, we intend to apply the same checklists, but having different reviewers for the same
group. Nevertheless, we observe that the l-PDCA methodology managed to be an efficient
way of evaluation which the tutors felt comfortable with. The items of the checklists were
discussed in loco with the students, so that questions regarding the work could be solved
quickly. Besides, according to the tutors, the students considered the evaluation approach
to be fair and acknowledge the problems found in their software artifacts.

4. Related Work

Many researches adopt PDCA cycles to control quality in organizations. It is a logical
working process that can be adapted to improve quality in different contexts. For in-
stance, Ning et al. [Ning et al. 2010] adopted the PDCA cycles to provide continuous im-
provements in software quality. The model helped to take objective decisions, to identify
demands of software adaptation, and to organize task adjustments.

Furthermore, PDCA can also be used in education context. The model can be
directly used to validate teaching-learning methods as proposed by Fuhou [Fuhou 2009].
According to this work, professors plan based on their experience and fall back in teach-
ing theories aiming to solve learning problems; they regard curriculum goals, students
knowledge and university support conditions to define the Do and Check stages; and, fi-
nally, they learn lessons and develop standards to continuously improve teaching quality
in the Act Stage.

On the other hand, PDCA cycles can be adapted according to the research goals.
For instance, Cukusic [Cukušić et al. 2010] proposed the design of an e-learning pro-
cess management (planning, organizing/implementing, controlling and improving) from
the PDCA generic model. Our work proposes the usage of the PDCA cycles associated
with checklists to make clear the goals of each stage and to provide a uniform evalua-
tion/learning methodology. Jarvinen et al. [Jarvinen et al. 1998a] proposed a similar inte-
gration of checklists and PDCA cycles to manage a developing team, in which checklists
act as working assistants to ensure the corporation goals are captured into the PDCA

460



stages.

5. Conclusions

This paper presented an approach to software engineering teaching that is completely
based on PDCA cycles. The approach, named l-PDCA, adapts the Plan, Do, Check, and
Act stages to conform with teaching scenarios, rather than the management scenarios of
the regular PDCA. Besides providing students with a uniform learning environment, this
adaptation targets at uncovering skills that are not easily identified during training courses.

To demonstrate the approach, we conducted a case study with a class from the
Software Engineering Undergraduate Program (SEUP) at Unipampa. One of the results
we achieved was showing that l-PDCA fits the PBL methodology applied at the SEUP.
The role of the students and the tutors match the role of students and instructors of l-
PDCA. The first is responsible for solving a problem. The second is responsible for
providing the tools and the knowledge necessary to solve the problem. Besides, the l-
PDCA addresses a shortcoming of having many tutors for the same instance of the course,
which is the heterogeneity in the learning and evaluation process.

As stated earlier in the paper, checklists are the core of l-PDCA. Ill-defined check-
lists may lead to failure, frustrating students for being unable to associate the evaluation
with the knowledge units taught, and also instructors for being unable to identify students’
strengths and weaknesses related to those knowledge units. In this context, our case study
showed that the methodology was approved by students and tutors. Students were able
to easily understand what went right or wrong with their deliveries, acknowledging the
outcome. On their turn, the tutors were able to evaluate the students quickly. Besides, the
composition of the checklists enabled some basic profiling, by spotting which skills had
an urgent need of improvement.

What we tried was to break the deliverables into atomic units of work, so the
completion of each unit could be objectively evaluated. We recall that the PBL approach
values teamwork, so students need to work together during the course. In this context,
the checklists were used to perform a collective evaluation. In the future, we also intend
to evaluate the components of a group, so that individual profiles can be uncovered. This
can be achieved by breaking down a product into modules, and delegating one module
per student.

Even though we demonstrate the application of the l-PDCA for an academic
course, the same ideas can be explored in any kind of training program, such as those
sponsored by companies that want to prepare their employees for specialized assignments.
Additionally, the form of evaluation proposed applies smoothly to products/artifacts re-
lated to software engineering, but are not restricted to this area. With the proper adjust-
ments, the general l-PDCA framework can contribute in the learning/profiling of other
areas as well, specially when subjectivity is an issue.

References

[Billa 2012] Billa, C. Z. (2012). Experiência de APB aplicado em engenharia de soft-
ware. In Anais do Internacional Conference PBL-ABP 2012, Santiago de Cali,
Colômbia.

461



[Cukušić et al. 2010] Cukušić, M., Alfirević, N., Granić, A., and Garača, e. (2010). e-
learning process management and the e-learning performance: Results of a european
empirical study. Computer & Education, 55(2):554–565.

[Darr 2007] Darr, K. (2007). Quality improvement: The pioneers. Hospital Topics,
85(4):35–38. PMID: 17405423.

[Frakes and Fox 1996] Frakes, W. and Fox, C. (1996). Quality improvement using a
software reuse failure modes model. Software Engineering, IEEE Transactions on,
22(4):274 –279.

[Fuhou 2009] Fuhou, Z. (2009). Pdca circulation in university education applied re-
search. In Proceedings of the 2009 First IEEE International Conference on Information
Science and Engineering, ICISE ’09, pages 3375–3378, Washington, DC, USA. IEEE
Computer Society.

[IEEE and ACM 2004] IEEE and ACM (2004). Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering. IEEE and
ACM.

[Jarvinen et al. 1998a] Jarvinen, J., Perklen, E., Kaila-Stenberg, S., Hyvarinen, E., Hyy-
tiainen, S., and Tornqvist, J. (1998a). Pdca-cycle in implementing design for environ-
ment in an r & d unit of nokia telecommunications. In Proceedings of the 1998 IEEE
International Symposium on Electronics and the Environment (ISEE-1998), pages
237–242.

[Jarvinen et al. 1998b] Jarvinen, J., Perklen, E., Kaila-Stenberg, S., Hyvarinen, E., Hyy-
tiainen, S., and Tornqvist, J. (1998b). Pdca-cycle in implementing design for environ-
ment in an r amp;d unit of nokia telecommunications. In Electronics and the Environ-
ment, 1998. ISEE-1998. Proceedings of the 1998 IEEE International Symposium on,
pages 237 –242.

[Ning et al. 2010] Ning, J., Chen, Z., and Liu, G. (2010). Pdca process application in
the continuous improvement of software quality. In 2010 International Conference
on Computer, Mechatronics, Control and Electronic Engineering (CMCE), volume 1,
pages 61 –65.

[Selçuk and Tarakçi 2007] Selçuk, G. and Tarakçi, M. (2007). Physics teaching in
problem-based learning. In AIP Conference Proceedings, volume 899, page 844.

462


