
Verification of Workflow Specifications in UML Using

Automated Transformations to WF-nets

L´ıgia Maria Soares Passos

1
, Tarc´ısio Abadio de Magalh

˜

aes J´unior

1
,

Marcelo de Almeida Maia

1
, St

´

ephane Julia

1

1Faculdade de Computação – Universidade Federal de Uberlândia (UFU)
Caixa Postal 593 – 38400-902 – Uberlândia – MG – Brazil

{ligia,marcmaia,stephane}@facom.ufu.br, tarcisiojunior@gmail.com

Abstract. This article proposes the transformation of UML Activity Diagrams
that models workflow processes into WF-nets (WorkFlow nets). The transfor-
mation is automated using the ATL transformation language, well-known in the
model-driven development context. This transformation enables the verification
of the soundness property for workflows using linear logic proofs in WF-net
specifications. The generated proof trees also help finding possible causes for
unsound diagrams. An illustrative case study is presented to demonstrate the
approach effectiveness. The results from this paper could motivate the typical
software company to introduce the rigor of formal verification using Petri Nets
associated with linear logic without sacrificing the common practice of develop-
ers who can continue using UML notation integrated with industrial tools such
as ATL.

1. Introduction

The purpose of Workflow Management Systems [van der Aalst and van Hee 2004] is the
execution of workflow processes, which represent sequences of activities executed within
an organization to treat specific cases of workflow and to reach a well defined goal. A
workflow process is a set of activities that can be executed simultaneously with some
control specification and data flow between these activities [Leymann and Roller 1997].

Petri nets [Petri 1962, Murata 1989] are well-suited to model workflow pro-
cesses and many papers have already considered this theory as an efficient tool for
the modeling and analysis of Workflow Management Systems. In [van der Aalst 1998,
van der Aalst and van Hee 2004], for example, high level Petri nets are used to model
Workflow Management Systems. A Petri net which models a workflow process definition
(i.e. the life-cycle of one case in isolation) is called WorkFlow net (WF-net).

The UML (Unified Modeling Language) Activity Diagram is a special case of
statechart [Tričkovié 2000], such that all states are action states and transitions are fired
by the finalization of its source states.

An approach to analyse workflow process using model transformation is presented
in [Meena et al. 2005]. The authors propose the transformation of UML Activity Dia-
grams into Petri nets, but they just present an example with no formalization of transfor-
mation rules. In [Gehrke et al. 1998], the authors propose the transformation of an UML
Activity Diagram into a Petri net, presenting just some schemas of transformation without
presenting the generic rules for this transformation. In [Tričkovié 2000], a formalization

674

of UML Activity Diagrams semantics is proposed using Petri nets. However, the author
just shows some transformation examples and the transformation rules are not given. In
[Störrle and Hausmann 2005], the semantics of UML Activity Diagrams is proposed in an
intuitive way, but the transformation rules are neither formalized nor sufficient to achieve
the complete transformation because two additional rules for a complete transformation
were not presented in that work.

There are several reasons to use Petri nets in workflow process mod-
eling: formal semantics, expressiveness and many available analysis techniques
[van der Aalst 1998]. The use of such formalism has many important advantages, be-
cause the use of a precise definition prevents ambiguity, uncertainty and contradictions
[van der Aalst and van Hee 2004] - in contrast with most of other techniques of informal
diagramming, for instance, UML Activity Diagrams [Dumas and ter Hofstede 2001]. De-
spite the good reasons to use Petri nets in the context of workflow process modeling, a
resistance to this formal method is widely observed in the industry, which prefers to model
workflow processes using UML Activity Diagrams or other semi-formal diagram.

In the context of Model-driven Engineering (MDE), models are the main devel-
opment artifacts and the model transformations are important operations applied to the
models [Jouault et al. 2008]. There are many available transformation languages, such as
the ATLAS Transformation Language (ATL), which is developed by the ATLAS Group
(INRIA & LINA). In the context of MDE, ATL provides an alternative to produce a set of
target models from a source models set [Atlas Group].

In this paper, an approach based in ATL is proposed to transform
an UML Activity Diagram (that models workflow processes) into WF-nets
[van der Aalst and van Hee 2004],[van der Aalst 1998], that is, a Petri net that models the
same workflow process modeled by the UML Activity Diagram. Moreover, an approach
to verify workflow process is also proposed.

In Section 2 workflow processes, UML Activity Diagrams and WF-nets are in-
troduced. Section 3 presents the ATLAS Transformation Language. The transformation
rules between the models are presented in Section 4. Section 5 presents the linear logic
and the soundness verification to WF-nets. In Section 6 a case study is presented. Fi-
nally, the last section concludes this work with a short summary, an assessment about the
approach presented and an outlook on the future work.

2. Workflow Process, UML Activity Diagrams and WF-nets

A workflow definition includes a process and its corresponding tasks that must be per-
formed, in a specific order, to successfully complete a case. In other words, all possi-
ble routes are mapped out [van der Aalst and van Hee 2004]. Each task can be optional,
i.e. there are tasks that just need to be executed for some cases and the order in which
tasks will be executed can vary from case to case [van der Aalst and van Hee 2004]. Four
basic constructions for routing are presented in [van der Aalst and van Hee 2004] and
[van der Aalst 1998]: sequential, parallel, conditional and iterative.

The modeling elements of UML Activity Diagrams are defined in the OMG UML
Superstructure [OMG 2008] and also can be used to model workflow processes. Fig. 1
shows the modeling elements used in this paper. The other elements are not considered

675

in this approach. Moreover, in this work, a restriction is imposed in the UML Activity
Diagram, such that just one Initial Node and just one Final Node can appear, and all the
activities (Action Nodes) need to have, at least, one outgoing edge (Control Flow).

Figure 1. UML Activity Diagram Modeling Elements.

A Petri net that models a workflow process is called a WorkFlow net (WF-net)
[van der Aalst and van Hee 2004, van der Aalst 1998]. A WF-net satisfies the following
properties [van der Aalst 1998]:

• It has only one source place named Start and only one sink place named End.
These are special places, such that the place Start has only outgoing arcs and the
place End has only incoming arcs.

• A token in Start represents a case that needs to be handled and a token in End
represents a case that has been handled.

• Every task t (transition) and condition p (place) should be in a path from place
Start to place End.

Soundness is a correctness criterion defined for WF-nets. A WF-net is sound
if, and only if, the following three requirements are satisfied [van der Aalst 1998,
van der Aalst et al. 2011]:

• For each token in the place Start, one and only one token appears in place End.
• When the token appears in place End, all the other places are empty for this case.
• For each transition (task), it is possible to move from the initial state to a state in

which that transition is enabled, i.e. there is not any dead transition.

The modeling elements of the WF-nets is shown in Fig. 2.

Place Transition Arc (Place to Transition or
Transition to Place)

Figure 2. WF-nets Modeling Elements.

2.1. UML Activity Diagrams and WF-nets Metamodels

The UML Activity Diagrams and WF-nets metamodels will be used as the basis for the
transformation between the respective models. Fig. 3 shows graphically the metamodel
of the UML Activity Diagrams. The metamodel of the WF-nets is shown in Fig. 4.

The main difference between the UML Activity Diagrams metamodel proposed
by the OMG [OMG 2008] and the proposed in this paper is that this approach does not

676

consider the object nodes and the object flows, which are present in the metamodel pro-
posed by the OMG.

The WF-net metamodel proposed in this work comprehends all modeling elements
proposed in [van der Aalst 1998].

Figure 3. UML Activity Diagram Metamodel.

Figure 4. WF-net Metamodel.

3. ATLAS Transformation Language

The ATLAS transformation language – ATL is a hybrid model transformation DSL con-
taining a mixture of declarative and imperative constructs. ATL transformations are uni-
directional, i.e, source models are read-only and target models are write-only. During
the execution of a transformation, source models may be navigated but changes are not
allowed. Target models cannot be navigated. A module contains a mandatory header
section and a number of transformation rules. The header section gives the name of a
transformation module and declares the source and target models. The source and target
models are typed by their metamodels. Declarative ATL rules are called matched rules.
They specify relations between source patterns and target patterns. The name of a rule is
given after the keyword rule. The source pattern of a rule specifies a set of source types
and an optional guard given as a Boolean expression in OCL. A source pattern is eval-
uated to a set of matches in source models. The target pattern is composed of a set of
elements. Each of these elements specifies a target type from the target metamodel and a
set of bindings. A binding refers to a feature of the type (i.e. an attribute, a reference or an
association end) and specifies an expression whose value is used to initialize the feature.
In some cases, complex transformation algorithms may be required and it may be difficult
to specify them in a declarative way. For this issue, ATL provides imperative constructs,
but in this approach only declarative rules were used.

677

4. Transformation Rules

In this section, the transformation rules used to transform an UML Activity Di-
agram into a WF-net are presented. Some of these rules were presented in
[Störrle and Hausmann 2005]. However, the proposed rules are not sufficient to complete
all proposed transformation. Thus, two new rules are presented in this paper and they are
highlighted in Fig. 5 with a dotted rectangle. Fig. 5 depicts the transformation rules intu-
itively. For example, the modeling element Action of the UML Activity Diagram will be
transformed into the modeling element Transition of the WF-net, the modeling element
Final Node of the UML Activity Diagram will be transformed into the modeling element
Place of the WF-net, and so on.

A portion of ATL code for the transformation rules is shown in the Appendix.

UML Activity Diagrams
Modeling Elements

WorkFlow nets
Modeling Elements

Activity Activity

Fork/Join

Aux

Except

Unless

Action Transition

Fork or Join Nodes

Initial Node

Final Node

Decision or Merge Nodes

Control Flow

Transition

Place

Place

Place

Transition to place,
Place,
Place to transition

Place to transition,
Transition,
Transition to place,

Place to transition

Transition to place

Place to transition

Transition to place

Control Flow from Initial Node

Control Flow to Final Node

Control Flow from Decision/Merge Nodes

Control Flow to Decision/Merge Nodes

Control Flow from Initial Node to
Decision/Merge Nodes
Control Flow from Decision/Merge Nodes
to Final Node

Control Flow from Decision/Merge Nodes
to Decision/Merge Nodes

Figure 5. Transformation Rules.

A process for handling complaints, shown in [van der Aalst and van Hee 2004],
can be used to illustrate the proposed transformation: “An incoming complaint first is
recorded. Then the client who has complained and the department affected by the com-
plaint are contacted. The client is approached for more information. The department is
informed of the complaint and may be asked for its initial reaction. These two tasks may
be performed in parallel, i.e. simultaneously or in any order. After this, the data are
gathered and a decision is taken. Depending upon the decision, either a compensation
payment is made or a letter is sent. Finally, the complaint is filed”. The UML Activity
Diagram that models this workflow process is shown in Fig. 6(a). Fig. 6(b) shows the cor-
respondent WF-net, which can be generated when applying the proposed transformation
rules to the input UML Activity Diagram.

5. Linear Logic and Soundness Verification of WF-nets

5.1. Linear Logic and Petri nets

Linear Logic was proposed in 1987 by Girard [Girard 1987]. In Linear Logic, proposi-
tions are considered as resources which are consumed and produced at each state change

678

Record

Contact_DepartmentContact_Client

Collect

Assess

Pay

Send_Letter

File

Start

Record

Fork

Contact_DepartmentContact_Client

 Join

Collect

Assess

PaySend_Letter

File

End

(a) (b)

Figure 6. The process “handle complaints”. (a)Workflow Process modeled

through an UML Activity Diagram. (b) Workflow Process modeled through a WF-

net.

[Diaz 2009]. Linear Logic introduces new connectives, as the connectives “times”(⌦)
and “linear implies”((), used in this paper, such that:

• The times connective, denoted by ⌦, represents simultaneous availability of re-
sources. For instance, A⌦B represents the simultaneous availability of resources
A and B.

• The linear implies connective, denoted by (, represents a state change. For in-
stance, A (B denotes that consuming A, B is produced (note that after the
production of B, A will not be available).

The translation of a Petri net into formulas of Linear Logic is presented in
[Riviere et al. 2001] and [Diaz 2009]. A marking M is a monomial in ⌦ and is repre-
sented by M = A1 ⌦ A2 ⌦ . . . ⌦ Ak where Ai are place names. A transition is an ex-
pression of the form M1 (M2 where M1 and M2 are markings. A sequent M, ti ` M 0

represents a scenario where M and M 0 are respectively the initial and final markings, and
ti is a list of non-ordered transitions.

In this paper, just some rules of Linear Logic will be considered. These rules will
be used to build the proof trees presented in this approach. For this, F , G, and H are
considered as formulas and � and � as blocks of formulas. The following rules will be
the ones used in this paper [Riviere et al. 2001]:

• The (L rule,
� ` F �, G ` H

�,�, F (G ` H
(L, expresses a transition firing and generates

two sequents such that the right sequent represents the subsequent remaining to
be proved and the left sequent represents the consumed tokens by this firing.

• The ⌦L rule,
�, F,G ` H

�, F ⌦G ` H
⌦L transforms a marking in an atoms list.

• The ⌦R rule,
� ` F � ` G

�,� ` F ⌦G
⌦R transforms a sequent such A,B ` A ⌦ B into

two identity sequents A ` A and B ` B.

679

In the approach presented in this paper, a Linear Logic proof tree is read from
bottom-up. The proof stops when the atom End is produced, i.e. the identity sequent
End ` End appears in the proof tree, when there is not any rule that can be applied or
when all the leaves of the proof tree are identity sequents. This proof is decidable once
each transition of the WorkFlow net appears at the most once in the linear sequent. There-
fore, if the number of transitions is finite, the construction of the proof tree is decidable
[Passos and Julia 2009].

5.2. Soundness Verification for WF-nets

In the context of WF-nets, the main aim of qualitative analysis is to prove Soundness
property, once this criterion ensures the correctness of a workflow process mapped into a
WF-net.

To prove the Soundness correctness criterion for a WF-net using Linear Logic
[Passos and Julia 2009, Soares Passos and Julia 2009], initially, it is necessary to repre-
sent this WorkFlow net by formulas of Linear Logic. A WF-net is represented by one or
more linear sequents. A scenario in the context of WF-nets corresponds to a well defined
route mapped into the WF-net and if the WF-net has more than one route, it is then nec-
essary to build a different linear sequent for each existing scenario. After the definition
of the linear sequents that represent the WF-net, these linear sequents need to be proved.
To prove these sequents, proof trees of Linear Logic will be produced. After the con-
struction of the proof trees each scenario of the analysed WorkFlow net must be analysed
respecting the following steps:

1. For each proof tree:
(a) If just one atom End was produced in the proof tree (this is represented

in the proof tree by the identity sequent End ` End), then the first re-
quirement for Soundness is proved, i.e just one token appears in the place
End.

(b) If there is not any available atom for consumption on the proof tree, then it
means that all places are empty, i.e. the second requirement for Soundness
is proved.

(c) There is not any available transition formula in the proof tree that was not
fired.

2. Considering all scenarios Sc1, Sc2, ..., Scn for the WorkFlow net analysed, each
transition t 2 T needs to appear in, at least, one scenario. This proves that all tran-
sitions were fired (i.e., there is not any dead transition), i.e. the third requirement
for Soundness is verified.

If the conditions 1 and 2 above are satisfied, the WorkFlow net is Sound.

6. Case Study

In this section, a case study of a transformation is presented. An UML Activity Diagram
that models a workflow process is transformed into a WF-net. The workflow process
analysed is based on a standard part selection workflow within an airline design process
[OMG 2008]. The Expert Part Search behavior can result in a found part or not. When a
part is not found, it is assigned to the Assign Standards Engineer activity. Lastly, Schedule
Part Mod Workflow invocation produces entire activities and they are passed to subsequent

680

Expert Part
Search

Assign
Standards
Engineer

Review
Requirements

Specify
Part Mod
Workflow

Schedule
Part Mod
Workflow

Review
Schedule

Execute
Part Mod
Workflow

Research
Production
Possibility

Figure 7. Activity Diagram that models the Workflow Process.

Start

c1

c2

c3

c4

c5

c6 End

c8c7

c9 c10

ExpertPartSearch

AssignStandardsEngineer

ReviewRequirements

SpecifyPartModWorkflow

SchedulePartModWorkflow

Review Schedule

Aux2

Aux3

Aux1

Fork

Join

ExecutePartMod
Workflow

ResearchProduction
Possibility

Figure 8. WF-net that models the Workflow Process.

invocations for scheduling and execution (i.e., Schedule Part Mod Workflow, Execute Part
Mod Workflow, and Research Production Possibility). The UML Activity Diagrams that
models this process is shown in Fig. 7. Fig. 8 shows the corresponding WF-net.

There are four different scenarios in the WF-net shown in Fig. 8: the first sce-
nario, Sc1, where the task Aux1 will be executed (firing the transition Aux1), the sec-
ond scenario, Sc2, where task Aux2 will be executed, the third scenario, Sc3, where
task Join will be executed, and the fourth scenario, Sc4, where task Aux3 will be
executed. Thus, for this WF-net, four linear sequents will have to be proved. For
scenario Sc1, it is necessary to prove the sequent Start, t1, t11 ` End, for sce-
nario Sc2 the sequent Start, t1, t2, t3, t4, t5, t6, t12 ` End, for scenario Sc3 the se-
quent Start, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10 ` End and for scenario Sc4 the sequent
Start, t1, t2, t3, t4, t5, t6, t7, t8, t9, t13 ` End needs to be proved, considering that:
t1 = ExpertPartSearch = Start (c1,
t2 = AssignStandardsEngineer = c1 (c2,
t3 = ReviewRequirements = c2 (c3,
t4 = SpecifyPartModWorkflow = c3 (c4,
t5 = SchedulePartModWorkflow = c4 (c5,

681

t6 = ReviewSchedule = c5 (c6,
t7 = Fork = c6 (c7⌦ c8,
t8 = ExecutePartModWorkflow = c7 (c9,
t9 = ResearchProductionPossibility = c8 (c10,
t10 = Join = c9⌦ c10 (End, t11 = Aux1 = c1 (End,
t12 = Aux2 = c6 (End, t13 = Aux3 = c10 (End.

Following are shown the proof trees for scenarios Sc1, Sc2, Sc3 and Sc4.

Proof tree for Scenario Sc1:

c1`c1 End`End (L

Start`Start c1,c1(End`End (L

Start,Start(c1,c1(End`End

Proof tree for Scenario Sc2:

c6`c6 End`End (L

c5`c5 c6,c6(End`End (L

c4`c4 c5,c5(c6,t12`End (L

c3`c3 c4,c4(c5,t6,t12`End (L

c2`c2 c3,c3(c4,t5,t6,t12`End (L

c1`c1 c2,c2(c3,t4,t5,t6,t12`End (L

Start`Start c1,c1(c2,t3,t4,t5,t6,t12`End (L

Start,Start(c1,t2,t3,t4,t5,t6,t12`End

Proof tree for Scenario Sc3:

c9`c9 c10`c10
c9,c10`c9⌦c10 ⌦R

End`End (L

c8`c8 c9,c10,c9⌦c10(End`End (L

c7`c7 c8,c9,c8(c10,t10`End (L

c7,c8,c7(c9,t9,t10`End ⌦L

c6`c6 c7⌦c8,t8,t9,t10`End (L

c5`c5 c6,c6(c7⌦c8,t8,t9,t10`End (L

c4`c4 c5,c5(c6,t7,t8,t9,t10`End (L

c3`c3 c4,c4(c5,t6,t7,t8,t9,t10`End (L

c2`c2 c3,c3(c4,t5,t6,t7,t8,t9,t10`End (L

c1`c1 c2,c2(c3,t4,t5,t6,t7,t8,t9,t10`End (L

Start`Start c1,c1(c2,t3,t4,t5,t6,t7,t8,t9,t10`End (L

Start,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10`End

Proof tree for Scenario Sc4:

c10`c10 c9,End`End (L

c8`c8 c9,c10,c10(End`End (L

c7`c7 c8,c9,c8(c10,t13`End (L

c7,c8,c7(c9,t9,t13`End ⌦L

c6`c6 c7⌦c8,t8,t9,t13`End (L

c5`c5 c6,c6(c7⌦c8,t8,t9,t13`End (L

c4`c4 c5,c5(c6,t7,t8,t9,t13`End (L

c3`c3 c4,c4(c5,t6,t7,t8,t9,t13`End (L

c2`c2 c3,c3(c4,t5,t6,t7,t8,t9,t13`End (L

c1`c1 c2,c2(c3,t4,t5,t6,t7,t8,t9,t13`End (L

Start`Start c1,c1(c2,t3,t4,t5,t6,t7,t8,t9,t13`End (L

Start,t1,t2,t3,t4,t5,t6,t7,t8,t9,t13`End

Considering the proof trees for scenarios Sc1, Sc2, Sc3 and Sc4, the WF-net shown
in Fig. 8 is not sound, because the condition 1(b) for soundness is not satisfied, i.e., there
is a available atom for consumption in the proof tree for scenario Sc4, c9. This fact shows
that when the token appears in the place End, there is still a place that is not empty for this
case, which means that the process can finish and still have an activity that is executing.
Thus, the second requirement for soundness is not satisfied.

682

Expert Part
Search

Assign
Standards
Engineer

Review
Requirements

Specify
Part Mod
Workflow

Schedule
Part Mod
Workflow

Review
Schedule

Execute
Part Mod
Workflow

Research
Production
Possibility

Figure 9. New UML Activity Diagram that models the Workflow Process.

6.1. Finding and Debugging Critical Points in UML Activity Diagrams using proof

trees of Linear Logic

Some critical points can be found out in the workflow process analysing the proof trees
of linear logic, which were built to prove the soundness property. For example, if there
is a transition formula of linear logic that was not fired in any scenario, it means that this
transition is dead and it is not necessary in the workflow process, because the correspon-
dent activity never will be executed. So, some correction can be made, removing this
activity, in the UML Activity Diagram to turn the correspondent WF-net sound. Another
situation is when the construction of the proof tree finished and there is an available atom
for consumption in this proof tree: it indicates that there is a critical point in the region
of the place represented by the atom. For an illustrative example, consider the proof tree
for scenario Sc4. Note that there is an available atom c9 in this proof tree. It indicates
that in the region of place c9 of the WF-net shown in Fig. 8 there is some modeling error.
So, the analyst can study and correct this correspondent region in the UML Activity Di-
agram, preserving the necessary semantic. Fig. 9 shows an UML Activity Diagram with
a possible correction for this example. This correction determines that the process can
finish only if both the activities Research Production Possibility and Execute Part Mod
Workflow have already finished or if the activity Research Production Possibility has al-
ready finished and the activity Execute Part Mod Workflow has not started. The updated
UML Activity Diagram can be transformed into a corresponding WF-net and this one can
be analysed, constructing new proof trees. The corresponding WF-net is sound and it is
shown in Fig. 10.

7. Conclusion

This work presented formal rules to transform UML Activity Diagrams that models work-
flow process into WF-nets. These rules were implemented with the ATL transformation
language. Although [Störrle and Hausmann 2005] has proposed a kind of transformation
related with the transformation proposed in this paper, that work has neither presented a
complete set of transformations, nor shown the feasibility of proving soundness for the
generated diagrams.

One of the advantages of this approach is the automated transformation of a semi-
formal model into a formal one, in which some properties, can be formally verified. An-
other advantage is the finding and debugging of critical points in UML Activity Diagrams,
based on linear logic proof trees, that allows the analysis and correction of the initial semi-
formal model.

683

Start

c1

c2

c3

c4

c5

c6 End

c8c7

c9 c10

ExpertPartSearch

AssignStandardsEngineer

ReviewRequirements

SpecifyPartModWorkflow

SchedulePartModWorkflow

Review Schedule

Aux2

Aux1

Fork

 Join

ExecutePartMod
Workflow

ResearchProduction
Possibility

 Join

Figure 10. Sound WF-net that models the Workflow Process.

As a future work, it would be interesting to enhance the software support to permit
an UML Activity Diagram be modelled graphically and to show the correspondent WF-
net graphically too. It also would be interesting to extend the metamodel of the UML
Activity Diagrams presented in this paper considering, for example, the object nodes and
to propose a new set of transformation rules to some high-level Petri net, permitting the
verification of other interesting properties.

References

Atlas Group. ATL: Atlas Transformation Language. http://www.eclipse.org/
m2m/atl/.

Diaz, M. (2009). Petri Nets: Fundamental Models, Verification and Applications. Wiley-
IEEE Press.

Dumas, M. and ter Hofstede, A. H. M. (2001). UML activity diagrams as a workflow
specification language. In Proc. of the 4th Intl. Conf. on The Unified Modeling Lan-
guage, pages 76–90, London, UK. Springer-Verlag.

Gehrke, T., Goltz, U., and Wehrheim, H. (1998). The dynamic models of UML: Towards
a semantics and its application in the development process. Technical report, Institut
für Informatik, Universität Hildeshein.

Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1):1–102.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: A model transformation
tool. Science Compututer Programming, 72(1-2):31–39.

Leymann, F. and Roller, D. (1997). Workflow-based applications. IBM Systems Journal,
36(1):102–123.

684

Meena, H. K., Saha, I., Mondal, K. K., and Prabhakar, T. V. (2005). An approach to
workflow modeling and analysis. In Eclipse’05: Proceedings of the 2005 OOPSLA
Workshop on Eclipse technology eXchange, pages 85–89, New York, NY, USA. ACM.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580.

OMG (2008). OMG Unified Modeling Language Specification – Version
2.2. Object Management Group. http://www.omg.org/spec/UML/2.2/
Superstructure.

Passos, L. M. S. and Julia, S. (2009). Qualitative analysis of workflow nets using linear
logic: soundness verification. In Proceedings of the 2009 IEEE international confer-
ence on Systems, Man and Cybernetics, SMC’09, pages 2843–2847, Piscataway, NJ,
USA. IEEE Press.

Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Bonn.

Riviere, N., Valette, R., Pradin-Chezalviel, B., and Ups, I. A. . (2001). Reachability and
temporal conflicts in t-time Petri nets. In PNPM ’01: Proc. of the 9th Intl. Workshop
on Petri Nets and Performance Models (PNPM’01), page 229, Washington, DC. IEEE.

Soares Passos, L. M. and Julia, S. (2009). Análise qualitativa e quantitativa de workflow
nets utilizando lógica linear. In SBSI 2009: Proceedings of the V Simpósio Brasileiro
de Sistemas de Informação. SBC.

Störrle, H. and Hausmann, J. H. (2005). Towards a formal semantics of UML 2.0 activ-
ities. In Liggesmeyer, P., Pohl, K., and Goedicke, M., editors, Software Engineering,
volume 64 of LNI, pages 117–128. GI.

Tričkovié, I. (2000). Formalizing activity diagram of UML by Petri nets. Novi Sad Journal
of Mathematics, 30(3):161–171.

van der Aalst, W. M. P. (1998). The application of Petri nets to Workflow Management.
In The Journal of Circuits, Systems and Computers, pages 21–66.

van der Aalst, W. M. P. and van Hee, K. (2004). Workflow Management: Models, Meth-
ods, and Systems. The MIT Press.

van der Aalst, W. M. P., van Hee, K. M., ter Hofstede, A. H. M., Sidorova, N., Verbeek,
H. M. W., Voorhoeve, M., and Wynn, M. T. (2011). Soundness of workflow nets:
classification, decidability, and analysis. Form. Asp. Comput., 23:333–363.

Fragment of ATL code for mapping UML Activity Diagrams into WF-nets
1 OUT: WorkflowNet from IN :ActivityDiagram;

2 AD2WN = ad: ActivityDiagram -> wn: WorkflowNet

3 Action2Transition =

4 a: Action -> t : Transition (name <- a.name, net <- a.ad)

5 DecisionNode2Place = dn: DecisionNode -> p: Place (name <- dn.name, net <- dn.ad)

6 MergeNode2Place = mn: MergeNode -> p: Place (name <- mn.name, net <- mn.ad)

7 ControlFlow = cf: ControlFlow

8 -> t2p: TransitionToPlace (from <- cf.source, net <- cf.ad)

9 -> p2t: PlaceToTransition (to <- cf.target, net <- cf.ad)

10 -> p: Place (name <- ’’)

11 where cf.source.Type() <> InitialNode and cf.target.Type() <> FinalNode and

12 cf.target.Type() <> DecisionNode and cf.source.Type() <> DecisionNode and

13 cf.target.Type() <> MergeNode and cf.source.Type() <> MergeNode)

14 do t2p.to <- p; p2t.from <- p; p.incomingEdge <- t2p; p.outgoingEdge <- p2t;

15 p.net <- thisModule.globalWorkflowNet;

685

