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Abstract. Most trajectory mining approaches consider a very small set of prop-

erties to extract patterns from trajectories. Besides, a lot of them consider those

properties separately. In this paper we present a method to find co-location

patterns based on different properties of trajectories along time. The proposal

allows to identify a sequence of co-locations composed by different properties

(distance, acceleration, speed, time etc) that represents the behavior of a set of

trajectories. The sequences of co-locations patterns present the evolution of an

event, for example traffic jam. By using this knowledge is possible to anticipate

the phenomenon occurrence, and to take actions to solve problems regarding to

the event.

1. Introduction and Motivation
The recent development and price reduction of mobile and location aware technologies
(like cellular phones equipped with GPS), allows tracking the movement of objects. This
fact contributes for increasing the amount of data related to moving objects. A singular
characteristic of a moving object is how its position changes over time. The time ordered
set of positions of a moving object is what is called trajectory of a moving object.

The analysis of trajectories will lead to the understanding of the behavior of ob-
jects in a given environment. In general, a trajectory has an identifier (t

id

), a set of x,y

coordinates representing the spatial location and a time t for every point (x,y).

Trajectory data do not have a special meaning, have a lot of noise, and are difficult
to understand and to interpret from the user’s point of view. By plotting a set of trajectories
in a bi-dimentional space, not much information or knowledge can be extracted. Several
trajectory mining methods have been developed in the last few years to extract interesting
patterns from trajectories, with the intent to discover behavior patterns from groups of
trajectories, like for instance, [Laube 2005, Cao 2006, Giannotti 2007, Lee 2008, 2009,
Bogorny 2010].

Most trajectory mining approaches consider a very small set of variables to extract
patterns from trajectories, basically considering distance, direction and density. Another
problem is that most of existing works consider these objective measures separately, with-
out combining one or more measures. For instance, to identify a pattern of low traffic or
traffic jam in a set of trajectories for a transportation management application, it may be
necessary to consider speed reduction, density of presence, distance, the road speed and
so on. To increase the problem, lets imagine that a traffic jam is not just a place with some
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characteristics, but a sequence of movements (events) with different characteristics that
will result in a traffic jam, as for instance, decreasing in the average speed and increasing

in the number of objects into a given area.

In other domains, like the movement analysis of ships in real time, the pattern
could be used to prevent or to advertise a damage of engines as well as the occurrence
of an attack of pirates. Both events could be discovered by considering different sets of
properties of ship trajectories. In a traffic air control, airplanes entering or crossing a
storm area, as well as pane problems could be rapidly detected. The military strategy can
be identified by mining the co-location patterns of a set of vehicles in a battle field.

Considering the above examples we turn up with a problem: how to discover
the sequence of events that occurred at different locations and at different time periods,
characterized by different attributes? How to previously infer the behavior changing of
individual or groups of trajectories that result in a certain event?

Figure 1. Example of trajectories with properties changing over time

Figure1 shows an example of four trajectories (T1,T2,T3,T4) of moving objects
traveling in a spatio-temporal area. There are four different time windows (t � 3, t � 2,
t�1 and t) represented by the four boxes. Different properties are considered for each time
window (average speed, average acceleration, traveled distance, number of trajectories).
The combination of these values can be used to identify the behavior of a set of trajectories
to characterize different events. For example, the behavior of the trajectories at time
window t is different of the behavior at time window t� 3. A set of slow moving objects,
with reduced acceleration and traveling a distance of 500 meters at a speed of 1 m/s is
the behavior of the objects at time window t. However, at time window t � 3 happens a
totally different behavior for the same set of trajectories: in that spatio-temporal window
the objects are moving at a higher speed and with higher acceleration. In this example,
the sequence of events at time window t� 3, t� 2 and t� 1 will result in the final event
at time t.

Considering the different characteristics of the same set of trajectories at different
time windows, in a traffic management application, a sequence of different behaviors may
result in the pattern traffic jam, for instance. What we have to define is: which are the
characteristics of the behavior at time window t? How was the behavior at previous time
windows t� 1, t� 2 and t� 3?Is it possible to identify this evolution considering differ-
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ent characteristics in each time window? We address this problem proposing a co-location
pattern mining algorithm to discover different sequences of behaviors, that we call local

co-location patterns, that generate/result in a final event, called global co-location pat-

tern.

2. Related Works and Contribution
Several data mining methods for trajectories have been proposed in the recent years,
but only a few words propose mining co-location patterns. Most existing co-location
mining algorithms were developed for spatial data, as for instance, the works of
[Shekhar and Huang 2001], [Huang et al. 2004] and [Yoo and Shekhar 2006]. Spatial co-
location patterns represents a subset of spatial features frequently located together.

One of the earliest works for minign co-location patterns from trajectories was the
approach of [Cao et al. 2006]. In this work, the proposal is to find co-location episodes

in order to represent the inter-movement regularities among different types of moving
objects. A co-location episode is as a sequence events, where events are sets of objects
moving close to each other for a given time period. Besides, there is a particular object
type (centric feature) which participates in a sequence of co-locations. In this approach
the trajectories are split in time windows, and the algorithm looks for objects that move
close to each other in each time window.

In [Celik et al. 2007] the authors presented a proposal to find local co-location

patterns named Zonal co-location patterns. The proposal considers that a pattern is not
uniformly distributed over the space. Therefore, different regions of the space may present
different patterns. The idea is to delimit an area in order to find local co-location patterns.
Zonal co-location patterns represent subsets of feature types that are frequently located
in a subset of the space.

[Celik et al. 2008] proposed to mine patterns that represent subsets of object-types
that are located together in space and time. This work introduces the use of time by using
a time prevalence measure. The environment of the proposal is a mixed group of moving
objects, considering only distance between the objects as the measure to identify the co-
location of the objects. The locations of a set of objects are recorded along time. The
proposal considers a time interval in order to investigate the co-location patterns. The
time interval is divided into a set of fractions of time, and, for each one of them, co-
location patterns of objects are identified. The distance among the objects is the measure
to identify a co-location. Thereafter, the persistence of each pattern is evaluated along
the complete time interval, in order to identify whether is eventual or a persistent pattern.
In summary, the goal is to discover persistent patterns that co-occur im most, but not all,
spatio-temporal intervals. Therefore, consecutive occurrences are not mandatory.

The work presented in [Zheng and Xie 2010] uses the co-location of places con-
sidering human behavior. Basically, the proposal is to identify locals where objects stayed
over a given time and, to find correlations among these places. The proposal uses both
travel experience of a set of users, and the sequence that locations have been visited. in
order to investigate the location correlation on a set of user-generated GPS trajectories.
A set of records that store the position of objects over time represents the trajectories of
objects. By using measures of distance and time, stay ponts may be identified for each
trajectory. A stay point is a region where an object remains for a minimum time interval.
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The algorithm identifies stay points for each trajectory of the set, and reveals the move-
ment pattern between them. Thus, the local correlation is established considering human
behavior.

A proposal to find periodic behaviors for moving objects was presented in
[Li et al. 2010]. The algorithm sues the location of the objects in order to mine patterns
of movement. The proposal assumes the receipt of data in the traditional format of trajec-
tories: space and time representing the positions of objects. A sequence of those records
is named as location sequence. The proposed algorithm considers the existence of refer-
ence spots, that are dense areas visited frequently during the movement, into a location
sequence. The periodic movement is represented by a probability of a given object is at a
reference spot at a timestamp.

The previous works could be used to identify the different types of co-location
patterns into a set of several trajectories. However, none of them consider a co-location
pattern composed of different characteristics of trajectories. Besides, the generation of co-
location sequences along the time, is not considered by the previous proposals. Therefore,
the main contributions of this paper in relation to existing works include:

a) We present a trajectory co-location pattern mining method that generates every
co-location pattern based on different characteristics of trajectories (e.g. speed, accelera-
tion, density of presence, etc), while existing works in general consider a simple measure
like distance between the objects. For example, one co-location pattern may occur in re-
gions with similar speed and acceleration, while another co-location pattern may occur in
regions with similar densitiy of presence or similar direction change.

b) The main contribution of our work is that from a set of co-location patterns, we
generate sequences of co-locations in time (in other words sequences of events) that cause
a pattern event called fact or target event. For instance, a sequence of co-locations A, B
and C will generate a target fact X, where for instance A is a co-location of disacceleration
and low density of presence, B is a co-location of low speed and high density of presence,
C is a co-location of low speed and low acceleration and X is the resultant event/fact
caused by the three previous co-locations, having speed zero and acceleration zero, named
traffic jam.

c) We consider a set of spatial and non-spatial properties of trajectories to generate
co-location patterns. These properties must be co-located in space and time, use the
concept of time window.

The current proposal considers the work presented in [Braz 2008], where the au-
thors discuss the possibility of usage of the data mining techniques to reveal knowledge
in a large data volume of trajectories.

2.1. Scope and Outline
The scope of this paper is limited to the discovery of spatio-temporal co-location patterns
in trajectories. More specifically, we find sequences of local co-location patterns that lead
to a given global co-location pattern.

The remaining of the paper is organized as follows: Section 2 presents the basic
concepts and definitions. Section 3 presents the proposed algorithm. Section 4 presents
the experiments with synthetic and real trajectory data and, finally, section 5 concludes
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the paper.

3. Basic Concepts and Definitions
In this section we present a set of basic concepts and definitions that are necessary to
understand the paper. The most basic definition is a trajectory.

Definition 3.1 Trajectory: A trajectory is a set of (tid, x, y, t), where tid is the identifier

of the moving object, x and y are the spatial position at time t.

In this work we consider that the trajectories are located in a spatio temporal area,
and this area is split in time windows, similar to the idea proposed in [Cao et al. 2006].

Definition 3.2 Time Window: A time window w is the smallest spatio-temporal area in

which the space is divided.

Considering that each time window represents the smallest spatio-temporal area,
every subarea has a set of characteristics called properties. For example, the average

speed property, represents a characteristic of movement of a set of trajectories crossing
the time window.

Definition 3.3 Property: A property p is the smallest item / characteristic of a time win-

dow. A set of properties p is given as P = {p1, p2, ..., pn}.

The properties low average speed and small traveled distance, for instance, could
characterize an event, a traffic jam. A set of one or more properties characterize a candi-
date set of properties for a local co-location pattern.

Definition 3.4 Candidate local co-location: A Candidate local co-location c is a subset

of P , such that c = {p
i

, p

i+1, ..., pi+m

}, where 0 <= i and (i+m) <= n

Only candidates that occur frequently, in different time-windows, i.e.; more times
than a given number or percentage, will be analyzed. Those candidates, that are frequent,
are named local co-locations. By looking our example in Figure1, A, B, and C could be
candidate local co-locations. When a candidate is frequent, it occurs more than a number
of times, and this minimal number is called minSup.

Definition 3.5 Local Co-location: A local co-location l is a candidate co-location c,

such that l = {p
i

, p

i+1, ..., pi+m

}, where 0 <= i and (i + m) < n, and the proportion

of trajectories which contain c, in a given time window, is greater than a minimum value,

this value is named support.

A sequence of local co-locations, characterized by a set of properties, will result
in a Global co-location. A global co-location represents the occurrence of an event.

Definition 3.6 Global Co-location: A Global co-location g is the sequence of local co-

locations l, such that g = l

j

, l

j+1, ..., lk, where k is the number of local co-locations that

compose g.

Local co-locations will be searched after the target event has been defined. For
instance, when a traffic jam is identified, previous local co-locations are computed in
order to find the groups of trajectory properties that frequently occur together, before the
global event is formed (global event in this example is the traffic jam). For discovering
the global event, we look at a target time window.
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Definition 3.7 Target time window: A Target time window (W ) is the time window in

which the occurrence of a Global co-location g will be searched.

The goal of this work is to present a method to identify the evolution of a subset of
properties along the time, where every set of properties characterizes a local co-location.
The result of this evolution is the global co-location. This evolution happens along the
time, starting at a time (t� i), and finishing at time t, as shown in the example in Figure1
where one global co-location X happens at time window t. That global co-location (X)
is composed by a sequence of local co-locations {A,B,C}, occurring at time windows
{t� 3, t� 2, t� 1} respectively.

4. T-COLOC: an algorithm for Trajectory Sequential Co-Location Mining
In this section we present the T-Coloc algorithm. The algorithm takes as input a set of
trajectories T , the Target time window W where the global co-location occurs, the number
of time windows 4w, where the local co-locations will be searched, and the minimum
support ↵ to validate the co-location patterns.

Algorithm 1 T-Coloc Algorithm
1: Input:
2: T : set of trajectories
3: W : the Target Time window
4: 4w : number of time windows
5: ↵ : minimum support for co-location patterns
6:
7: Output:
8: L: A Global co-location
9:

10: Method:
11: //Generate the Global co-location g related to the event occurring at Target Time Window W .
12: g = GENcolocation(T,W,↵)
13:
14: //Generate local co-locations l related to each time window
15: for Each Time Window (�) in (w-1, w-2, ... w-4w) do
16: L = GENcolocation(T,�,↵)
17: Add l to L
18: end for
19: Add g to L
20: return L

The algorithm has two main steps. The first one is to find the co-location pattern
that represents the event occurring at the target time window t (line 12). The Global
co-location g related to the event occurring at the Target Time Window W is generated
with the method GENcolocation (detailed in algorithm 2). For generating the global co-
location, this method takes as input the set of trajectories (T ) at time window (W ), the
set of properties (P ) and the value (↵) of minimum support for co-location patterns. The
output of this is the Global co-location G.

In the second step we have to find the sequence of local co-locations l in each time
window. This sequence is defined in the loop (line 15), by starting at the time window
with the lowest time, therefore keeping the sequence of the local co-locations in time. For
each time window (w), the algorithm generates local co-locations l also using the method
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GENcolocation (line 16). Each local co-location is added to the set L (line 17), in the
temporal order to build the sequence of local co-locations along the time interval. Finally,
after computing the sequence of local co-locations, the last step is to add to the set of local
co-locations L, the global co-location g (line 19).

Algorithm 2 GENcolocation(PT,w,↵)
1: Output:
2: l: Local co-locations related to the time window �.
3:
4: Method:
5: j = 1 // index of local co-locations
6: Generate the set of candidate local co-locations cj .
7: lj = ;
8: repeat
9: for Each candidate local co-location cj do

10: Count the proportion (rc) of trajectories which contain cj

11: if rc � ↵ then
12: lj = lj [ cj

13: end if
14: end for
15: j = j + 1
16: Generate the set of candidate local co-locations cj
17: until cj 6= ;
18: return l

The method shown in algorithm 2 is the GENcolocation. This method generates
the co-locations for each time window, including the global co-location at target time
window W . For generating local co-locations, this method receives as parameters the
set (T ) of trajectories, the trajectory properties P , the time window (w) and a value of
minimum support (↵), in order to check the frequency of co-location in the specified time
window. The first step is to find the subset of properties P of the trajectories occurring
at the time window w (line 6). The method generates the set of candidate co-locations c

j

(line6), where j represents the size of the candidate co-location. For example, suppose
{a, b, c, d} represent the set of properties, this is the set of candidate co-locations with size
1 (c1). This candidate generation can be done by any of the existing well known frequent
pattern mining methods, as Apriori [Agrawal and Srikant 1995] or the closed frequent
itemset approaches that are more efficient and generate less candidates [Zaki 2001].

For each candidate co-location c, the method computes the proportion of trajecto-
ries (in time window �) which contain that candidate co-location (line 9). The candidate
co-location with proportion r

c

of the trajectories above minsupport (r
c

� ↵) (line 11), will
be associated to the sequence of local co-locations l (lines 12). The loop will be executed
for all combination of properties in the candidate c

j

. Thereafter, the value of j will be
increased in 1 in order to identify the next level of co-locations (line 15). With j � 1 the
set of candidates represent the pairwise combination to generate the set of candidate co-
locations with size 2 (c2), as ab;ac;ad;bc;bd;cd, and abc;abd;bcd represent the candidate
with size 3 (c3) (line 16). The output will be the last valid sequence of local co-locations
defined in l (line 18).
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5. Experiments and Evaluation

Two datasets were considered to evaluate the algorithm: a synthetic and a real dataset. The
first one presents a previously defined environment to simulate a traffic jam occurrence.
The second dataset has real car trajectories of the city of Rio de Janeiro.

5.1. Discretization

It is well known that for data mining and knowledge discovery the user may need to per-
form the discovery process several times, and therefore to discretize the data at different
granularities [Han 1995]. In trajectories, this problem increases because the informa-
tion of space and time has to be discretized [Bogorny et al. 2009]. All properties like
speed, acceleration, distance, have to be discretized in intervals. Without discretization
or generalization of the data, no patterns may be found. Therefore, we performed some
experiments with different discretizations of trajectory properties that will be detailed in
the following.

5.2. Experiments with the Synthetic Dataset

We have generated a synthetic dataset using Brinkhoff - Trajectory Generator

[Brinkhoff 2000]. The dataset simulates the occurrence of several traffic jam phenom-
ena. The dataset was generated based on the road network of the City of Oldenburg,
which contains 6105 nodes and 7035 edges, having 73520 Moving Objects traveling on
the network, with a total of 657281 Points representing the number of trajectory points.

We defined a spatial area to evaluate the algorithm, and considered on this dataset,
the following properties (p) in the experiment: Time (representing the time taken by
trajectories into a time window), Presence (number of trajectories), Traveled Distance

(representing the traveled distance by trajectories into a time window), Speed and Accel-

eration.

In this experiment, we considered 10 different time windows (w): [0-1],[1-2],[2-
3],[3-4],[4-5],[5-6],[6-7],[7-8],[8-9],[9-10]. We have simulated an occurrence of Traffic
Jam (Global co-location - G) at time window 7 (target time window - w). The simulation
considers that the traffic jam event starts at time window 4, evolves along the time and, at
time window 7, it is totally formed.

The goal is to verify whether the algorithm is able to identify the global co-location
(G) at time window 7 as well as to discover how this event starts and evolves along the
time before time window 7. We considered a support of 0.70 for the local co-locations (l),
i.e. at least 70% of the trajectories in every time window must have the same property of
time, presence, etc, to be consider a valid co-location pattern. Each local co-location rep-
resents characteristics of a set of trajectories crossing the time window. Table 1 presents
the local co-locations obtained with this dataset.

Table 1. Co-locations - Synthetic Dataset

Time Window Co-location
4 time 14 + distance 6 + acceleration 6 + presence 2 + speed 3
5 time 16 + distance 4 + acceleration 2 + presence 4 + speed 2
6 time 18 + distance 2 + acceleration 2 + presence 6 + speed 1
7 time 19 + distance 0 + acceleration 0 + presence 7 + speed 0

693



The results clearly present the evolution of the traffic jam phenomenon along time
windows. The emphasized area of the Table 1 presents the occurrence of a traffic jam - the
global co-location - where speed, distance and acceleration became zero with a presence
of 7 trajectories.

Figure 2. Time Window x Properties - Synthetic Dataset

At time window 4, the time value is at level 14 (time 14), meanwhile at time
window 7, the same property is 19. Therefore, the time spent by set of trajectories, in
the same spatial area, increased along time. An inverse behavior happens considering
the distance attribute: the traveled distance decreases along the time. The same behavior
happen with the properties acceleration and speed, that decrease significantly, reaching
zero at time window 7. Finally, the number of distinct trajectories (property presence)
in the same area increases along the time. The different local co-locations obtained at
time windows 4,5 and 6 represent a classical evolution of the global phenomenon at time
window 7. Figure 2 presents this behavior through the property evolution, where time
duration and presence increase, while all other properties decrease at the last time window.

5.3. Experiments with Real Dataset - Rio de Janeiro
In this experiment we considered a real dataset representing the movement of 100 different
car trajectories in the city of Rio de Janeiro (Brazil). Every car had the objective to cross
the city at different days and times, equipped with a GPS device colleting points every
second. The goal was to find low speed regions and traffic jams in the city. Figure 3
presents a visualization of those trajectories.

In order to execute this experiment we considered time windows of size 5 minutes,
and similar properties of the trajectories as the previous experiment: acceleration, time,
distance and speed. Only the attribute presence was not considered, because this set of
trajectories was produced by the same object, but in different days, not having groups of
trajectories moving together in time. To find low speed regions in these trajectories we
applied the algorithm CB-SMOT [Palma et al. 2008], which is a speed-based clustering
algorithm. This algorithm discovered the Global event such that we can evaluate our al-
gorithm. Starting from the global event found with CB-SMOT, we expanded that regions
in large rectangles, show in Figure 3.

Having done this, we use these rectangles as the areas to be analyzed and split
these rectangles in time windows, to discovery the trajectory property change before re-
sulting in the low speed region. We performed several experiments, and show in this paper
that one performed on rectangle 6 in Figure 3.
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Figure 3. Rio de Janeiro - Trajectories - Rectangles

The discretization intervals of this experiment are presented in Table 2. The at-
tribute acceleration was discretized in three intervals: {-1, 0, 1}, where -1 is deceleration,
0 represents stable movement and 1 is acceleration. The continuous properties of speed

and distance were discretized in eigth intervals. Table 2 presents these intervals.

Table 2. Discretization 1

Attribute Intervals Discretization Intervals
Acceleration [-1, -1],[-1, 1],[1, +1] 3

Distance [0,10],[11,20],[21,30],...,[61,70],[71,80] 8
Speed [0,15],[16,31],[32,47],...,[80,95],[96,111] 7

Table 3 presents the results obtained in this experiment. There are 9 different
timewindows into the interval between timewindow identifier 01 and 09. Each of them
represent a 5 minutes interval. The emphasized area of the table presents the occurrence
of the Global co-location. The previous rows present the sequence of Local co-locations
that result in the occurrence of the Global co-location. It is possible to identify that the
environment remains almost stable between time windows 01 and 03 (15 minutes). There-
after, during the next 15 minutes (time windows 05, 05 and 06), local co-locations present
an environment of decrease of acceleration, distance and speed properties. This behavior
suggests that the traffic jam phenomenon is beginning. Finally, at time windows 07, 08
and 09, the traffic jam phenomenon is totally configured and remains stable.

The same behavior of the environment cab identified by Figure 4. It is possible
to note that the values of properties speed and distance decrease along time. After time
window 06, the environment remains stable, configuring an environment of traffic jam.
Therefore, the co-locations patterns allow to identify the process of occurrence of a traffic
jam phenomenon.

Table 3. Co-locations

Time Window Co-location Type
01 acceleration 1 + distance 3 + speed 6 local � c1
02 acceleration 1 + distance 3 + speed 1 local � c2
03 acceleration 1 + distance 3 + speed 1 local � c3
04 acceleration 1 + distance 2 + speed 1 local � c4
05 acceleration 1 + distance 0 + speed 1 local � c5
06 acceleration 0 + distance 0 + speed 0 local � c6
07 acceleration 0 + distance 0 + speed 0 local � c7
08 acceleration 0 + distance 0 + speed 0 local � c8
09 acceleration 0 + distance 0 + speed 0 global
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Figure 4. Time Window x Properties - Real Dataset

6. Conclusions
The development of the mobile technology contributes to generate large data volumes. A
trajectory of a mobile object can be represented by a ordered sequence of spatial posi-
tions. The analysis of these data volumes allows to understand the behavior of a set of
objects into a spatio-temporal area. There are some works introducing technics to identify
movement patterns of a set of moving objects considering trajectories data. In this work
we introduced a method to identify trajectory co-location patterns by using different char-
acteristics of trajectories. Besides, the method allows identify sequences of co-locations
in time that cause an event called target event.

We conduced two different experiments: the first one considering a synthetic
dataset and, another considering a real dataset. For the two experiments the goal was
the same: considering a target event composed by a combination of different property
values (speed, distance, presence, time etc), identify the sequence of co-locations that
generate the target event.

The results obtained in the two experiments suggest that the method can identify
the sequence of co-location patterns that cause the target event. These patterns can be
useful in order to anticipate the occurrence of an event (e.g. traffic jam) considering the
previous behavior of a set of properties (e.g. distance, speed, acceleration, presence) into
a time interval (e.g. 5 minutes). This knowledge could be useful for a traffic management
system. Instead of present a description of the environment for a given time, the method
allows to understand the formation of the event. Understanding the evolution the event,
it is possible to anticipate actions and strategies in order to prevent the occurrence of the
phenomenon.

Future research involves the development of OLAP operators for use in environ-
ments of trajectory data warehouses. These operators allow the identification and agre-
gation of trajectories with some level of similarity, considering a spatial-temporal area.
Moreover, the development of an information system acting on a database or trajectory
data warehouse, also is being developed.
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