
Co-Occurrence of Design Patterns and Bad Smells in 
Software Systems: An Exploratory Study 

Bruno Cardoso 
Software Engineering Lab (LabSoft)  

Federal University of Minas Gerais (UFMG) 
Belo Horizonte, MG - Brazil  
brunosac@dcc.ufmg.br 

Eduardo Figueiredo 
Software Engineering Lab (LabSoft)  

Federal University of Minas Gerais (UFMG) 
Belo Horizonte, MG - Brazil 

figueiredo@dcc.ufmg.br 
   
ABSTRACT 
A design pattern is a general reusable solution to a recurring 
problem in software design. Bad smells are symptoms that may 
indicate something wrong in the system design or code. 
Therefore, design patterns and bad smells represent antagonistic 
structures. They are subject of recurring research and typically 
appear in software systems. Although design patterns represent 
good design, their use is often inadequate because their 
implementation is not always trivial or they may be unnecessarily 
employed. The inadequate use of design patterns may lead to a 
bad smell. Therefore, this paper performs an exploratory study in 
order to identify instances of co-occurrences of design patterns 
and bad smells. This study is performed over five systems and 
discovers some co-occurrences between design patterns and bad 
smells. For instance, we observed the co-occurrences of 
Command with God Class and Template Method with Duplicated 
Code. The results of this study make it possible to understand in 
which situations design patterns are misused or overused and 
establish guidelines for their better use. 

Categories and Subject Descriptors 
[Software systems design]: Design of software systems.  

General Terms 
Design. 

Keywords 
Design Patterns, Bad Smells. 

1. INTRODUCTION 
A design pattern is a general reusable solution to a recurring 
problem in software design [4]. They are descriptions of 
communicating objects and classes that need to be customized to 
solve a general design problem in a particular context. Therefore, 
a design pattern is a description or template of how to solve a 
problem that often appears in different systems. The Gang-of-
Four (GoF) book [4] of design patterns has highly influenced the 
field of software engineering and it is regarded as an important 
source for object-oriented design theory and practice. The GoF 
book is organized as a catalogue of 23 design patterns. 

On the other hand, bad smells are symptoms or structural 
characteristics in a region of code that may suggest the presence 
of a deeper problem in the system design or code [14]. One of the 
main references on this topic is the Fowler’s book [14] which has 
catalogued 22 bad smells. In this book [14], bad smells are 
defined as code fragments that need refactoring. Other authors 
have also contributed to expand the set of bad smells [9] [15]. 
Kerievsky [9] emphasizes the use of design patterns as a 
refactoring technique to remove bad smells. Lanza and Marinescu 
[15] presented a catalog of bad smells called "disharmonies". 

In a previous work [1], we performed a systematic literature 
review in order to understand how studies investigate these two 
topics, design patterns and bad smells, together. Our results 
showed that, in general, studies have a narrow view concerning 
the relation between these concepts. Most of them focus on 
refactoring opportunities. Among these, some tools [3][7][15][17] 
have been proposed to identify code fragments that can be 
refactored to patterns. Other studies [2][6] establish a structural 
relationship between the terms design pattern and bad smell. In 
addition, there are reported cases in the literature where the use of 
design patterns may not always be the best option and the wrong 
use of a design pattern can even introduce bad smells in code [19] 
[25]. For instance, McNatt and Bieman [25] assessed the positive 
and negative effects of design patterns on maintainability, 
factorability, and reusability. Wendorff [19] performed a study 
and identified some questionable use of design patterns, like 
Proxy, Observer, Bridge, and Command. 

Despite the definition of design patterns and bad smells are 
antagonistic in software engineering filed, the inappropriate use of 
design patterns can cause bad smells in some classes or methods 
of the system. Therefore, we perform in this paper an exploratory 
study in order to identify instances of co-occurrences between 
design patterns and bad smells. In this study, we run a design 
pattern detection tool and two bad smell detection tools over five 
systems. This way, it was possible to analyze in which situations 
design patterns and bad smells co-occur. As far as we are 
concerned, this co-occurrence has not been deeply investigated in 
the software engineering literature and there are only a few 
references concerning this topic [5][18]. 

Results of this study indicate some correlations between design 
patterns and bad smells. We rely on association rules [20][21] to 
indicate how strong a relation between a design pattern and a bad 
smell is. For instance, association rules indicate how often Factory 
Method and Feature Envy are present in a class at same time. Of 
course, it is necessary to analyze in which situations these 
associations are due to misuse of Factory Method. Based on 
detaching values of association rules, we analyzed two situations 
that called our attention: co-occurrences of Command and God 
Class and co-occurrence of Template Method and Duplicated 
Code. The results provided by this exploratory study aim to extent 
knowledge on inadequate use of design patterns and to understand 
why design patterns and bad smells may co-occur. We aim to 
establish guidelines for better employment of the GoF patterns. 

While this section introduced this study, the rest of this paper is 
organized as follows. Section 2 details the main concepts of this 
study and presents the detection tools used. Section 3 explains the 
settings of this exploratory study by detailing the decisions we 
made during its execution. Section 4 presents the main results 
obtained and aims at explaining such results. Section 5 discuss 
some related work. Section 6 presents some threats to the study 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

347



validity while Section 7 summarizes the conclusions obtained and 
suggests directions for future work. 

2. BACKGROUND 
This section revisits the concepts of design patterns (Section 2.1) 
and bad smells (Section 2.3). In addition, it presents the tools used 
for detect them. 

2.1 Design Patterns 
Design patterns were presented by Gamma et. al. [4] in 1994 as 
“descriptions of communicating objects and classes that are 
customized to solve a general design problem in a particular 
context” and, since then, their use has become increasingly 

popular. The purpose of design patterns is to capture design 
knowledge in a way that it can be easily reused by providing 
tested and proven correct solution. 

Design patterns aim at reducing coupling and improving 
flexibility within software systems. As an example of that, many 
of these patterns postpone decisions and actions until runtime 
[12], which makes code more flexible and this way it is easier to 
add new functionality without deep changing in existing code. 
They also make it easier to think clearly about a design and 
encourage the use of “best practices” [12]. Also, by providing a 
common terminology, design patterns improve communication 
among designers and developers [11]. By using well-known and 
well-understood concepts, it eases code readability and the 
software system design in general becomes better understood and 
easier to maintain. For instance, a designer is better understood by 
saying that the Decorator pattern was employed in the system [4] 
than saying that some extra responsibilities need to be 
dynamically added to an object. To illustrate these ideas, we 
briefly explain two design patterns that are common in software 
systems and used in this study: Command and Template Method.  

The Command pattern has the intent of encapsulating a request as 
an object; thereby letting the designer parameterizes clients with 
different requests, queue or log requests, and supports undo 
operations [4]. In order to implement this pattern, it is necessary 
to create an interface that is the abstract command. Concrete 
commands implement this interface. The client instantiates a 
concrete command and sets an object of the invoker class, which 
queues the requests for this command. By the time, this command 
is executed it is done by an object of the receiver class. 

 

Figure 1. Partial class diagram of the Command 
pattern in WebMail 

Command is used when it is necessary to issue requests to objects 
without knowing anything about the operation that is requested or 
the receiver of the request [4]. It is useful when supporting 
activities that require the execution of a series of commands, as 
the orders of customers in a restaurant. This allows that the 

requisitions are executed in different moments in time, according 
to availability. The command objects can be held in a queue and 
processed sequentially, as in a transaction.  

Figure 1 shows an example of a real instance of this pattern 
detected in the WebMail system2. In this example, the 
URLHandler is the abstract command and the three classes that 
inherit from it are the concrete commands. The concrete 
commands are linked to the Storage class, which plays the role 
of the receiver in this pattern. In this example, the handleURL() 
method is the classic execute method proposed in the Command 
pattern definition. 

The Template Method pattern defines the skeleton of an algorithm 
in an operation, deferring some steps to client subclasses. This 
pattern lets subclasses redefine certain steps of an algorithm 
without changing the algorithm structure [4]. It aims at solving the 
problem that occurs when two or more different components have 
significant similarities, but snippets of the same method may 
differ. In this case, merely extending a base class or implementing 
an interface is not enough to solve the problem. Another 
alternative is duplicating this method in both classes even though 
they have high similarity. Considering this alternative, if there is a 
change that targets the algorithm, then duplicated effort is 
necessary. 

 

Figure 2. Partial class diagram example of 
Template Method in JHotDraw 

Figure 2 exemplifies the use of the Template Method design 
pattern. This figure shows a partial Class Diagram of a real 
instance of this pattern extracted from the JHotDraw system3. The 
abstract class AbstractAttibuteCompositeFigure defines a 
drawing template method, called drawFigure() that can be 
modified by the specialized classes. As shown in Figure 2, the 
template method is responsible for calling other methods. The 
concrete classes of this example have very similar methods and 
perform similar tasks, as expected in the Template Method use. 
However, considering that they perform some tasks differently, 
the inherited methods that they implement – drawFill() and 
drawStroke() - should be different in order to perform these 
different tasks. Therefore, if a designer does not use a template 
method in this situation, it would be necessary to either duplicate 
all the other methods besides drawFill() and drawStroke() or 
it would not be possible to implement different tasks in the 
concrete classes. 

                                                                 
2 http://webmail-beta.locaweb.com.br/ 
3 http://www.jhotdraw.org/ 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

348



2.2 Design Pattern Detection Tool 
In order to achieve the goals of this exploratory study, we used the 
Design Pattern Detection using Similarity Scoring4 (DPDSS) tool 
[16], which uses the algorithm called Similarity Scoring. This tool 
applies the algorithm Similarity Scoring, in which the modeling is 
performed by using directed graphs that are mapped into square 
matrices [16]. 

Table 1 lists the design patterns that can be detected by the used 
tool, following the same classification used by GoF: by purpose 
and scope. In Table 1, the Command design pattern is shown in 
the second column, which lists the structural patterns, despite it is 
a behavioral one. This happens because the DPDSS tool cannot 
differentiate Object Adapter and Command patterns, putting the 
latter in the group of structural patterns. The same happens with 
Strategy and State patterns, whose instances cannot be 
differentiated by the tool. 

Another relevant issue is the fact that Table 1 displays not only 
the default structural Proxy design pattern, but also a variant 
pattern called Proxy 2 [16]. Proxy 2 combines both Proxy and 
Decorator. In order to simplify the analysis, when this tool finds 
an instance of the Proxy 2 pattern, we considered it is an instance 
of the default Proxy pattern. 

Considering the DPDSS tool limitations and also this 
simplification about the Proxy pattern variation, a total of eleven 
design patterns could be detected and analyzed in this exploratory 
study. We choose this tool because, besides the variety of design 
patterns that it is able to detect, it has a friendly user interface and 
it is very effective in terms of time and memory consuming. This 
effectiveness becomes even more relevant because according to 
the authors the tool algorithm seeks not only the basic structure of 
the design patterns, but it also seeks for modified pattern 
instances. 

2.3 Bad Smells 
Bad smells are symptoms or structural characteristics in a region 
of code that may suggest the presence of a deeper problem in the 
system design or code [14]. They are defined as code fragments 
that need refactoring [14]. Although bad smells can harm the 
development, maintenance, and evolution of the software system 
[26], but they are not necessarily bugs since they are not incorrect 
implementations. They do not even necessarily harm the proper 
functioning of the system. Some long methods, for instance, are 
just fine [14]. It is necessary to look deeper to see if there is an 
underlying problem there since bad smells are not inherently bad 
on their own. They are often an indicator of a problem rather than 
the problem itself. 

Bad smells receive different classifications and naming schema in 
papers, such as bad smells, code smells, and design smells. Some 

                                                                 
4 http://java.uom.gr/~nikos/pattern-detection.html 

authors treat these classifications interchangeably, while others 
establish minor differences among them. Another related concept 
is anti pattern which is understood and defined in different ways 
in the literature [23] [24]. For example, Dodani [13] considers that 
if a design pattern has the best solution to solve a problem, then 
the anti pattern presents the lesson learned. 

Fowler [14] catalogued 22 bad smells and indicated appropriate 
refactoring techniques for each of them. Though this is the main 
reference of bad smells, there are other catalogues of bad smells in 
the literature [9] [15]. For instance, Kerievsky [9] proposes a new 
set of bad smells, giving emphasis to the use of design patterns as 
a refactoring technique to remove them. In some sense, Kerievsky 
extends the set of bad smells cataloged by Fowler [14]. Other 
authors have proposed a new set of bad smells, such as Lanza and 
Marinescu [15], who presented a catalog of bad smells called 
"disharmonies". In addition to the definitions of the bad smells, 
the authors proposed detection strategies and recommendations 
for their identification and correction. However, 6 out of 11 
disharmonies are similar to those bad smells listed by Fowler [14]. 

Two common bad smells investigated in this study are God Class 
and Duplicated Code [14]. God class [15] performs too much 
work on its own, delegating only minor details to a set of trivial 
classes and using the data from other classes. This has a negative 
impact on the reusability and the understandability of this part of 
the system. God Class is similar to the Fowler’s Large Class bad 
smell [14]. In this study these terms are used interchangeably. 
Therefore, a God Class is the term used to describe a certain type 
of classes which “know too much or do too much”. It is also 

common to refer as God classes the ones that control too much. 
Often a God Class arises by accident as functionalities are 
incrementally added to a central class over the course of the 
system evolution. 

Duplicated code [14] is the most pervasive and pungent bad smell 
in software. It tends to be either explicit or subtle. Explicit 
duplication exists in identical code, while subtle duplication exists 
in structures or processing steps that are outwardly different, yet 
essentially the same. 

2.4 Bad Smell Detection Tools 
We used two tools for detecting bad smells, in order to identify a 
larger amount of the bad smells proposed by Fowler. The tools 
are: JDeodorant5, which detects four bad smells; and PMD6, 
which also detects four bad smells. JDeodorant [17] was 
developed as a plug-in for the Eclipse IDE and it is able to 
automatically detect four different kinds of bad smells by using 
software metrics. This tool applies automatic refactoring, since it 
provides suggestions to solve the bad smells that it detects. PMD 
[22] is also a plug-in installed on the Eclipse IDE. It performs 
detection through the use of simple metrics such as number of 

                                                                 
5 http://www.jdeodorant.com/ 
6 http://pmd.sourceforge.net/ 

Table 1. Design Patterns detected by the tool DPDSS 

  Purpose 
  Creational Structural Behavioral 

Scope 

Class Factory Method  Template Method 

Object 
Prototype 
Singleton 

Object. Adapter / Command 
Composite 
Decorator 

Proxy 
Proxy 2 

Observer 
Strategy/State 

Visitor 

 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

349



lines of code. This tool offers the possibility of manual 
configuration of the parameters for the metrics used in automatic 
detection. Besides the bad smells detected by this tool, it is also 
able to identify a large variety of other programming flaws. 

Table 2 lists the bad smells detected by JDeodorant and PMD. In 
this table, only the bad smells that are detected by at least one of 
the tools are shown. This way, as it can be observed in Table 2, a 
total of six bad smells, out of 22 listed by Fowler, are detected 
combining both tools. 

We choose these tools because they are both Eclipse plug-ins, 
which make them easy to install and configure. Besides that, they 
are well-known both in industry and in the academia and they are 
effective in terms of time. We also choose two tools because since 
detection tools present a high rate of failure, the bad smells that 
are detected by both tools, God Class and Long Method, are 
considered to exist in a system only if both tools detect the same 
bad smell instance. This definition makes the results for these two 
bad smells more reliable. 

Table 2. Bad Smells detected by each tool 

 Tool 
Bad Smell JDeodorant PMD 

Duplicatedd Code - X 
Long Method X X 

Large/God Class X X 
Long Parameter List - X 

Feature Envy X - 
Switch Statements X - 

Total 4 4 
 

3. STUDY SETTINGS 
This section presents the settings of the exploratory study, which 
investigates the co-occurrence of design patterns and bad smells. 
Here we present the systems we used to collect the data to be 
analyzed, the association rules, which are used as a starting point 
to understand the results and the general procedures of this study. 

3.1 Research Questions 
In this study we aim at answering the following research 
questions: 

RQ1: Do design patterns may co-occur with bad smells? If so, 
which patterns are these? 
RQ2: If there are co-occurrences between design patterns and bad 
smells, do they happen due to the overuse or the misuse of design 
patterns? 

3.2 Target Systems 
We use a design pattern detection tool and two bad smells 
detection tools to analyze twelve systems available on the 
qualitas.corpus7 dataset. However, seven out of these twelve 
systems did not present relevant amount of design patterns or bad 
smells. Hence, they could not be used in the analysis of this study. 
The five remaining systems that were used are listed in Table 3. 

Table 3 presents some information about the five systems used in 
this study. They are ordered according to the number of lines of 
code. Besides the name and version of the systems, Table 3 
presents some size metrics. As can be seen in this table, AspectJ is 
the one with the highest number of lines of code, while WebMail 

                                                                 
7 http://aserg.labsoft.dcc.ufmg.br/qualitas.class/ 

has the smallest values for all metrics. By observing these metrics 
we consider them medium size software systems. 

Table 3. Target-systems 

System Version 
# of 

classes 
# of 

packages 
# Lines 
of Code 

AspectJ 1.6.9 3600 144 501,762 
Hibernate 4.2.0 7119 856 431,693 
JHotDraw 7.5.1 765 66 79,672 
Velocity 1.6.4 444 25 26,854 
WebMail 0.7.10 115 19 10,147 

 

3.3 Association Rules 
An important concept that is used to analyze the results of this 
study is association rules [20][21]. These rules are combinations 
of items that occur in a dataset. In the context of this study, these 
rules represent the co-occurrence of two kinds of items: design 
patterns and bad smells. This way, four measures were calculated 
in order to understand the results: Support [20], Confidence [20], 
Lift [21] and Conviction [21]. To calculate these measures, it is 
considered that, in each system, each class is a transaction. It is 
then verified if the transaction (i) contains an instance of a bad 
smell and (ii) contains an instance of a design pattern. Each bad 
smell and each design pattern analyzed is called itemset. 

The Support of an itemset is the proportion of transactions which 
contains this itemset, showing its importance and significance 
[20]. For instance, if a system has 100 classes and 10 of these 
classes present the bad smell Feature Envy, it means that, in this 
system, the Support of Feature Envy is 10%. For instance, the 
Support of the association Factory Method and God Class shows 
the proportion of transactions which contains both Factory 
Method and God Class. Therefore, the Support is a measure of the 
frequency of an item in an association. 

In order to understand the concept of Confidence [20] it is 
necessary to know the naming conventions used in association 
rules, which are antecedent and consequent. In the context of this 
study, we consider Design Patterns the antecedent and Bad Smells 
the consequent. Confidence is the probability of seeing the rule's 
consequent under the condition that the transactions contain the 
antecedent. In other words, it is the ration between the Support of 
the association and the Support of the antecedent. The Confidence 
can be calculated by Equation 1. The value of Confidence tends to 
be higher if the consequent has a high support, because this way, 
it is more likely that the Support of the association is also high. 

                                             

Lift measures how many times more often a design pattern and a 
bad smell occur together than expected if they where statistically 
independent [21]. This measure can be calculated by Equation 2. 
If the value of Lift for an association rule is 1, then the itemsets of 
this association are independent. On the other hand, the higher 
than 1 for this measure, the more interesting the rule is, because it 
means that the antecedent lifted the consequent in a higher rate. 
This means, in the scope of this study, that a bad smell is more 
frequent with a determined design pattern. 

                                              

Conviction is an alternative to Confidence since the latter was 
found to not capture direction of associations adequately. 
Conviction is calculated by the formula below [21]. Conviction 
presents three interesting characteristics: (i) it considers both the 
Support of the antecedent and the Support of the consequent; (ii) 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

350



it shows if there is a complete independence between the 
antecedent and the consequent when the result is 1, and (iii) when 
the antecedent never appears without the consequent (confidence 
of 100%) the value of Conviction is infinite. 

                            
                 

               
 

3.4 Procedures 
In order to perform this exploratory study, we followed a set of 
procedures, divided in three general phases. Figure 3 shows the 
flow of these phases, which are Selection and Tuning, Execution 
and Analysis. After the Execution phase, we persisted data in a 
relational database in order to make our analysis simpler. The first 
phase is the Selection and Tuning. It consists in choosing the 
systems to be analyzed within the study and choosing the 
detection tools that bring us relevant results. Besides choosing the 
tools it was necessary to configure them. Therefore, in 
JDeodorant, we set the Minimum Number of Statements 
parameter to 3 and, in PMD, we set the value of Parameter List to 
10 and Method Length to 100. The other parameters of these tools 
remained with the default values. This phase is very important 
since the final results of the study depend of these choices. 

 

Figure 3. Procedures flow 

The second phase is Execution. The first procedure of this phase 
is to run each tool for each of the chosen systems and then collect 
the output of each detection tool for each system. At this point, we 
have many output files and each tool has an output format. 
Therefore, it was necessary to develop a routine that accept the 
outputs of each tool as input and save the results in the database. 
This database schema was created with a single table called 
“Class”. It has 19 columns and they are all Booleans, except two: 

the class name and the system it belongs to. The other 17 columns 
indicate if a class has any of the eleven possible detected patterns 
or any of the six possible detected bad smells. So far, we have the 
information of which design patterns and which bad smells each 
class of the five systems have. This information makes it possible 
to calculate association rules for each of the 66 associations. This 
number of associations is obtained by multiplying the 11 
detectable design patterns by the 6 detectable bad smells. 

The last phase is split in two steps: the association rule analysis 
and source code analysis. At first, we used the association rules as 
a starting point to establish relations between design patterns and 
a bad smells. Based on interesting values, we focused our 
investigation on the analysis of the system source code. In this 
second step, we aim to understand deeply how and why design 
patterns and bad smells co-occur. 

4. RESULTS 
As already stated, five investigated systems present relevant 
results and were used in this exploratory study. As explained 
before, for the bad smells God Class and Long Method, it is 
considered an occurrence of them if both detection tools detected 
them in order to make the results more reliable. This definition 
reduced significantly the quantity of God Classes detected in the 
five systems and totally eliminated the occurrences of Long 
Methods, since the tools find different results for this bad smell. 

It is also important to detach that the Support value of any of these 
items is not very high. This is expected since it is not common 
that a system would have many classes related to a great quantity 
of design patterns and bad smells. Therefore, for this study, the 
more important results are based on the analysis of the Conviction 
of an association, and, of course, the understanding of the co-
occurrence that we find. We focus on results for Conviction 
measure between 1.01 and 5, since values that are higher than 5 
are usually obvious. However, considering the context of this 
exploratory study, the upper threshold is not really relevant, since 
an association between a design pattern and a bad smell is rare. 

This way, after calculating the Support, Confidence, Lift and 
Conviction for all the possible associations, the next step of 
analysis is checking the associations that have the value for 
Conviction greater than 1.01. By considering just this threshold, a 
lot of associations were found. However, more important than 
these values is the reason why they happen. At this point, two co-
occurrences called our attention: (i) the co-occurrence of the 
Command design pattern and the God Class bad smell and (ii) the 
co-occurrence of the Template Method design pattern and the 
Duplicated Code bad smell. These cases are discussed in the 
following subsections. 

4.1 Command and God Class 
At first glance, it was not possible to know if the Command 
pattern or the Adapter pattern or even if both patterns co-occur 
with the God Class bad smell, since the DPDSS tool cannot 
differentiate these two patterns. Therefore, we discuss these two 
patterns as a single design pattern. However, after we analyze the 
source code of the systems, we observe that the Command pattern 
co-occurs more frequently with God Class than Adapter does.  

Table 4 shows the values for the {Adapter/Command   God 
Class} association rule in the analyzed systems. The five systems 
present instances of either Adapter or Command. Three out of 
these five systems present the God Class bad smell in one or more 
classes that participate in one of these two patterns. Just Velocity 
does not present any God Class. Although Hibernate presents this 
smell, no God Class co-occurs with a class that participates of an 
Adapter or Command pattern. The other three systems have a 
value for the Conviction measure greater than 1.01. This way, we 
analyzed these co-occurrences in order to better understand them 
and to make possible to determine which of these patterns has 
strong correlation with God Class: Command or Adapter.  

Table 4. Adapter/Command and God Class 
association rules values 

System Support Confidence Lift Conviction 
AspectJ 1,00% 38,71% 22,12 1,60 

Hibernate 0,00% 0,00% 0 0,99 
JHotDraw 1,18% 12,00% 2,48 1,08 
Velocity 0,00% 0,00% 0 1,00 
WebMail 4,35% 35,71% 6,84 1,47 

 

By analyzing the definitions of Command and God Class, it is not 
hard to conclude that a misused implementation of this pattern 
within the system evolution could cause God Class. For instance, 
Figure 4 shows a Class Diagram of an instance of the Command 
pattern identified in the WebMail system. Part of this diagram is 
shown in Figure 1 (Section 2.1). The Storage class plays the role 
of a receiver in this pattern and it is associated to 14 concrete 
commands. The concrete commands are the classes that appear in 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

351



the central part of the diagram in Figure 4. The base command is the URLHandler class and the abstract method is handleURL(). 

 

Figure 4. Example of co-occurrence of Command and God Class

By analyzing the diagram in Figure 4, we can observe that the 
Storage class has some getters and setters. In addition, it has 
many other methods that are responsible for too much work. 
Therefore, it is a God Class, as indicated by the JDeodorant and 
PMD tools. For instance, there are many methods related with 
XML, debugging, configurations, authentication, user profile, etc. 

The Storage class probably became a God Class within the 
development of the WebMail system because it was necessary to 
support a large amount of commands. The names and the code of 
these commands suggest that they do not belong to the same 
concern. Therefore, the best practice in this case would be the 
creation of different Command instances for different concerns; 
e.g., an instance of Command to deal only with XML. Instead of 
mixing up all concerns in a single design pattern, many pattern 
instances would avoid that a class (i.e., Storage) plays the role 
of a God receiver does too much. Therefore, methods of the 
Storage class should be extracted into other classes, which is a 
refactoring recommendation for most God Class [14]. 

4.2 Template Method and Duplicated Code 
Although we could not find many co-occurrences of Template 
Method and Duplicated Code, their existence called our attention 

because one goal of the Template Method design pattern is to 
avoid redundancy and, therefore, to avoid duplicated code. Table 
5 shows the values for the association rule {Template Method   
Duplicated Code} in the analyzed systems. The design pattern 
detection tool identified Template Method instances in JHotDraw 
and Hibernate. However, none of the systems presented many 
instances of this pattern, which made the values of the association 
rule relatively low. Except for WebMail, the other systems present 
many instances of Duplicated Code. 

Table 5. Template Method and Duplicated Code 
association rules values 

System Support Confidence Lift Conviction 
AspectJ 0,00% 0,00% 0 0,92 

Hibernate 0,03% 9,09% 1,29 1,02 
JHotDraw 0,39% 18,75% 1,05 1,02 
Velocity 0,00% 0,00% 0 0,87 
WebMail 0,00% 0,00% 0 0,96 

 

We analyzed the source code of the systems to understand why 
Template Method and Duplicated Code co-occur. Figure 5 shows 
the Class Diagram of one instance of the Template Method pattern 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

352



identified in the JHotDraw system. Figure 2 (Section 2.1) shows 
another instance of the same pattern. The two abstract classes in 
Figure 2 and 5 have both a template method, which are called 
drawFigure() and draw(), respectively. By checking the 
source code of these two methods, we verified that they have the 
same implementation except for one line (copy-paste-
modification). More interesting, these two classes have a super 
class in common and, therefore, they could have inherited this 
implementation from this common super class. However, the 
abstract classes are not the only ones in the hierarchy that present 
Duplicated Code. Subclasses in the same three, such as 
ODGAttributedFigure and SVGAttributedFigure, also 
present Duplicated Code. It is not the goal of this study to criticize 
the design, neither the development of any system, but the 
presence of this bad smell indicates that Template Method pattern 
seems misused over time since one of the achievements of this 
pattern is to eliminate code duplication. 

 

Figure 5. Instance of Template Method and 
Duplicated Code co-occurrence 

5. RELATED WORK 
Although design patterns [4] and bad smells [14] are recurrently 
target of research studies in software engineering [7] [8], a few 
studies portraits the idea of co-occurrence of these concepts. In 
fact, the most well-known and exploited relationship between 
these topics is the use of refactoring techniques in order to change 
a bad situation (i.e., bad smells) into a nice design solution (i.e., 
design patterns) [9]. In a previous study, we performed a 
systematic literature review [1] in order to understand how studies 
relate design patterns and bad smells. Our results showed that, in 
general, studies have a narrow view concerning the relation 
between these concepts. This review found a total of ten studies. 
As expected, most of these studies are related to refactoring to 
design patterns, whereas others establish a structural comparison 
concerning these topics. Only three of the studies found in the 
systematic review mention the co-occurrence of design patterns 
and bad smells [5][10][18], bu they do not focus on this topic. 

Although this systematic review did not find studies focused on 
the co-occurrence of design patterns and bad smells, there are 
reported cases in the software engineering literature where the use 
of design patterns may not always be the best option [19][25]. In 
general, we tend to think that if developers employ cataloged 
design patterns [4], then hypothetically the best solution to solve 
the problem has been used [2] and the best practices are been 
employed. However, this thought is not necessarily true since a 

design pattern may be misused or even overused. This wrong 
employment of a design pattern can even introduce bad smells in 
code. For instance, McNatt and Bieman [25] qualitatively assess 
the coupling of pattern in terms of their effects on maintainability, 
factorability, and reusability. The authors point out that this 
coupling may provide benefits, but also costs to the system. 

Wendorff [19] presents a paper in which design patterns are 
assessed during the reengineering phase. The author shows 
examples of the questionable use of some patterns, like Proxy, 
Observer, Bridge, and Command. The Proxy pattern is considered 
a simple one and, therefore, it is widely employed by beginners, 
who tend to use them freely and inadvertently [19]. One of the 
problems noticed by the author is that Proxy pattern is frequently 
used based on the expectation of future needs for flexibility, 
access control, and performance that never materialize. The author 
[19] also states that some instances of Proxy make the interaction 
of objects complicated and that this pattern usage naturally leads 
to a substantial increase in number of classes and consequently, 
the size and complexity of the software grow considerably. 

The Observer pattern use is justified when it is necessary to 
achieve flexibility and reusability. Wendorff [19] presents 
situations in which it was not necessary to employ this pattern to 
achieve these qualities since the analyzed software system was 
already too simple. Therefore, in this situation, the developer 
implements a complex and expensive functionality in order to 
achieve nonexistent requirements. 

We believe that these questionable uses of design patterns happen 
due to two main reasons. First, excess of engineering, when 
design patterns are employed unnecessarily, making the code 
bigger, more complex and more expensive and also decreasing 
reusability, maintainability and flexibility, which are exactly the 
opposite intent of the GoF patterns. Second, the complexity of 
employing a design pattern properly, since they are not trivial 
structures and Gamma et. al. [4] only provides sample code, 
which are much simpler than the industrial software systems. 

6. THREATS TO VALIDITY 
The fact that this study was not performed in a full controlled 
environment may introduce the main threats to external validity. 
The study was performed using five systems, three detection tools 
and the results were analyzed by authors. 

We analyzed five systems because seven out of the twelve 
systems we chose do not present relevant amount of design 
pattern or bad smell instances. However, after collecting data, we 
concluded that the number of systems is not so important, because 
we have already a lot of information with the five ones we 
investigated. Besides that, we concluded that the size of the 
systems may not be a restriction since, in some cases, we had 
more interesting results with the small systems. 

Concerning the detection tools, we chose DPDSS, JDeodorant and 
PMD mainly because of their facility to use and their 
acknowledgment in academia. As already explained, the bad 
smells that are detected by both JDeodorant and PMD - God Class 
and Long Method - were only accepted when both tools detected 
the same instances. We reinforce that the detection tools were 
used to determine the values for the association rules and these 
values are used as a starting point to guide our analysis and not to 
define the conclusions of this study. The final conclusions of this 
study are based on our analysis of the source code that the 
detection tools indicate co-occurrences between a design pattern 
and bad smell. Although only two researchers analyzed the results 
of this study, all settings of the study - including systems, tools 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

353



information and how we derived the values for the association 
rules - are well documented, which turns this study replicable. 

7. CONCLUSIONS AND FUTURE WORK 
Within this study, we ran a design patterns detection tool and two 
bad smells detection tools in five systems. We identified some 
samples of design pattern misuse and we showed that this misuse 
may promote the arising of bad smells. The cases that called our 
attention the most were the co-occurrences of the design pattern 
Command with the bad smell God Class and the pattern Template 
Method with the bad smell Duplicated Code. We showed how the 
overuse of a single receiver class in the Command pattern for 
different concerns turned this class into a God Class. We showed 
that two implementations of Template Method instead of 
eliminating unnecessary repetition, presented many duplications. 

We used the values for association rules, especially Support and 
Conviction, as a starting point to derive our analysis. These 
association rules were used to analyze how strong a relation 
between a specific design pattern and a bad smell is. This way 
only after calculating these measures, it was made an analysis 
considering the characteristics of the design patterns and the bad 
smells to check whether the association rules make sense. Despite 
the used association rules, the final conclusions of this study were 
derived from our deep analysis of the source code. 

The results of this study showed that it is completely possible that 
the inappropriate employment of a design pattern leads to the 
arising of bad smells, although this consequence seems totally 
aimless. The next step of this work is to analyze other design 
patterns that, due to its misuse, have classes that present bad 
smells. In future work, we intend to replicate this study in an 
enterprise development context, which may provide more data 
and results with higher statistical significance. We also aim at 
defining guidelines that would help developers in the task of 
maintenance of classes that are part of a design pattern, since we 
believe that bad smells does not arises as a consequence of design 
patterns misuse in the first moment. 

8. ACKNOWLEDGEMENTS 
This work was partially supported by CNPq (grant Universal 
485907/2013-5) and FAPEMIG (grant PPM-00382-14). 

9. REFERENCES 
[1] B. Cardoso and E. Figueiredo. Co-Occurrence of Design 

Patterns and Bad Smells in Software Systems: A Systematic 
Literature Review. In proc. of the Workshop on Software 
Modularity, 2014 

[2] C. Bouhours, H. Leblanc, and C. Percebois. Sharing bad 
practices in design to improve the use of patterns. In proc. of 
the Conference on Pattern Languages of Programs, 2010. 

[3] C. Jebelean, C. Chirila, and V. Cretu. A Logic Based 
Approach to Locate Composite Refactoring Opportunities in 
Object-Oriented Code. In Int’l Conf. on Automation Quality 
and Testing Robotics, vol. 3, p. 1–6, 2010 

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design 
Patterns: Elements of Reusable Object-Oriented Software. 
Pearson Education, 1994. 

[5] F. Fontana and S. Spinelli. Impact of Refactoring on Quality 
Code Evaluation. In proc. of the 4th Workshop on 
Refactoring Tools, p. 37–40, 2011. 

[6] F. Khomh. Squad: Software Quality Understanding Through 
the Analysis of Design. In 16th Working Conference on 
Reverse Engineering, p. 303– 306, 2009. 

[7] G. Carneiro et al. Identifying Code Smells with Multiple 
Concern Views. In Brazilian Symposium on Software 
Engineering, p. 128-137, 2010. 

[8] J. Garcia, D. Popescu, G. Edwards, N. Medvidovic. 
Identifying Architectural Bad Smells. European Conf. on 
Software Maintenance and Reeng, 2009. 

[9] J. Kerievsky. Refactoring to Patterns. Pearson, 2005. 

[10] J. Perez and Y. Crespo. Perspectives on Automated 
Correction of Bad Smells. In proc. of the Int’l Workshop on 

Principles of Software Evolution, p. 99–108, 2009. 

[11] K. Beck, et al. Industrial Experience with Design Patterns, In 
Proc. Conf. Software Eng. p. 103-114, 1996. 

[12] L. Prechelt, B. Unger, W. Tichy, P. Brössler, L. Votta. A 
Controlled Experiment in Maintenance Comparing Design 
Patterns to Simpler Solutions, In IEEE Transactions on 
Software Eng., vol. 27, no. 12, p. 1134-1144, 2001 

[13] M. Dodani. Patterns of Anti-Patterns. Journal of Object 
Technology, p. 29–33, 2006. 

[14] M. Fowler. Refactoring: Improving the Design of Existing 
Code. Addison-Wesley Professional, 1999. 

[15] M. Lanza and R. Marinescu. Object-Oriented Metrics in 
Practice. Springer, 2006. 

[16] N. Tsantsalis, A. Chatzigeorgiou, G. Stephanides, S. 
Halkidis, Design Pattern Detection Using Similarity Scoring. 
IEEE Trans. on Soft. Engineering, vol. 32, p. 896-909, 2006. 

[17] N. Tsantalis and A. Chatzigeorgiou, Identification of Move 
Method Refactoring Opportunities. IEEE Transactions on 
Software Engineering, pp 347–367, 2009. 

[18] O. Seng, J. Stammel, and D. Burkhart. Search-based 
Determination of Refactorings for Improving the Class 
Structure of Object-Oriented Systems. In proc. of the Conf. 
on Genetic and Evolutionary Computation, 2006. 

[19] P. Wendorff. Assessment of Design Patterns during Software 
Reengineering: Lessons Learned from a Large Commercial 
Project. In European Conference on Software Maintenance 
and Reengineering, p. 77–84, 2001. 

[20] R. Agrawal, I. Tomasz, and A. Swami. Mining Association 
Rules Between Sets of Items in Large Databases. ACM 
SIGMOD Record. Vol. 22. No. 2. 1993. 

[21] S. Brin et al. Dynamic Itemset Counting and Implication 
Rules for Market Basket Data. ACM SIGMOD Record. vol. 
26, 1997. 

[22] T. Copeland, PMD Applied: Centennial Books, 2005. 

[23] Y. Luo, A. Hoss, and D. Carver. An Ontological 
Identification of Relationships between Anti-patterns and 
Code Smells. In Aerospace Conference, p. 1–10, 2010. 

[24] W. Brown, et al. Antipatterns: Refactoring Software, 
Architectures, and Projects in Crisis, 1998. 

[25] W. McNatt, and J. Bieman. Coupling of design patterns: 
Common practices and their benefits. In Annual 
International Computer Software and Applications 
Conference, p. 574–579, 200. 

[26] J. Padilha et al. On the Effectiveness of Concern Metrics to 
Detect Code Smells: An Empirical Study. In Int’l Conf. on 
Advanced Information Systems Engineering (CAiSE), 2014. 

 

XI Brazilian Symposium on Information System, Goiânia, GO, May 26-29, 2015.

354


